Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 163(7): 1611-27, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26686651

ABSTRACT

Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.


Subject(s)
Chromatin/chemistry , Genome, Human , Repressor Proteins/metabolism , Transcription, Genetic , Animals , CCCTC-Binding Factor , Cell Cycle Proteins/metabolism , Cell Line , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , DNA Packaging , Humans , RNA Polymerase II/metabolism , Salamandridae , Cohesins
2.
Cell ; 155(7): 1507-20, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24360274

ABSTRACT

A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.


Subject(s)
B-Lymphocytes/metabolism , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Promoter Regions, Genetic , Regulon , Animals , Cell Lineage , Cells, Cultured , CpG Islands , DNA Methylation , Genetic Techniques , Mice , Organ Specificity , RNA, Long Noncoding/genetics , Transcription Factors/metabolism , Transcription, Genetic
3.
Cell ; 148(1-2): 84-98, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22265404

ABSTRACT

Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Transcription, Genetic , Cell Line, Tumor , Chromatin Immunoprecipitation , Enhancer Elements, Genetic , Genome-Wide Association Study , Humans
4.
Circulation ; 149(16): 1285-1297, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38235591

ABSTRACT

BACKGROUND: TTN truncation variants (TTNtvs) are the most common genetic lesion identified in individuals with dilated cardiomyopathy, a disease with high morbidity and mortality rates. TTNtvs reduce normal TTN (titin) protein levels, produce truncated proteins, and impair sarcomere content and function. Therapeutics targeting TTNtvs have been elusive because of the immense size of TTN, the rarity of specific TTNtvs, and incomplete knowledge of TTNtv pathogenicity. METHODS: We adapted CRISPR activation using dCas9-VPR to functionally interrogate TTNtv pathogenicity and develop a therapeutic in human cardiomyocytes and 3-dimensional cardiac microtissues engineered from induced pluripotent stem cell models harboring a dilated cardiomyopathy-associated TTNtv. We performed guide RNA screening with custom TTN reporter assays, agarose gel electrophoresis to quantify TTN protein levels and isoforms, and RNA sequencing to identify molecular consequences of TTN activation. Cardiomyocyte epigenetic assays were also used to nominate DNA regulatory elements to enable cardiomyocyte-specific TTN activation. RESULTS: CRISPR activation of TTN using single guide RNAs targeting either the TTN promoter or regulatory elements in spatial proximity to the TTN promoter through 3-dimensional chromatin interactions rescued TTN protein deficits disturbed by TTNtvs. Increasing TTN protein levels normalized sarcomere content and contractile function despite increasing truncated TTN protein. In addition to TTN transcripts, CRISPR activation also increased levels of myofibril assembly-related and sarcomere-related transcripts. CONCLUSIONS: TTN CRISPR activation rescued TTNtv-related functional deficits despite increasing truncated TTN levels, which provides evidence to support haploinsufficiency as a relevant genetic mechanism underlying heterozygous TTNtvs. CRISPR activation could be developed as a therapeutic to treat a large proportion of TTNtvs.


Subject(s)
Cardiomyopathy, Dilated , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/therapy , Cardiomyopathy, Dilated/pathology , Connectin/genetics , Haploinsufficiency/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , RNA, Guide, CRISPR-Cas Systems , Myocytes, Cardiac/metabolism
5.
Nature ; 566(7745): 558-562, 2019 02.
Article in English | MEDLINE | ID: mdl-30778195

ABSTRACT

The genomes of multicellular organisms are extensively folded into 3D chromosome territories within the nucleus1. Advanced 3D genome-mapping methods that combine proximity ligation and high-throughput sequencing (such as chromosome conformation capture, Hi-C)2, and chromatin immunoprecipitation techniques (such as chromatin interaction analysis by paired-end tag sequencing, ChIA-PET)3, have revealed topologically associating domains4 with frequent chromatin contacts, and have identified chromatin loops mediated by specific protein factors for insulation and regulation of transcription5-7. However, these methods rely on pairwise proximity ligation and reflect population-level views, and thus cannot reveal the detailed nature of chromatin interactions. Although single-cell Hi-C8 potentially overcomes this issue, this method may be limited by the sparsity of data that is inherent to current single-cell assays. Recent advances in microfluidics have opened opportunities for droplet-based genomic analysis9 but this approach has not yet been adapted for chromatin interaction analysis. Here we describe a strategy for multiplex chromatin-interaction analysis via droplet-based and barcode-linked sequencing, which we name ChIA-Drop. We demonstrate the robustness of ChIA-Drop in capturing complex chromatin interactions with single-molecule precision, which has not been possible using methods based on population-level pairwise contacts. By applying ChIA-Drop to Drosophila cells, we show that chromatin topological structures predominantly consist of multiplex chromatin interactions with high heterogeneity; ChIA-Drop also reveals promoter-centred multivalent interactions, which provide topological insights into transcription.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Microfluidics/methods , Sequence Analysis, DNA/methods , Single Molecule Imaging/methods , Single Molecule Imaging/standards , Animals , Binding Sites/genetics , Cell Line , Chromatin/chemistry , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Microfluidics/standards , Nucleic Acid Conformation , Promoter Regions, Genetic/genetics , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Transcription, Genetic
6.
PLoS Genet ; 17(9): e1009725, 2021 09.
Article in English | MEDLINE | ID: mdl-34492001

