ABSTRACT
Redox-induced interconversions of metal oxidation states typically result in multiple phase boundaries that separate chemically and structurally distinct oxides and suboxides. Directly probing such multi-interfacial reactions is challenging because of the difficulty in simultaneously resolving the multiple reaction fronts at the atomic scale. Using the example of CuO reduction in H2 gas, a reaction pathway of CuO â monoclinic m-Cu4 O3 â Cu2 O is demonstrated and identifies interfacial reaction fronts at the atomic scale, where the Cu2 O/m-Cu4 O3 interface shows a diffuse-type interfacial transformation; while the lateral flow of interfacial ledges appears to control the m-Cu4 O3 /CuO transformation. Together with atomistic modeling, it is shown that such a multi-interface transformation results from the surface-reaction-induced formation of oxygen vacancies that diffuse into deeper atomic layers, thereby resulting in the formation of the lower oxides of Cu2 O and m-Cu4 O3 , and activate the interfacial transformations. These results demonstrate the lively dynamics at the reaction fronts of the multiple interfaces and have substantial implications for controlling the microstructure and interphase boundaries by coupling the interplay between the surface reaction dynamics and the resulting mass transport and phase evolution in the subsurface and bulk.
ABSTRACT
BACKGROUND: There is no individualized prediction model for intensive care unit (ICU) admission on patients with community-acquired pneumonia (CAP) and connective tissue disease (CTD) so far. In this study, we aimed to establish a machine learning-based model for predicting the need for ICU admission among those patients. METHODS: This was a retrospective study on patients admitted into a University Hospital in China between November 2008 and November 2021. Patients were included if they were diagnosed with CAP and CTD during admission and hospitalization. Data related to demographics, CTD types, comorbidities, vital signs and laboratory results during the first 24 h of hospitalization were collected. The baseline variables were screened to identify potential predictors via three methods, including univariate analysis, least absolute shrinkage and selection operator (Lasso) regression and Boruta algorithm. Nine supervised machine learning algorithms were used to build prediction models. We evaluated the performances of differentiation, calibration, and clinical utility of all models to determine the optimal model. The Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) techniques were performed to interpret the optimal model. RESULTS: The included patients were randomly divided into the training set (1070 patients) and the testing set (459 patients) at a ratio of 70:30. The intersection results of three feature selection approaches yielded 16 predictors. The eXtreme gradient boosting (XGBoost) model achieved the highest area under the receiver operating characteristic curve (AUC) (0.941) and accuracy (0.913) among various models. The calibration curve and decision curve analysis (DCA) both suggested that the XGBoost model outperformed other models. The SHAP summary plots illustrated the top 6 features with the greatest importance, including higher N-terminal pro-B-type natriuretic peptide (NT-proBNP) and C-reactive protein (CRP), lower level of CD4 + T cell, lymphocyte and serum sodium, and positive serum (1,3)-ß-D-glucan test (G test). CONCLUSION: We successfully developed, evaluated and explained a machine learning-based model for predicting ICU admission in patients with CAP and CTD. The XGBoost model could be clinical referenced after external validation and improvement.
Subject(s)
Community-Acquired Infections , Connective Tissue Diseases , Intensive Care Units , Machine Learning , Patient Admission , Pneumonia , Humans , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Male , Connective Tissue Diseases/diagnosis , Connective Tissue Diseases/epidemiology , Female , Middle Aged , Retrospective Studies , Intensive Care Units/trends , Aged , Patient Admission/trends , Pneumonia/diagnosis , Pneumonia/epidemiology , Predictive Value of Tests , China/epidemiology , AdultABSTRACT
Immobilizing catalysts and photosensitizers on an electrode surface is crucial in interfacial energy conversion. However, their combination for optimizing catalytic performance is an unpredictable challenge. Herein, we report that catalyst and photosensitizer monomers are selectively grafted one-by-one addition onto the electrode surface by interfacial electrosynthesis to achieve composition and sequence-controlled oligomer photoelectrocatalytic monolayers. This electrosynthesis relies on the oxidative coupling reaction of carbazole and the reductive coupling reaction of vinyl on the catalyst and photosensitizer monomers, and it initiates on self-assembled monolayers and propagates with alternating positive and negative potentials. Each addition and completion of the target monomer can be quantitatively identified and monitored by optical and electrical responses and their linear coefficients as a function of reaction steps. The resulting composition and sequence-controlled monolayers exhibit tuning electrocatalytic behaviors including water splitting and CO2 reduction, indicating an efficient way to optimize the electro- and photocatalytic functions and performance of molecular materials.
