Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemistry ; 25(66): 15062-15066, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31553484

ABSTRACT

The aldol reaction is one of the most fundamental stereocontrolled carbon-carbon bond-forming reactions and is mainly catalyzed by aldolases in nature. Despite the fact that the aldol reaction has been widely proposed to be involved in fungal secondary metabolite biosynthesis, a dedicated aldolase that catalyzes stereoselective aldol reactions has only rarely been reported in fungi. Herein, we activated a cryptic polyketide biosynthetic gene cluster that was upregulated in the fungal wheat pathogen Parastagonospora nodorum during plant infection; this resulted in the production of the phytotoxic stemphyloxin II (1). Through heterologous reconstruction of the biosynthetic pathway and in vitro assay by using cell-free lysate from Aspergillus nidulans, we demonstrated that a berberine bridge enzyme (BBE)-like protein SthB catalyzes an intramolecular aldol reaction to establish the bridged tricyclo[6.2.2.02,7 ]dodecane skeleton in the post-assembly tailoring step. The characterization of SthB as an aldolase enriches the catalytic toolbox of classic reactions and the functional diversities of the BBE superfamily of enzymes.


Subject(s)
Alkanes/chemistry , Berberine/chemistry , Fructose-Bisphosphate Aldolase/metabolism , Perylene/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Aspergillus nidulans/metabolism , Biocatalysis , Fructose-Bisphosphate Aldolase/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Molecular Conformation , Multigene Family , Perylene/analogs & derivatives , Perylene/chemistry , Stereoisomerism
2.
ACS Chem Biol ; 15(1): 226-233, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31815421

ABSTRACT

The etiology of fungal pathogenesis of grains is critical to global food security. The large number of orphan biosynthetic gene clusters uncovered in fungal plant pathogen genome sequencing projects suggests that we have a significant knowledge gap about the secondary metabolite repertoires of these pathogens and their roles in plant pathogenesis. Cytochalasans are a family of natural products of significant interest due to their ability to bind to actin and interfere with cellular processes that involved actin polymerization; however, our understanding of their biosynthesis and biological roles remains incomplete. Here, we identified a putative polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene cluster (phm) that was upregulated in the pathogen Parastagonospora nodorum during its infection on wheat. Overexpression of the transcription factor gene phmR encoded in the phm gene cluster resulted in the production of two leucine-derived cytochalasans, phomacins D and E (1 and 2, respectively), and an acetonyl adduct phomacin F. Heterologous expression of the PKS-NRPS gene phmA and the trans-enoyl reductase (ER) gene phmE in Aspergillus nidulans resulted in the production of a novel 2-pyrrolidone precursor prephomacin. Reverse genetics and wheat seedling infection assays showed that ΔphmA mutants exhibited significantly reduced virulence compared to the wild type. We further demonstrated that both 1 and 2 showed potent actin polymerization-inhibitory activities and exhibited potentially monocot-specific antigerminative activities. The findings from this study have advanced our knowledge based on the biosynthesis and biological roles of cytochalasans, the latter of which could have significant implications for our understanding of the molecular mechanisms of fungus-plant interactions.


Subject(s)
Ascomycota/genetics , Cytochalasins/metabolism , Genomics/methods , Triticum/metabolism , Virulence/genetics , Actins/metabolism , Aspergillus nidulans/genetics , Cloning, Molecular , Gene Expression , Gene Knockout Techniques , Genes, Fungal , Multigene Family , Peptide Synthases/genetics , Peptide Synthases/metabolism , Plant Diseases/genetics , Plant Diseases/prevention & control , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Pyrrolidinones/metabolism , Triticum/microbiology
3.
Microorganisms ; 7(12)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31756979

ABSTRACT

Stellera chamaejasme L. is the most problematic weed in China's grasslands. Its root exudates affect co-occurring plants and thus may also affect soil fungi. Soils (0-20 cm depth) on two adjacent sites, one invaded the other uninvaded, were compared for a range of physiochemical parameters and by DNA sequencing of fungal communities. At the invaded site, relationships between S. chamaejasme abundance, soil physiochemical factors, and fungal communities were further investigated to determine whether these relationships corroborated conclusions on the basis of site differences that could be translated into functional variation. Results showed that the invaded soils had lower N, P, organic matter, fungal alpha diversity, and relative abundance of arbuscular mycorrhizal fungi (AMF), but greater abundance of pathogenic fungi. Organic matter and P were the edaphic factors most strongly linked to site differences in total fungal communities. Within the invaded site, organic matter rather than S. chamaejasme cover was closely linked to total fungal composition. However, on this site, a number of fungal species that had various ecological functions and that differentiated the two sites were related to S. chamaejasme cover. This study indicates that lower fertility soils may be more susceptible to invasion by S. chamaejasme. Although the influence of S. chamaejasme on total fungal community composition was limited, there was evidence of effects on particular fungal species. Further research is needed to determine whether these effects influence S. chamaejasme invasiveness.

4.
Org Lett ; 20(19): 6148-6152, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30226784

ABSTRACT

A biosynthetic gene cluster that is significantly upregulated in the fungal wheat pathogen Parastagonospora nodorum during plant infection was reconstructed heterologously in Aspergillus nidulans. This led to the discovery of five new α-pyrone polyketides, alternapyrones B-F (2-6). Compounds 5 and 6, which contain a highly substituted dihydrofuran, exhibited phytotoxicity on wheat seed germination. It is demonstrated that only three enzymes, one highly reducing polyketide synthase and two multifunctional P450 oxygenases, are needed to synthesize the structurally complex products.

SELECTION OF CITATIONS
SEARCH DETAIL