ABSTRACT

Large-scale mutant libraries have been indispensable for genetic studies, and the development of next-generation genome sequencing technologies has greatly advanced efforts to analyze mutants. In this work, we sequenced the genomes of 660 Chlamydomonas reinhardtii acetate-requiring mutants, part of a larger photosynthesis mutant collection previously generated by insertional mutagenesis with a linearized plasmid. We identified 554 insertion events from 509 mutants by mapping the plasmid insertion sites through paired-end sequences, in which one end aligned to the plasmid and the other to a chromosomal location. Nearly all (96%) of the events were associated with deletions, duplications, or more complex rearrangements of genomic DNA at the sites of plasmid insertion, and together with deletions that were unassociated with a plasmid insertion, 1470 genes were identified to be affected. Functional annotations of these genes were enriched in those related to photosynthesis, signaling, and tetrapyrrole synthesis as would be expected from a library enriched for photosynthesis mutants. Systematic manual analysis of the disrupted genes for each mutant generated a list of 253 higher-confidence candidate photosynthesis genes, and we experimentally validated two genes that are essential for photoautotrophic growth, CrLPA3 and CrPSBP4. The inventory of candidate genes includes 53 genes from a phylogenomically defined set of conserved genes in green algae and plants. Altogether, 70 candidate genes encode proteins with previously characterized functions in photosynthesis in Chlamydomonas, land plants, and/or cyanobacteria; 14 genes encode proteins previously shown to have functions unrelated to photosynthesis. Among the remaining 169 uncharacterized genes, 38 genes encode proteins without any functional annotation, signifying that our results connect a function related to photosynthesis to these previously unknown proteins. This mutant library, with genome sequences that reveal the molecular extent of the chromosomal lesions and resulting higher-confidence candidate genes, will aid in advancing gene discovery and protein functional analysis in photosynthesis.


Subject(s)
Acetates/metabolism , Chlamydomonas reinhardtii/genetics , Exome Sequencing , Mutation , Photosynthesis/genetics , Chlamydomonas reinhardtii/metabolism , Gene Deletion , Gene Duplication
7.
Cell ; 133(6): 1106-17, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18555785

ABSTRACT

Transcription factors (TFs) and their specific interactions with targets are crucial for specifying gene-expression programs. To gain insights into the transcriptional regulatory networks in embryonic stem (ES) cells, we use chromatin immunoprecipitation coupled with ultra-high-throughput DNA sequencing (ChIP-seq) to map the locations of 13 sequence-specific TFs (Nanog, Oct4, STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb, Tcfcp2l1, E2f1, and CTCF) and 2 transcription regulators (p300 and Suz12). These factors are known to play different roles in ES-cell biology as components of the LIF and BMP signaling pathways, self-renewal regulators, and key reprogramming factors. Our study provides insights into the integration of the signaling pathways into the ES-cell-specific transcription circuitries. Intriguingly, we find specific genomic regions extensively targeted by different TFs. Collectively, the comprehensive mapping of TF-binding sites identifies important features of the transcriptional regulatory networks that define ES-cell identity.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Regulatory Networks , Signal Transduction , Animals , Base Sequence , Binding Sites , Chromatin Immunoprecipitation , Genome , Kruppel-Like Factor 4 , Mice , Multiprotein Complexes , Transcription Factors/metabolism
8.
Stem Cells ; 39(8): 1107-1119, 2021 08.
Article in English | MEDLINE | ID: mdl-33739574

ABSTRACT

The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.