ABSTRACT
OBJECTIVE: Breast cancer has become the most prevalent malignant tumor in women, and the occurrence of distant metastasis signifies a poor prognosis. Utilizing predictive models to forecast distant metastasis in breast cancer presents a novel approach. This study aims to utilize readily available clinical data and advanced machine learning algorithms to establish an accurate clinical prediction model. The overall objective is to provide effective decision support for clinicians. METHODS: Data from 239 patients from two centers were analyzed, focusing on clinical blood biomarkers (tumor markers, liver and kidney function, lipid profile, cardiovascular markers). Spearman correlation and the least absolute shrinkage and selection operator regression were employed for feature dimension reduction. A predictive model was built using LightGBM and validated in training, testing, and external validation cohorts. Feature importance correlation analysis was conducted on the clinical model and the comprehensive model, followed by univariate and multivariate regression analysis of these features. RESULTS: Through internal and external validation, we constructed a LightGBM model to predict de novo bone metastasis in newly diagnosed breast cancer patients. The area under the receiver operating characteristic curve values of this model in the training, internal validation test, and external validation test1 cohorts were 0.945, 0.892, and 0.908, respectively. Our validation results indicate that the model exhibits high sensitivity, specificity, and accuracy, making it the most accurate model for predicting bone metastasis in breast cancer patients. Carcinoembryonic Antigen, creatine kinase, albumin-globulin ratio, Apolipoprotein B, and Cancer Antigen 153 (CA153) play crucial roles in the model's predictions. Lipoprotein a, CA153, gamma-glutamyl transferase, α-Hydroxybutyrate dehydrogenase, alkaline phosphatase, and creatine kinase are positively correlated with breast cancer bone metastasis, while white blood cell ratio and total cholesterol are negatively correlated. CONCLUSION: This study successfully utilized clinical blood biomarkers to construct an artificial intelligence model for predicting distant metastasis in breast cancer, demonstrating high accuracy. This suggests potential clinical utility in predicting and identifying distant metastasis in breast cancer. These findings underscore the potential prospect of developing economically efficient and readily accessible predictive tools in clinical oncology.
Subject(s)
Artificial Intelligence , Biomarkers, Tumor , Bone Neoplasms , Breast Neoplasms , Humans , Breast Neoplasms/pathology , Female , Bone Neoplasms/secondary , Bone Neoplasms/blood , Middle Aged , Biomarkers, Tumor/blood , Adult , Aged , ROC Curve , Machine Learning , Predictive Value of TestsABSTRACT
BACKGROUND: Severe community-acquired pneumonia is one of the most lethal forms of CAP with high mortality. For rapid and accurate decisions, we developed a mortality prediction model specifically tailored for elderly SCAP patients. METHODS: The retrospective study included 2365 elderly patients. To construct and validate the nomogram, we randomly divided the patients into training and testing cohorts in a 70% versus 30% ratio. The primary outcome was in-hospital mortality. Univariate and multivariate logistic regression analyses were used in the training cohort to identify independent risk factors. The robustness of this model was assessed using the C index, ROC and AUC. DCA was employed to evaluate the predictive accuracy of the model. RESULTS: Six factors were used as independent risk factors for in-hospital mortality to construct the prediction model, including age, the use of vasopressor, chronic renal disease, neutrophil, platelet, and BUN. The C index was 0.743 (95% CI 0.719-0.768) in the training cohort and 0.731 (95% CI 0.694-0.768) in the testing cohort. The ROC curves and AUC for the training cohort and testing cohort (AUC = 0.742 vs. 0.728) indicated a robust discrimination. And the calibration plots showed a consistency between the prediction model probabilities and observed probabilities. Then, the DCA demonstrated great clinical practicality. CONCLUSIONS: The nomogram incorporated six risk factors, including age, the use of vasopressor, chronic renal disease, neutrophil, platelet and BUN, which had great predictive accuracy and robustness, while also demonstrating clinical practicality at ICU admission.