Subject(s)
Neural Stem Cells , Proto-Oncogene Proteins c-fos , SOXB1 Transcription Factors , Animals , Cell Proliferation/genetics , Cell Self Renewal/genetics , Gene Expression Regulation , Gene Regulatory Networks , Mice , Neural Stem Cells/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
9.
Nat Methods ; 15(6): 455-460, 2018 06.
Article in English | MEDLINE | ID: mdl-29713081

ABSTRACT

Acquired genomic structural variants (SVs) are major hallmarks of cancer genomes, but they are challenging to reconstruct from short-read sequencing data. Here we exploited the long reads of the nanopore platform using our customized pipeline, Picky ( https://github.com/TheJacksonLaboratory/Picky ), to reveal SVs of diverse architecture in a breast cancer model. We identified the full spectrum of SVs with superior specificity and sensitivity relative to short-read analyses, and uncovered repetitive DNA as the major source of variation. Examination of genome-wide breakpoints at nucleotide resolution uncovered micro-insertions as the common structural features associated with SVs. Breakpoint density across the genome is associated with the propensity for interchromosomal connectivity and was found to be enriched in promoters and transcribed regions of the genome. Furthermore, we observed an over-representation of reciprocal translocations from chromosomal double-crossovers through phased SVs. We demonstrate that Picky analysis is an effective tool for comprehensive detection of SVs in cancer genomes from long-read data.


Subject(s)
Gene Expression Regulation, Neoplastic , Genomic Structural Variation , Nanopores , Cell Line, Tumor , DNA Mutational Analysis/methods , Genome , High-Throughput Nucleotide Sequencing/methods , Humans
10.
Nature ; 511(7510): 483-7, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-25043018

ABSTRACT

In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.


Subject(s)
Down-Regulation/genetics , Gene Expression Regulation, Neoplastic/genetics , Genes, myc/genetics , Neoplasms/genetics , Transcriptome , Up-Regulation/genetics , Animals , Binding Sites , Cell Line, Tumor , E-Box Elements/genetics , Humans , Kruppel-Like Transcription Factors/metabolism , Mice , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Inhibitors of Activated STAT/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Polymerase II/metabolism , Ubiquitin-Protein Ligases
11.
Immunity ; 32(3): 317-28, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20206554

ABSTRACT

Enhancers determine tissue-specific gene expression programs. Enhancers are marked by high histone H3 lysine 4 mono-methylation (H3K4me1) and by the acetyl-transferase p300, which has allowed genome-wide enhancer identification. However, the regulatory principles by which subsets of enhancers become active in specific developmental and/or environmental contexts are unknown. We exploited inducible p300 binding to chromatin to identify, and then mechanistically dissect, enhancers controlling endotoxin-stimulated gene expression in macrophages. In these enhancers, binding sites for the lineage-restricted and constitutive Ets protein PU.1 coexisted with those for ubiquitous stress-inducible transcription factors such as NF-kappaB, IRF, and AP-1. PU.1 was required for maintaining H3K4me1 at macrophage-specific enhancers. Reciprocally, ectopic expression of PU.1 reactivated these enhancers in fibroblasts. Thus, the combinatorial assembly of tissue- and signal-specific transcription factors determines the activity of a distinct group of enhancers. We suggest that this may represent a general paradigm in tissue-restricted and stimulus-responsive gene regulation.


Subject(s)
Gene Expression Regulation , Macrophages/immunology , Regulatory Sequences, Nucleic Acid , Animals , Binding Sites , Cells, Cultured , Chromatin/immunology , Chromatin/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Female , Gene Expression Profiling , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides/immunology , Macrophages/metabolism , Mice , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
12.
Nature ; 504(7479): 306-310, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24213634

ABSTRACT

In multicellular organisms, transcription regulation is one of the central mechanisms modelling lineage differentiation and cell-fate determination. Transcription requires dynamic chromatin configurations between promoters and their corresponding distal regulatory elements. It is believed that their communication occurs within large discrete foci of aggregated RNA polymerases termed transcription factories in three-dimensional nuclear space. However, the dynamic nature of chromatin connectivity has not been characterized at the genome-wide level. Here, through a chromatin interaction analysis with paired-end tagging approach using an antibody that primarily recognizes the pre-initiation complexes of RNA polymerase II, we explore the transcriptional interactomes of three mouse cells of progressive lineage commitment, including pluripotent embryonic stem cells, neural stem cells and neurosphere stem/progenitor cells. Our global chromatin connectivity maps reveal approximately 40,000 long-range interactions, suggest precise enhancer-promoter associations and delineate cell-type-specific chromatin structures. Analysis of the complex regulatory repertoire shows that there are extensive colocalizations among promoters and distal-acting enhancers. Most of the enhancers associate with promoters located beyond their nearest active genes, indicating that the linear juxtaposition is not the only guiding principle driving enhancer target selection. Although promoter-enhancer interactions exhibit high cell-type specificity, promoters involved in interactions are found to be generally common and mostly active among different cells. Chromatin connectivity networks reveal that the pivotal genes of reprogramming functions are transcribed within physical proximity to each other in embryonic stem cells, linking chromatin architecture to coordinated gene expression. Our study sets the stage for the full-scale dissection of spatial and temporal genome structures and their roles in orchestrating development.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Promoter Regions, Genetic/genetics , Animals , Cell Line , Cell Lineage , Embryonic Stem Cells/metabolism , In Situ Hybridization, Fluorescence , Mice , Neural Stem Cells/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic/genetics , Zebrafish/genetics
13.
Glia ; 66(9): 1929-1946, 2018 09.
Article in English | MEDLINE | ID: mdl-29732603

ABSTRACT

Sox2 is a transcription factor active in the nervous system, within different cell types, ranging from radial glia neural stem cells to a few specific types of differentiated glia and neurons. Mutations in the human SOX2 transcription factor gene cause various central nervous system (CNS) abnormalities, involving hippocampus and eye defects, as well as ataxia. Conditional Sox2 mutation in mouse, with different Cre transgenes, previously recapitulated different essential features of the disease, such as hippocampus and eye defects. In the cerebellum, Sox2 is active from early embryogenesis in the neural progenitors of the cerebellar primordium; Sox2 expression is maintained, postnatally, within Bergmann glia (BG), a differentiated cell type essential for Purkinje neurons functionality and correct motor control. By performing Sox2 Cre-mediated ablation in the developing and postnatal mouse cerebellum, we reproduced ataxia features. Embryonic Sox2 deletion (with Wnt1Cre) leads to reduction of the cerebellar vermis, known to be commonly related to ataxia, preceded by deregulation of Otx2 and Gbx2, critical regulators of vermis development. Postnatally, BG is progressively disorganized, mislocalized, and reduced in mutants. Sox2 postnatal deletion, specifically induced in glia (with GLAST-CreERT2), reproduces the BG defect, and causes (milder) ataxic features. Our results define a role for Sox2 in cerebellar function and development, and identify a functional requirement for Sox2 within postnatal BG, of potential relevance for ataxia in mouse mutants, and in human patients.


Subject(s)
Ataxia/metabolism , Cerebellar Vermis/growth & development , Cerebellar Vermis/metabolism , Neuroglia/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Animals, Newborn , Ataxia/pathology , Cells, Cultured , Cerebellar Vermis/pathology , Gene Expression Regulation/physiology , Glutamic Acid/metabolism , Homeodomain Proteins/metabolism , Mice, Transgenic , Mutation , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neuroglia/pathology , Otx Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Synaptic Transmission/physiology
14.
Environ Microbiol ; 20(8): 2898-2912, 2018 08.
Article in English | MEDLINE | ID: mdl-29749714

ABSTRACT

Prasinophytes are widespread marine algae for which responses to nutrient limitation and viral infection are not well understood. We studied the picoprasinophyte, Micromonas pusilla, grown under phosphate-replete (0.65 ± 0.07 d-1 ) and 10-fold lower (low)-phosphate (0.11 ± 0.04 d-1 ) conditions, and infected by the phycodnavirus MpV-SP1. Expression of 17% of Micromonas genes in uninfected cells differed by >1.5-fold (q < 0.01) between nutrient conditions, with genes for P-metabolism and the uniquely-enriched Sel1-like repeat (SLR) family having higher relative transcript abundances, while phospholipid-synthesis genes were lower in low-P than P-replete. Approximately 70% (P-replete) and 30% (low-P) of cells were lysed 24 h post-infection, and expression of ≤5.8% of host genes changed relative to uninfected treatments. Host genes for CAZymes and glycolysis were activated by infection, supporting importance in viral production, which was significantly lower in slower growing (low-P) hosts. All MpV-SP1 genes were expressed, and our analyses suggest responses to differing host-phosphate backgrounds involve few viral genes, while the temporal program of infection involves many more, and is largely independent of host-phosphate background. Our study (i) identifies genes previously unassociated with nutrient acclimation or viral infection, (ii) provides insights into the temporal program of prasinovirus gene expression by hosts and (iii) establishes cell biological aspects of an ecologically important host-prasinovirus system that differ from other marine algal-virus systems.