Subject(s)
Community-Acquired Infections , Kidney Failure, Chronic , Pneumonia , Renal Insufficiency, Chronic , Aged , Humans , Hospital Mortality , Nomograms , Retrospective Studies , Gemfibrozil , Risk Factors , Vasoconstrictor AgentsABSTRACT
BACKGROUND: Little research has been conducted to evaluate the correlation between impulse oscillometry (IOS), Childhood Asthma Control Test (C-ACT), and Test for Respiratory and Asthma Control in Kids (TRACK). METHODS: This study was conducted at China Medical University Hospital between September 1, 2019, and March 31, 2021. Children aged 2-6 years who had been diagnosed with asthma with acute exacerbation were enrolled and followed-up until the end of the study. Correlations between the parameters of IOS, C-ACT and TRACK were assessed. The validity and reliability of TRACK were verified. RESULTS: A total of 114 children with asthma and acute exacerbations were recruited. Their mean age was 4.1 ± 1.1 years, and 60.5% were males. After a year of treatment, the change of R5-R20 from baseline 0.64 ± 0.38 kPa/L/s to 12th month 0.48 ± 0.2 kPa/L/s (p = 0.022). TRACK and C-ACT scores were significantly correlated during the observation period. R5-R20 in IOS at baseline and at the 12th month of follow-up as well as the change in IOS parameters were significantly associated with C-ACT (p = 0.003, 0.015, and 0.001, respectively). R5% and R5-R20 changes in IOS were associated with TRACK (p = 0.04 and 0.025, respectively). Sensitivity and specificity of TRACK were 80.8% (67.5-90.4) and 100% (94.1-100), respectively, with cut-off points >95 and AUC 93.8%. CONCLUSION: TRACK score appears to have a stronger association with the IOS parameter than C-ACT score. Our findings indicate that TRACK is a valid tool for assessing asthma control in preschool children.
Subject(s)
Asthma , Male , Child, Preschool , Humans , Child , Female , Oscillometry , Reproducibility of Results , Asthma/diagnosis , Respiratory Function Tests , Sensitivity and Specificity , Forced Expiratory VolumeABSTRACT
Self-trapped exciton (STE) emission, typified by antimony (Sb), with broadband characteristics, represents the next generation of materials for solid-state lighting and radiation detection. However, little is known about the multiexciton behavior of the Sb emission center. Here, we proposed a general approach for designing antimony-centered multi-exciton emitting materials through self-assembly. Benefitting from controllable multiexciton behavior, dual-band white light emission spanning the entire visible spectrum was achieved. Relying on the reduction of an effective atomic number brought by self-assembly, excellent scintillation response to ß-rays was attained. This study offers unprecedented insight into hybrid single/triple STE emission and unveils new avenues for single-emitter white-light emission, as well as radiographic testing using low-risk ß-rays as sources.
ABSTRACT
BACKGROUND: Adult asthma is phenotypically heterogeneous with unclear aetiology. We aimed to evaluate the potential contribution of environmental exposure and its ensuing response to asthma and its heterogeneity. METHODS: Environmental risk was evaluated by assessing the records of National Health Insurance Research Database (NHIRD) and residence-based air pollution (particulate matter with diameter less than 2.5 micrometers (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs)), integrating biomonitoring analysis of environmental pollutants, inflammatory markers and sphingolipid metabolites in case-control populations with mass spectrometry and ELISA. Phenotypic clustering was evaluated by t-distributed stochastic neighbor embedding (t-SNE) integrating 18 clinical and demographic variables. FINDINGS: In the NHIRD dataset, modest increase in the relative risk with time-lag effect for emergency (N=209 837) and outpatient visits (N=638 538) was observed with increasing levels of PM2.5 and PAHs. Biomonitoring analysis revealed a panel of metals and organic pollutants, particularly metal Ni and PAH, posing a significant risk for current asthma (ORs=1.28-3.48) and its severity, correlating with the level of oxidative stress markers, notably Nε-(hexanoyl)-lysine (r=0.108-0.311, p<0.05), but not with the accumulated levels of PM2.5 exposure. Further, levels of circulating sphingosine-1-phosphate and ceramide-1-phosphate were found to discriminate asthma (p<0.001 and p<0.05, respectively), correlating with the levels of PAH (r=0.196, p<0.01) and metal exposure (r=0.202-0.323, p<0.05), respectively, and both correlating with circulating inflammatory markers (r=0.186-0.427, p<0.01). Analysis of six phenotypic clusters and those cases with comorbid type 2 diabetes mellitus (T2DM) revealed cluster-selective environmental risks and biosignatures. INTERPRETATION: These results suggest the potential contribution of environmental factors from multiple sources, their ensuing oxidative stress and sphingolipid remodeling to adult asthma and its phenotypic heterogeneity.
Subject(s)
Air Pollutants , Air Pollution , Asthma , Diabetes Mellitus, Type 2 , Polycyclic Aromatic Hydrocarbons , Adult , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Sphingolipids , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring/methodsABSTRACT
Herpesviral hematopoietic necrosis disease causes by cyprinid herpesvirus 2 (CyHV-2) infection is a high mortality disease that leads to great economic damage to gibel carp, Carassius auratus gibelio aquaculture. In this study, an attenuated strain of CyHV-2 G-RP7 was achieved by subculture on RyuF-2 cells derived from the fin of Ryukin-variety goldfish and GiCF cells derived from fin of gibel carp. As the attenuated vaccine candidate, there are no clinical symptoms of gibel carp that immersion or intraperitoneal injection with G-RP7 strain. The protection rates of G-PR7 to gibel carp by immersion and intraperitoneal injection were 92% and 100%, respectively. In the test for virulence reversion, the candidate was propagated through gibel carp six times by intraperitoneal injection with kidney and spleen homogenate of the inoculated fish. During in vivo passages in gibel carp, no abnormality and mortality of the inoculated fish were observed, and the virus DNA copies maintain a low level from the first passage to the sixth passage. The dynamic of virus DNA in each tissue of G-RP7 vaccination fish increased within 1, 3, and 5 days post-immunization, and subsequently decreased and stabilized within 7 and 14 days. In addition, the increase of anti-virus antibody titer was detected both immersion and injection immunization fish 21 days after vaccination by ELISA. These results demonstrated that G-RP7 can be a promising live attenuated vaccine candidate against the disease.
Subject(s)
Fish Diseases , Herpesviridae Infections , Herpesviridae , Animals , Goldfish , Vaccines, Attenuated , Herpesviridae Infections/prevention & control , Herpesviridae Infections/veterinary , DNA Viruses/genetics , Necrosis , DNA, ViralABSTRACT
Exploring highly active oxygen reduction electrocatalysts with low precious metals content is imperative but remains a considerable challenge. Herein, a series of heterobimetallic multi-walled carbon nanotubes (MWCNTs) electrocatalysts based on metal complexes are presented. These electrocatalysts feature diverse transition metals (M=Mn, Fe, Co, Ni) 5,15-bromophenyl-10, 20-methoxyphenyl porphyrin (MBMP) and tetrakis(triphenylphosphine)palladium (0) (Pd[P(Ph3)4]) anchored non-covalently on its surface. The resulting NiBMP-based MWCNTs with Pd[P(Ph3)4] (PdNiN4/MWCNTs) display outstanding electrocatalytic oxygen reduction activity (onset potential, 0.941 V; half wave potential, 0.830 V) and robust long-term durability in alkaline electrolyte. While in neutral condition, the MnBMP-based MWCNTs with Pd[P(Ph3)4] (PdMnN4/MWCNTs) are the most active heterobimetallic ORR catalyst and produce ultra-low concentration hydrogen peroxide (H2O2yield, 1.2%-1.3%). Synergistically tuning the ORR electrocatalytic activity and electron transfer pathway is achieved by the formation of NiBMP/MnBMP-Pd[P(Ph3)4] active sites. This work indicates such metalloporphyrin-Pd[P(Ph3)4] active sites on MWCNTs have significantly positive influence on electrocatalytic ORR systems and provides facile and mild strategy for designing highly efficient ORR electrocatalysts with ultra-low loading precious metal.
ABSTRACT
Solid organ transplant recipients have an increased risk of tuberculosis (TB). Due to the use of immunosuppressants, the incidence of TB among solid organ transplant recipients has been consistently reported to be higher than that among the general population. TB frequently develops within the first year after transplantation when a high level of immunosuppression is maintained. Extrapulmonary TB and disseminated TB account for a substantial proportion of TB among solid organ transplant recipients. Treatment of TB among recipients is complicated by the drug-drug interactions between anti-TB drugs and immunosuppressants. TB is associated with an increased risk of graft rejection, graft failure and mortality. Detection and management of latent TB infection among solid organ transplant candidates and recipients have been recommended. However, strategy to mitigate the risk of TB among solid organ transplant recipients has not yet been established in Taiwan. To address the challenges of TB among solid organ transplant recipients, a working group of the Transplantation Society of Taiwan was established. The working group searched literatures on TB among solid organ transplant recipients as well as guidelines and recommendations, and proposed interventions to strengthen TB prevention and care among solid organ transplant recipients.
Subject(s)
Organ Transplantation , Tuberculosis , Humans , Taiwan/epidemiology , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Organ Transplantation/adverse effects , Antitubercular Agents/therapeutic use , Immunosuppressive Agents/adverse effectsABSTRACT
Orchidaceae (with >28,000 orchid species) are one of the two largest plant families, with economically and ecologically important species, and occupy global and diverse niches with primary distribution in rainforests. Among orchids, 70% grow on other plants as epiphytes; epiphytes contribute up to ~50% of the plant diversity in rainforests and provide food and shelter for diverse animals and microbes, thereby contributing to the health of these ecosystems. Orchids account for over two-thirds of vascular epiphytes and provide an excellent model for studying evolution of epiphytism. Extensive phylogenetic studies of Orchidaceae and subgroups have ;been crucial for understanding relationships among many orchid lineages, although some uncertainties remain. For example, in the largest subfamily Epidendroideae with nearly all epiphytic orchids, relationships among some tribes and many subtribes are still controversial, hampering evolutionary analyses of epiphytism. Here we obtained 1,450 low-copy nuclear genes from 610 orchid species, including 431 with newly generated transcriptomes, and used them for the reconstruction of robust Orchidaceae phylogenetic trees with highly supported placements of tribes and subtribes. We also provide generally well-supported phylogenetic placements of 131 genera and 437 species that were not sampled by previous plastid and nuclear phylogenomic studies. Molecular clock analyses estimated the Orchidaceae origin at ~132 million years ago (Ma) and divergences of most subtribes from 52 to 29 Ma. Character reconstruction supports at least 14 parallel origins of epiphytism; one such origin was placed at the most recent common ancestor of ~95% of epiphytic orchids and linked to modern rainforests. Ten occurrences of rapid increase in the diversification rate were detected within Epidendroideae near and after the K-Pg boundary, contributing to ~80% of the Orchidaceae diversity. This study provides a robust and the largest family-wide Orchidaceae nuclear phylogenetic tree thus far and new insights into the evolution of epiphytism in vascular plants.
Subject(s)
Ecosystem , Orchidaceae , Animals , Phylogeny , Orchidaceae/genetics , PlastidsABSTRACT
The synthesis of crystalline polymer with a well-defined orientated state and a two-dimensional crystalline size beyond a micrometer will be essential to achieve the highest physical feature of polymer material but remain challenging. Herein, we show the synthesis of the crystalline unipolymer monolayer with an unusual ultrahigh modulus that is higher than the ITO substrate and high conductance by simultaneous electrosynthesis and manipulation. We find that the polymer monolayer has fully extended in the vertical and unidirectional orientation, which is proposed to approach their theoretically highest density, modulus, and conductivity among all aggregation formations of the current polymer. The modulus and current density can reach 40 and 1000â times higher than their amorphous counterpart. It is also found that these monolayers exhibit the bias- and length-dependent multiple charge states and asymmetrically negative differential resistance (NDR) effect, indicating that this unique molecular tailoring and ordering design is promising for multilevel resistive memory devices. Our work demonstrates the creation of a crystalline polymer monolayer for approaching the physical limit of polymer electronic materials and also provides an opportunity to challenge the synthetically iterative limit of an isolated ultra-long polymer.
ABSTRACT
OBJECTIVE: Helicobacter pylori infection is mostly a family-based infectious disease. To facilitate its prevention and management, a national consensus meeting was held to review current evidence and propose strategies for population-wide and family-based H. pylori infection control and management to reduce the related disease burden. METHODS: Fifty-seven experts from 41 major universities and institutions in 20 provinces/regions of mainland China were invited to review evidence and modify statements using Delphi process and grading of recommendations assessment, development and evaluation system. The consensus level was defined as ≥80% for agreement on the proposed statements. RESULTS: Experts discussed and modified the original 23 statements on family-based H. pylori infection transmission, control and management, and reached consensus on 16 statements. The final report consists of three parts: (1) H. pylori infection and transmission among family members, (2) prevention and management of H. pylori infection in children and elderly people within households, and (3) strategies for prevention and management of H. pylori infection for family members. In addition to the 'test-and-treat' and 'screen-and-treat' strategies, this consensus also introduced a novel third 'family-based H. pylori infection control and management' strategy to prevent its intrafamilial transmission and development of related diseases. CONCLUSION: H. pylori is transmissible from person to person, and among family members. A family-based H. pylori prevention and eradication strategy would be a suitable approach to prevent its intra-familial transmission and related diseases. The notion and practice would be beneficial not only for Chinese residents but also valuable as a reference for other highly infected areas.
Subject(s)
Family Health , Helicobacter Infections/prevention & control , Helicobacter pylori , Infection Control/organization & administration , Adolescent , Adult , Aged , Child , Child, Preschool , China , Consensus , Delphi Technique , Helicobacter Infections/diagnosis , Helicobacter Infections/transmission , Humans , Infant , Middle Aged , Young AdultABSTRACT
The pathogenesis of diabetic wounds is closely associated with the dysregulation of macrophage polarization. However, the underlying mechanism remains poorly understood. In this study, we aimed to investigate the potential effects of PAQR3 (progestin and adipoQ receptor 3) silencing in accelerating diabetic wound healing. We showed that PAQR3 silencing promoted skin wound healing and angiogenesis in diabetic mice, which was accompanied by enhanced M2 macrophage polarization and elevated expression of PPARγ (peroxisome proliferator-activated receptor γ). PAQR3 silencing also promoted M2 polarization and increased PPARγ protein level in PMA-treated THP-1 cells. Moreover, knockdown of PAQR3 in macrophages enhanced the migration of HaCaT cells and tube formation of HUVECs. The ubiquitination of PPARγ protein in macrophages was repressed by PAQR3 silencing. STUB1 (STIP1 homology and U-box-containing protein 1) binds with the PPARγ protein to mediate PPARγ ubiquitination and degradation in macrophages, which was impaired by PAQR3 silencing. The PPARγ inhibitor, GW9662, or STUB1 overexpression abrogated the enhanced M2 macrophage polarization induced by PAQR3 silencing. Therefore, these findings demonstrates that PAQR3 silencing accelerates diabetic wound healing by promoting M2 macrophage polarization and angiogenesis, which is mediated by the inhibition of STUB1-mediated PPARγ protein ubiquitination and degradation.
Subject(s)
Diabetes Mellitus, Experimental , PPAR gamma , Animals , Diabetes Mellitus, Experimental/metabolism , Macrophages/metabolism , Mice , PPAR gamma/metabolism , Progestins/metabolism , Progestins/pharmacology , Wound HealingABSTRACT
Metallic nanoparticles have been used to harvest energy from a light source and transfer it to adsorbed gas molecules, which results in a reduced chemical reaction temperature. However, most reported reactions, such as ethylene epoxidation, ammonia decomposition and H-D bond formation are exothermic, and only H-D bond formation has been achieved at room temperature. These reactions require low activation energies (<2 eV), which are readily attained using visible-frequency localized surface plasmons (from ~1.75 eV to ~3.1 eV). Here, we show that endothermic reactions that require higher activation energy (>3.1 eV) can be initiated at room temperature by using localized surface plasmons in the deep-UV range. As an example, by leveraging simultaneous excitation of multiple localized surface plasmon modes of Al nanoparticles by using high-energy electrons, we initiate the reduction of CO2 to CO by carbon at room temperature. We employ an environmental transmission electron microscope to excite and characterize Al localized surface plasmon resonances, and simultaneously measure the spatial distribution of carbon gasification near the nanoparticles in a CO2 environment. This approach opens a path towards exploring other industrially relevant chemical processes that are initiated by plasmonic fields at room temperature.
ABSTRACT
Delimitation of the tribe Arethuseae has varied considerably since it was first defined. The relationships within Arethuseae, particularly within the subtribe Arethusinae, remain poorly elucidated. In this study, we reconstructed the phylogeny of Arethuseae, using six plastid markers (matK, ycf1, rbcL rpoc1, rpl32-trnL and trnL-F) from 83 taxa. The ancestral state reconstruction of 11 selected morphological characters was also conducted to identify synapomorphies and assess potential evolutionary transitions. Morphological character comparision between the distinct species Bletilla foliosa and other species are conducted. Our results unequivocally supported the monophyly of Arethuseae, which included highly supported clades and a clear synapomorphy of non-trichome-like lamellae. Furthermore, B. foliosa formed a separate clade in the subtribe Arethusinae, instead of clustering with the other Bletilla species in the subtribe Coelogyninae. The morphological characters comparision further showed that the B. foliosa clade could be distinguished from other genera in Arethuseae by multiple characters, including presence of lateral inflorescence, three lamellae with trichome-like apex and four pollinia. In light of these molecular and morphological evidences, we propose Mengzia as a new genus to accommodate B. foliosa and accordingly provide descriptions of this new genus and combination.
Subject(s)
Orchidaceae , DNA, Plant , Phylogeny , PlastidsABSTRACT
Memory dysfunction and associated hippocampal disturbances play crucial roles in cognitive impairment of schizophrenia. To examine the relationships between cognitive function and the hippocampal subfields (HSs) in first-episode never-treated (FENT) schizophrenia patients, the HSs were segmented in 39 FENT patients and 30 healthy controls using a state-of the-art automated algorithm. We found no significant differences in any HSs between the patients and controls. However, multivariate regression analysis showed that the left cornu ammonis 1 (CA1), left hippocampal tail, left presubiculum, and right molecular layer contributed 40% to the variance of the PANSS negative symptom score. After adjusting for sex, age, education, and intracranial volume, the partial correlation analysis showed that the volumes of left CA1, CA3, CA4, molecular layer, granule cell layer and both left and right subiculum were negatively correlated with the MATRICS consensus cognitive battery (MCCB) Hopkins Verbal Learning Test (HVLT). Multiple regression analysis showed that the left CA1 and CA3 hippocampal abnormalities contributed 66% to the variance of the HVLT. Our results suggest no detectable HS deficits were found in FENT schizophrenia patients. However, the HSs may be involved in the symptoms and cognitive deficits of schizophrenia patients in the early phase of their illness.
Subject(s)
Cognitive Dysfunction/psychology , Hippocampus/diagnostic imaging , Memory Disorders/diagnostic imaging , Memory Disorders/psychology , Schizophrenia/diagnostic imaging , Schizophrenic Psychology , Adolescent , Adult , CA1 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/diagnostic imaging , Cross-Sectional Studies , Diagnostic and Statistical Manual of Mental Disorders , Female , Humans , Magnetic Resonance Imaging , Male , Neuroimaging , Neuropsychological Tests , Verbal Learning , Young AdultABSTRACT
Intermittent theta-burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation, is considered a potential therapy for treatment-resistant depression. The synaptic mechanism of iTBS has long been known to be an effective method to induce long-term potentiation (LTP)-like plasticity in humans. However, there is limited evidence as to whether the antidepressant effect of iTBS is associated with change in synaptic function in the prefrontal cortex (PFC) in preclinical study. Hence, we applied an antidepressant (i.e., fluoxetine)-resistant depression rat model induced by severe foot-shocks to investigate the antidepressant efficacy of iTBS in the synaptic pathology. The results showed that iTBS treatment improved not only the impaired LTP, but also the aberrant long-term depression in the PFC of antidepressant-resistant depression model rats. Moreover, the mechanism of LTP improvement by iTBS involved downstream molecules of brain-derived neurotrophic factor, while the mechanism of long-term depression improvement by iTBS involved downstream molecules of proBDNF. The aberrant spine morphology was also improved by iTBS treatment. This study demonstrated that the mechanism of the iTBS paradigm is complex and may regulate not only excitatory but also inhibitory synaptic effects in the PFC.
Subject(s)
Antidepressive Agents/pharmacology , Depressive Disorder, Treatment-Resistant/physiopathology , Neuronal Plasticity/physiology , Prefrontal Cortex/physiopathology , Synapses/pathology , Animals , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Long-Term Potentiation/physiology , Male , Motor Cortex/drug effects , Motor Cortex/physiopathology , Neuronal Plasticity/drug effects , Prefrontal Cortex/drug effects , Rats, Sprague-Dawley , Theta Rhythm/drug effects , Theta Rhythm/physiology , Transcranial Magnetic Stimulation/methodsABSTRACT
BACKGROUND/PURPOSE: The application of the checkbox for identifying patients with traits of both chronic obstructive pulmonary disease (COPD) and asthma proposed by the 2015 Global Initiative for Asthma (GINA)/Global Initiative for Chronic Obstructive Lung Disease (GOLD) recommendations has not been well studied although such identification is important in clinical practice. Thus, we aimed to investigate the prevalence and features of COPD coexistent with asthma traits diagnosed based on the 2015 GINA/GOLD strategies, and explore the gap between guidelines and routine practice in the diagnosis and pharmacological management of such condition in a COPD cohort. METHODS: COPD subjects were enrolled retrospectively throughout Taiwan. A patient record form was completed for each participant and the data were analyzed. RESULTS: Of 340 participants, the prevalence of COPD coexistent with traits of asthma was 39.4% and 30.3% based on guidelines and physician's judgment, respectively. Coexistent patients were characterized by blood eosinophilia, higher total immunoglobulin E (IgE) levels, preserved lung function, and the presence of gastro-esophageal reflux disease and atopic disease while total IgE level > 100 kU/L and the presence of atopic disease were predictors for coexistent patients. Gaps existed in the diagnosis (a weak agreement with kappa = 0.53) and treatment (non-adherence to the preferred therapy in 18.4% of physician-judged coexistent patients) in COPD patients with asthma traits. The exacerbation history was similar between coexistent and non-coexistent patients. CONCLUSION: We found that measuring circulatory eosinophil and total IgE levels may raise clinicians' awareness of the presence of traits of asthma in the management of COPD.