Subject(s)
Chlorophyta/virology , Gene Expression Regulation, Plant , Phosphates/chemistry , Phycodnaviridae/physiology , Transcription, Genetic/physiology , Aquatic Organisms , Chlorophyta/metabolism , Phosphates/metabolism , Phycodnaviridae/genetics
15.
New Phytol ; 214(3): 1213-1229, 2017 May.
Article in English | MEDLINE | ID: mdl-28186631

ABSTRACT

Plant secondary cell walls constitute the majority of plant biomass. They are predominantly found in xylem cells, which are derived from vascular initials during vascularization. Little is known about these processes in grass species despite their emerging importance as biomass feedstocks. The targeted biofuel crop Sorghum bicolor has a sequenced and well-annotated genome, making it an ideal monocot model for addressing vascularization and biomass deposition. Here we generated tissue-specific transcriptome and DNA methylome data from sorghum shoots, roots and developing root vascular and nonvascular tissues. Many genes associated with vascular development in other species show enriched expression in developing vasculature. However, several transcription factor families varied in vascular expression in sorghum compared with Arabidopsis and maize. Furthermore, differential expression of genes associated with DNA methylation were identified between vascular and nonvascular tissues, implying that changes in DNA methylation are a feature of sorghum root vascularization, which we confirmed using tissue-specific DNA methylome data. Roots treated with a DNA methylation inhibitor also showed a significant decrease in root length. Tissues and organs can be discriminated based on their genomic methylation patterns and methylation context. Consequently, tissue-specific changes in DNA methylation are part of the normal developmental process.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Plant , Plant Vascular Bundle/genetics , Sorghum/genetics , Cell Wall/genetics , Conserved Sequence , Genes, Plant , Plant Roots/genetics , Transcriptome/genetics
16.
Proc Natl Acad Sci U S A ; 111(44): 15827-32, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25267653

ABSTRACT

Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.


Subject(s)
Arabidopsis , Chlorophyta , Evolution, Molecular , Gene Expression Regulation, Plant/physiology , Phytochrome , Signal Transduction/physiology , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Base Sequence , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chlorophyta/genetics , Chlorophyta/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Molecular Sequence Data , Phylogeny , Phytochrome/biosynthesis , Phytochrome/genetics , Protein Structure, Tertiary , Transcriptome/physiology
17.
Plant J ; 84(4): 800-15, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26426343

ABSTRACT

Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (~2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified ~27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between the populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production.


Subject(s)
Exome/genetics , Genetic Variation , Panicum/genetics , Sequence Analysis, DNA/methods , Chromosomes, Plant/genetics , DNA Copy Number Variations , Ecosystem , Ecotype , Genetics, Population , Genome, Plant/genetics , Genotype , Geography , Panicum/classification , Panicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Polyploidy , Species Specificity , United States
18.
BMC Genomics ; 17: 267, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27029936

ABSTRACT

BACKGROUND: Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. RESULTS: We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. CONCLUSIONS: Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution.


Subject(s)
Biological Evolution , Chlorophyta/genetics , Genome, Plant , Embryophyta/genetics , Genomics/methods , Introns , Models, Genetic , Multigene Family , Phylogeny , Proteome/genetics , RNA, Algal/genetics , Sequence Analysis, RNA , Transcriptome
19.
Nature ; 462(7269): 58-64, 2009 Nov 05.
Article in English | MEDLINE | ID: mdl-19890323

ABSTRACT

Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in principle interact functionally. Many transcription factors bind to regulatory DNA elements distant from gene promoters. Although distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and their impact on transcription regulation have not been investigated in a genome-wide manner. Here we describe the development of a new strategy, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) for the de novo detection of global chromatin interactions, with which we have comprehensively mapped the chromatin interaction network bound by oestrogen receptor alpha (ER-alpha) in the human genome. We found that most high-confidence remote ER-alpha-binding sites are anchored at gene promoters through long-range chromatin interactions, suggesting that ER-alpha functions by extensive chromatin looping to bring genes together for coordinated transcriptional regulation. We propose that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Estrogen Receptor alpha/metabolism , Genome, Human/genetics , Binding Sites , Cell Line , Chromatin Immunoprecipitation , Cross-Linking Reagents , Formaldehyde , Humans , Promoter Regions, Genetic/genetics , Protein Binding , Reproducibility of Results , Sequence Analysis, DNA , Transcription, Genetic , Transcriptional Activation
20.
PLoS Genet ; 8(5): e1002728, 2012.
Article in English | MEDLINE | ID: mdl-22615585

ABSTRACT

HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cell Cycle Proteins , DNA-Binding Proteins , Gene Expression Regulation , Repressor Proteins , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin Immunoprecipitation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , E-Box Elements/genetics , HEK293 Cells , Humans , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Receptors, Notch/genetics , Receptors, Notch/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL