Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.153
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(29): e2117054119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858343

ABSTRACT

The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for ß-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-ß-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Cycle Proteins , Lung Neoplasms , Receptors, G-Protein-Coupled , Transcription Factors , Bile Acids and Salts/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/metabolism , Cholic Acids/pharmacology , Cryoelectron Microscopy , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Transcription Factors/metabolism , beta-Arrestin 1/metabolism
2.
Breast Cancer Res ; 26(1): 37, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454442

ABSTRACT

Increasing evidence shows the oncogenic function of FAM83D in human cancer, but how FAM83D exerts its oncogenic function remains largely unclear. Here, we investigated the importance of FAM83D/FBXW7 interaction in breast cancer (BC). We systematically mapped the FBXW7-binding sites on FAM83D through a comprehensive mutational analysis together with co-immunoprecipitation assay. Mutations at the FBXW7-binding sites on FAM83D led to that FAM83D lost its capability to promote the ubiquitination and proteasomal degradation of FBXW7; cell proliferation, migration, and invasion in vitro; and tumor growth and metastasis in vivo, indicating that the FBXW7-binding sites on FAM83D are essential for its oncogenic functions. A meta-evaluation of FAM83D revealed that the prognostic impact of FAM83D was independent on molecular subtypes. The higher expression of FAM83D has poorer prognosis. Moreover, high expression of FAM83D confers resistance to chemotherapy in BCs, which is experimentally validated in vitro. We conclude that identification of FBXW7-binding sites on FAM83D not only reveals the importance for FAM83D oncogenic function, but also provides valuable insights for drug target.


Subject(s)
Breast Neoplasms , Cell Cycle Proteins , Humans , Female , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Prognosis , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
3.
Breast Cancer Res ; 26(1): 67, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649964

ABSTRACT

Breast cancer exhibits significant heterogeneity, manifesting in various subtypes that are critical in guiding treatment decisions. This study aimed to investigate the existence of distinct subtypes of breast cancer within the Asian population, by analysing the transcriptomic profiles of 934 breast cancer patients from a Malaysian cohort. Our findings reveal that the HR + /HER2- breast cancer samples display a distinct clustering pattern based on immune phenotypes, rather than conforming to the conventional luminal A-luminal B paradigm previously reported in breast cancers from women of European descent. This suggests that the activation of the immune system may play a more important role in Asian HR + /HER2- breast cancer than has been previously recognized. Analysis of somatic mutations by whole exome sequencing showed that counter-intuitively, the cluster of HR + /HER2- samples exhibiting higher immune scores was associated with lower tumour mutational burden, lower homologous recombination deficiency scores, and fewer copy number aberrations, implicating the involvement of non-canonical tumour immune pathways. Further investigations are warranted to determine the underlying mechanisms of these pathways, with the potential to develop innovative immunotherapeutic approaches tailored to this specific patient population.


Subject(s)
Breast Neoplasms , Mutation , Phenotype , Receptor, ErbB-2 , Adult , Aged , Female , Humans , Middle Aged , Asian People/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cluster Analysis , Cohort Studies , DNA Copy Number Variations , Exome Sequencing , Gene Expression Profiling , Malaysia/epidemiology , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Transcriptome
4.
Anal Chem ; 96(17): 6659-6665, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38635916

ABSTRACT

The enhancement of sensitivity in biological analysis detection can reduce the probability of false positives of the biosensor. In this work, a novel self-on controlled-release electrochemiluminescence (CRE) biosensor was designed by multiple signal amplification and framework-enhanced stability strategies. As a result, the changes of the ECL signal were enhanced before and after the controlled-release process, achieving sensitive detection of prostate-specific antigen (PSA). Specifically, for one thing, Fe3O4@CeO2-NH2 with two paths for enhancing the generation of coreactant radicals was used as the coreaction accelerator to boost ECL performance. For another, due to the framework stability, zeolitic imidazolate framework-8-NH2 (ZIF-8-NH2) was combined with luminol to make the ECL signal more stable. Based on these strategies, the constructed CRE biosensor showed a strong self-on effect in the presence of PSA and high sensitivity in a series of tests. The detection range and limit of detection (LOD) were 5 fg/mL to 10 ng/mL and 2.8 fg/mL (S/N = 3), respectively, providing a feasible approach for clinical detection of PSA.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Luminescent Measurements , Prostate-Specific Antigen , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/blood , Biosensing Techniques/methods , Electrochemical Techniques/methods , Humans , Limit of Detection , Male , Cerium/chemistry , Luminol/chemistry
5.
Anal Chem ; 96(11): 4479-4486, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38454359

ABSTRACT

Metal-organic gels (MOGs) are a new type of intelligent soft material, which are bridged by metal ions and organic ligands through noncovalent interactions. In this paper, we prepared highly stable P-MOGs, using the classical organic electrochemiluminescence (ECL) luminescence meso-tetra(4-carboxyphenyl)porphine as the organic ligand and Fe3+ as the metal ion. Surprisingly, P-MOGs can stably output ECL signals at a low potential. We introduced P-MOGs into the ECL resonance energy transfer strategy (ECL-RET) and constructed a quenched ECL immunosensor for the detection of the SARS-CoV-2 nucleocapsid protein (SARS-CoV-2-N). In the ECL-RET system, P-MOGs were used as energy donors, and Au@Cu2O@Fe3O4 were selected as energy acceptors. The ultraviolet-visible spectrum of Au@Cu2O@Fe3O4 partially overlaps with the ECL spectrum of P-MOGs, which can effectively touch off the ECL-RET behavior between the donors and receptors. Under the ideal experimental situation, the linear detection range of the SARS-CoV-2-N concentration was 10 fg/mL to 100 ng/mL, and the limit of detection was 1.5 fg/mL. This work has broad application prospects for porphyrin-MOGs in ECL sensing.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Luminescent Measurements , SARS-CoV-2 , Electrochemical Techniques , Limit of Detection , Immunoassay , COVID-19/diagnosis , Gels , Nucleocapsid Proteins
6.
Anal Chem ; 96(12): 4969-4977, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38486396

ABSTRACT

Metal nanoclusters (Me NCs) have become a research hotspot in the field of electrochemiluminescence (ECL) sensing analysis. This is primarily attributed to their excellent luminescent properties and biocompatibility along with their easy synthesis and labeling characteristics. At present, the application of Me NCs in ECL mainly focuses on precious metals, whose high cost, to some extent, limits their widespread application. In this work, Cu NCs with cathode ECL emissions in persulfate (S2O82-) were prepared as signal probes using glutathione as ligands, which exhibited stable luminescence signals and high ECL efficiency. At the same time, CaMnO3 was introduced as a co-reaction promoter to increase the ECL responses of Cu NCs, thereby further expanding their application potential in biochemical analysis. Specifically, the reversible conversion of Mn3+/Mn4+ greatly promoted the generation of sulfate radicals (SO4•-), providing a guarantee for improving the luminescence signals of Cu NCs. Furthermore, a short peptide (NARKFYKGC) was introduced to enable the fixation of antibodies to specific targets, preventing the occupancy of antigen-binding sites (Fab fragments). Therefore, the sensitivity of the biosensor could be significantly enhanced by releasing additional Fab fragments. Considering the approaches discussed above, the constructed biosensor could achieve sensitive detection of CD44 over a broad range (10 fg/mL-100 ng/mL), with an ultralow detection limit of 3.55 fg/mL (S/N = 3), which had valuable implications for the application of nonprecious Me NCs in biosensing analysis.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Copper/chemistry , Luminescent Measurements , Luminescence , Immunoglobulin Fab Fragments , Electrochemical Techniques , Limit of Detection , Metal Nanoparticles/chemistry
7.
Anal Chem ; 96(18): 7265-7273, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38649306

ABSTRACT

The unique optoelectronic and tunable luminescent characteristics of copper nanoclusters (Cu NCs) make them extremely promising as luminophores. However, the limited luminescence intensity and stability of Cu NCs have restricted their application in the field of electrochemiluminescence (ECL). Herein, a self-assembly-induced enhancement strategy was successfully employed to enhance the cathodic ECL performance of flexible ligand-stabilized Cu NCs. Specifically, Cu NCs form ordered sheetlike structures through intermolecular force. The restriction of ligand torsion in this self-assembled structure leads to a significant improvement in the ECL properties of the Cu NCs. Experimental results demonstrate that the assembled nanoscale Cu NC sheets exhibit an approximately three-fold increase in cathodic ECL emission compared to the dispersed state of Cu NCs. Furthermore, assembled nanoscale Cu NCs sheets were utilized as signal probes in conjunction with a specific short peptide derived from the catalytic structural domain of matrix metalloproteinase 14 (MMP 14) as the identification probe, thereby establishing a split-type ECL sensing platform for the quantification of NMP 14. The investigation has revealed the exceptional performance of assembled nanoscale Cu NCs sheets in ECL analysis, thus positioning them as novel and promising signal probes with significant potential in the field of sensing.


Subject(s)
Copper , Electrochemical Techniques , Luminescent Measurements , Matrix Metalloproteinase 14 , Metal Nanoparticles , Copper/chemistry , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/analysis , Electrodes , Humans
8.
Anal Chem ; 96(21): 8390-8398, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38716680

ABSTRACT

In this work, a microfluidic immunosensor chip was developed by incorporating microfluidic technology with electrochemiluminescence (ECL) for sensitive detection of human epidermal growth factor receptor-2 (HER2). The immunosensor chip can achieve robust reproducibility in mass production by integrating multiple detection units in a series. Notably, nanoscale materials can be better adapted to microfluidic systems, greatly enhancing the accuracy of the immunosensor chip. Ag@Au NCs closed by glutathione (GSH) were introduced in the ECL microfluidic immunosensor system with excellent and stable ECL performance. The synthesized CeO2-Au was applied as a coreaction promoter in the ECL signal amplification system, which made the result of HER2 detection more reliable. In addition, the designed microfluidic immunosensor chip integrated the biosensing system into a microchip, realizing rapid and accurate detection of HER2 by its high throughput and low usage. The developed short peptide ligand NARKFKG (NRK) achieved an effective connection between the antibody and nanocarrier for improving the detection efficiency of the sensor. The immunosensor chip had better storage stability and sensitivity than traditional detection methods, with a wide detection range from 10 fg·mL-1 to 100 ng·mL-1 and a low detection limit (LOD) of 3.29 fg·mL-1. In general, a microfluidic immunosensor platform was successfully constructed, providing a new idea for breast cancer (BC) clinical detection.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Gold , Luminescent Measurements , Metal Nanoparticles , Receptor, ErbB-2 , Silver , Humans , Receptor, ErbB-2/analysis , Receptor, ErbB-2/immunology , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Silver/chemistry , Biosensing Techniques/methods , Gold/chemistry , Immunoassay/methods , Microfluidic Analytical Techniques/instrumentation , Limit of Detection , Cerium/chemistry
9.
Anal Chem ; 96(32): 13197-13206, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39087207

ABSTRACT

Inorganic/organic heterojunctions show promising applications as high-performance sensing platforms for photoelectrochemical (PEC) immunosensors. This work reports constructing a PEC biosensor for CA15-3 based on a self-assembled perylene diimide (PDI) nanowire sensitized In2O3@MgIn2S4 S-scheme heterojunction platform. P-type semiconductor Cu2O nanoparticles were designed as a signal burst source and were used as immunoassay labels. The carboxyl group on self-assembled PDI nanowires eliminates the step of additional surface functionalization for covalent immobilization of the capture elements. The π-π stacking of PDI enhances electron generation efficiency, while the carboxylic acid groups on PDI promote electron transfer. The performance of the constructed sensor was validated using CA15-3 as a model. The experimental results showed that the sensor based on In2O3@MgIn2S4/PDI has excellent selectivity, stability, and reproducibility, and can sensitively detect CA15-3 in the range of 0.001-100 U·mL-1 with the detection limit of 0.00056 U·mL-1. The sensor has a broad application prospect. It is hoped that this research work based on the unique advantages of the organic compound PDI will inspire other researchers to design light-responsive materials and promote the development of the field of photoelectrochemical sensing.

10.
Anal Chem ; 96(37): 14926-14934, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39219294

ABSTRACT

In conventional metal-organic framework (MOF) luminophore-involved electrochemiluminescence (ECL) systems, the aggregation-caused quenching commonly exists for the organic luminescent ligands, limiting the ECL efficiency and detection sensitivity. Herein, by employing the aggregation-induced emission luminogen (AIEgen) 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene (H4TCBPE) as a ligand, one high-efficiency ECL emitter (Zr-MOF) was synthesized through a simple hydrothermal reaction. Compared with H4TCBPE monomers and their aggregates, the resultant Zr-MOF possesses the strongest ECL emission, which is mainly attributed to the framework-induced ECL enhancement. Specifically, the heterostructure was prepared by the deposition of silver nanoparticles on TiO2 microflowers and utilized as an efficient coreaction accelerator. Remarkably, the formative heterojunction can increase the interfacial charge transfer efficiency and promote the carrier separation, facilitating the oxidation of coreactant tripropylamine. In this way, a novel aptamer-mediated ECL sensing platform is constructed, achieving the sensitive analysis of adenosine triphosphate with a low detection limit of 0.17 nM. As a proof-of-concept study, this work may enlighten the rational design of new-type MOF-based ECL materials and expand the application scope of the ECL technology.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Luminescent Measurements , Metal Nanoparticles , Metal-Organic Frameworks , Silver , Titanium , Titanium/chemistry , Silver/chemistry , Metal-Organic Frameworks/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Limit of Detection , Adenosine Triphosphate/analysis , Aptamers, Nucleotide/chemistry , Zirconium/chemistry
11.
Anal Chem ; 96(27): 11044-11051, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38937378

ABSTRACT

Metal nanoclusters (NCs) as a new kind of luminophore have acquired sufficient interest, but their widespread application is restricted on account of their relatively low electrochemiluminescence (ECL) efficiency. Then, aqueous metal NCs with high ECL efficiency were strongly anticipated, especially for the ultrasensitive analysis of biomarkers. Herein, a near-infrared (NIR) ECL biosensing strategy for the test of neuron-specific enolase (NSE) was proposed by utilizing N-acetyl-l-cysteine (NAC)- and cysteamine (Cys)-stabilized gold NCs (NAC/Cys-AuNCs) as ECL emitters with the NIR ECL emission around 860 nm and a metal-organic framework/palladium nanocubes (ZIF-67/PdNCs) hybrid as the coreaction accelerator through their admirable electrocatalytic activity. The NIR emission would reduce photochemical injury to the samples and even realize nondestructive analysis with highly strong susceptibility and suitability. Furthermore, the utilization of ZIF-67/PdNCs could improve the ECL response of NAC/Cys-AuNCs by facilitating the oxidation of the coreactant triethylamine (TEA), leading to the production of a larger quantity of reducing intermediate radical TEA•+. Consequently, NAC/Cys-AuNCs with ZIF-67/PdNCs displayed 2.7 fold enhanced ECL emission compared with the single NAC/Cys-AuNCs using TEA as the coreactant. In addition, HWRGWVC (HWR), a heptapeptide, was introduced to immobilize antibodies for the specially binding Fc fragment of the antibodies, which improved the binding efficiency and sensitivity. As a result, a "signal-on" immunosensor for NSE analysis was obtained with an extensive linear range of 0.1 to 5 ng/mL and a low limit of detection (0.033 fg/mL) (S/N = 3). This study provides a wonderful method for the development of an efficient nondestructive immunoassay.


Subject(s)
Biomarkers , Electrochemical Techniques , Gold , Luminescent Measurements , Metal Nanoparticles , Metal-Organic Frameworks , Gold/chemistry , Metal-Organic Frameworks/chemistry , Metal Nanoparticles/chemistry , Immunoassay/methods , Electrochemical Techniques/methods , Biomarkers/analysis , Cobalt/chemistry , Humans , Phosphopyruvate Hydratase/analysis , Limit of Detection , Cysteamine/chemistry , Palladium/chemistry , Infrared Rays , Biosensing Techniques/methods
12.
Anal Chem ; 96(31): 12593-12597, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39041729

ABSTRACT

In this Letter, a sensitive DNA sensing platform was developed using an indium-ion-coordinated 1,1,2,2-tetra(4-carboxylphenyl)ethylene (TPE) metal-organic gel (In-MOG) as an aggregation-induced electrochemiluminescence (AIECL) emitter and nanosurface energy transfer (NSET) as an efficient quenching strategy for detecting aflatoxin B1 (AFB1), the most dangerous food toxin. The coordination occurred in indium ions, and carboxyl groups restricted the internal rotation and vibration of TPE molecules, forcing them to release photons via radiative transitions. The quenchers of microfluidic-produced gold nanoparticles were embedded in a long-tailed triangular DNA structure, where the quenching phenomenon aligned with the theory of ECL-NSET under the overlap of spectra and appropriate donor-acceptor spacing. The proposed analytical method showed a sensitive ECL response to AFB1 in the wide concentration range of 0.50-200.00 ng/mL with a limit of detection of 0.17 ng/mL. Experimental results confirmed that constraining luminescent molecules using coordination and bonding to trigger the AIECL phenomenon was a promising method to prepare signal labels for the trace detection of food toxins.


Subject(s)
Aflatoxin B1 , Electrochemical Techniques , Energy Transfer , Luminescent Measurements , Aflatoxin B1/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , DNA/chemistry , Gels/chemistry , Limit of Detection
13.
Anal Chem ; 96(4): 1678-1685, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38215346

ABSTRACT

In this paper, an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of CA19-9 was constructed using ternary compound CdSSe nanoparticles as ECL emitter. The immunosensor employs Cu2S and gold-doped diindium trioxide (Au-In2O3) nanocubes as coreaction accelerators to achieve a double-amplification strategy. In general, a hexagonal maple leaf-shaped Cu2S with a large surface area was selected as the template, and the in situ growth of CdSSe on its surface was achieved using a hydrothermal method. The presence of Cu2S not only inhibited the aggregation of CdSSe nanoparticles to reduce their surface energy but also acted as an ECL cathode coreaction promoter, facilitating the generation of SO4•-. Consequently, the ECL intensity of CdSSe was significantly enhanced, and the reduction potential was significantly lower. In addition, the template method was employed to synthesize Au-In2O3 nanocubes, which offers the advantage of directly connecting materials with antibodies, resulting in a more stable construction of the immunosensor. Furthermore, In2O3 serves as a coreaction promoter, enabling the amplification strategy for ECL intensity of CdSSe, thus contributing to the enhanced sensitivity and performance of the immunosensor. The constructed immunosensor exhibited a wide linear range (100 µU mL-1 to 100 U mL-1) and a low detection limit of 80 µU mL-1, demonstrating its high potential and practical value for sensitive detection of CA19-9.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , CA-19-9 Antigen , Immunoassay/methods , Biosensing Techniques/methods , Immunologic Tests , Semiconductors , Luminescent Measurements/methods , Electrochemical Techniques/methods , Limit of Detection , Gold
14.
Anal Chem ; 96(9): 3898-3905, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38387028

ABSTRACT

The effective applications of electrochemiluminescence (ECL) across various fields necessitate ongoing research into novel luminophores and ECL strategies. In this study, self-luminous flower-like nanocomposites (Eu-tcbpe-MOF) were prepared by coordination self-assembly using the aggregation-induced emission material 1,1,2,2-tetrakis(4-carboxyphenyl)ethylene (H4TCBPE) and Eu(III) ions as the precursors. Compared with the monomers and aggregates of H4TCBPE, Eu-tcbpe-MOF exhibits stronger ECL emission. Such enhanced electrochemiluminescence is due to coordination as the coordination-triggered electrochemiluminescence (CT-ECL) enhancement effect. In this study, a cubic-structured nanocomposite (Co9S8@Au@MoS2) was used as an efficient quencher, and a more sensitive ECL detection platform was achieved by two quenching mechanisms: resonance energy transfer and competitive consumption of coreactants. N,N-Diethylethanolamine (DBAE) was used as a coreactant, and DBAE has a faster electron transfer rate and stronger energy supply efficiency than the traditional anodoluminescent coreactant tripropylamine, which effectively improves the ECL signal intensity of Eu-tcbpe-MOF. Hence, a sandwich-type ECL immunosensor was prepared by employing a dual-quenching mechanism, utilizing Eu-tcbpe-MOF as the detection probe and Co9S8@Au@MoS2 as the quencher, achieving precise detection of carcinoembryonic antigen from 0.1 pg·mL-1 to 100 ng·mL-1 with a detection limit of 35.1 fg·mL-1.

15.
Anal Chem ; 96(25): 10116-10120, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38858219

ABSTRACT

In this letter, a sensitive microfluidic immunosensor chip was developed using tetrakis(4-aminophenyl)ethene (TPE)-derived covalent organic frameworks (T-COF) as aggregation-induced electrochemiluminescence (AIECL) emitters and nanobodies as efficient immune recognition units for the detection of thymic stromal lymphopoietin (TSLP), a novel target of asthma. The internal rotation and vibration of TPE molecules were constrained within the framework structure, forcing nonradiative relaxation to convert into pronounced radiative transitions. A camel-derived nanobody exhibited superior specificity, higher residual activity and epitope recognition postcuring compared to monoclonal antibodies. Benefiting from the affinity between silver ions (Ag+) and cytosine (C), a double-stranded DNA (dsDNA) embedded with Ag+ was modified onto the surface of TSLP. A positive correlation was obtained between the TSLP concentration (1.00 pg/mL to 4.00 ng/mL) and ECL intensity, as Ag+ was confirmed to be an excellent accelerator of the generation of free radical species. We propose that utilizing COF to constrain luminescent molecules and trigger the AIECL phenomenon is another promising method for preparing signal tags to detect low-abundance disease-related markers.


Subject(s)
Cytokines , Electrochemical Techniques , Luminescent Measurements , Stilbenes , Thymic Stromal Lymphopoietin , Cytokines/analysis , Cytokines/metabolism , Stilbenes/chemistry , Humans , Metal-Organic Frameworks/chemistry , Biosensing Techniques , Immunoassay/methods , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Microfluidic Analytical Techniques/instrumentation
16.
Anal Chem ; 96(21): 8814-8821, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38751335

ABSTRACT

Highly responsive interface of semiconductor nanophotoelectrochemical materials provides a broad development prospect for the identification of low-abundance cancer marker molecules. This work innovatively proposes an efficient blank WO3/SnIn4S8 heterojunction interface formed by self-assembly on the working electrode for interface regulation and photoregulation. Different from the traditional biomolecular layered interface, a hydrogel layer containing manganese dioxide with a wide light absorption range is formed at the interface after an accurate response to external immune recognition. The formation of the hydrogel layer hinders the effective contact between the heterojunction interface and the electrolyte solution, and manganese dioxide in the hydrogel layer forms a strong competition between the light source and the substrate photoelectric material. The process effectively improves the carrier recombination efficiency at the interface, reduces the interface reaction kinetics and photoelectric conversion efficiency, and thus provides strong support for target identification. Taking advantage of the process, the resulting biosensors are being explored for sensitive detection of human epidermal growth factor receptor 2, with a limit of detection as low as 0.037 pg/mL. Also, this study contributes to the advancement of photoelectrochemical biosensing technology and opens up new avenues for the development of sensitive and accurate analytical tools in the field of bioanalysis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Manganese Compounds , Oxides , Receptor, ErbB-2 , Humans , Electrochemical Techniques/methods , Oxides/chemistry , Manganese Compounds/chemistry , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Hydrogels/chemistry , Photochemical Processes , Limit of Detection , Electrodes , Immunoassay/methods , Tungsten/chemistry
17.
Anal Chem ; 96(10): 4067-4075, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38419337

ABSTRACT

In this work, an electrochemiluminescence (ECL) quenching system using multimetal-organic frameworks (MMOFs) was proposed for the sensitive and specific detection of heart-type fatty acid-binding protein (H-FABP), a marker of acute myocardial infarction (AMI). Bimetallic MOFs containing Ru and Mn as metal centers were synthesized via a one-step hydrothermal method, yielding RuMn MOFs as the ECL emitter. The RuMn MOFs not only possessed the strong ECL performance of Ru(bpy)32+ but also maintained high porosity and original metal active sites characteristic of MOFs. Moreover, under the synergistic effect of MOFs and Ru(bpy)32+, RuMn MOFs have more efficient and stable ECL emission. The trimetal-based MOF (FePtRh MOF) was used as the ECL quencher because of the electron transfer between FePtRh MOFs and RuMn MOFs. In addition, active intramolecular electron transfer from Pt to Fe or Rh atoms also occurred in FePtRh MOFs, which could promote intermolecular electron transfer and improve electron transfer efficiency to enhance the quenching efficiency. The proposed ECL immunosensor demonstrated a wide dynamic range and a low detection limit of 0.01-100 ng mL-1 and 6.8 pg mL-1, respectively, under optimal conditions. The ECL quenching system also presented good specificity, stability, and reproducibility. Therefore, an alternative method for H-FABP detection in clinical diagnosis was provided by this study, highlighting the potential of MMOFs in advancing ECL technology.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Immunoassay/methods , Biosensing Techniques/methods , Reproducibility of Results , Fatty Acid Binding Protein 3 , Luminescent Measurements/methods , Metals , Electrochemical Techniques/methods , Limit of Detection , Metal Nanoparticles/chemistry
18.
Anal Chem ; 96(37): 15050-15058, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39234915

ABSTRACT

An efficient electrochemiluminescence (ECL) emitter, Ir(ppy)3-based molecules has recently been reported to exhibit aggregation-induced electrochemiluminescence (AIECL) phenomenon. However, it remains a significant challenge to control the aggregation states of these molecules and achieve uniform aggregates with intense ECL emission. In this work, a biosensor was developed to detect microcystin-LR (MC-LR) based on Ir(ppy)3-functionalized zeolitic imidazolate framework-8 (Ir-ZIF-8) as the ECL emitter and the trans-cleavage activity of CRISPR-Cas12a as the methodological strategy. The Ir-ZIF-8, a functional metal-organic framework (MOF), exhibited the AIECL phenomenon via the spatial domain-limiting effect of encapsulating Ir(ppy)3 into the mesopores of ZIF-8, while the porosity and highly ordered topological structure of ZIF-8 effectively limited the molecular motion of Ir(ppy)3. CRISPR-Cas12a was employed to indiscriminately cleave double-stranded DNA decorated with carboxy tetramethylrhodamine (TAMRA), which quenched the ECL signal of Ir-ZIF-8 by resonance energy transfer and then separated the quencher from Ir-ZIF-8 to reactivate the signal. The concentration of MC-LR was designed to correlate with both the quencher amount and the activity of Cas12a. Then, two linear regression equations for MC-LR detection were constructed to improve the accuracy of the biosensor, and the constructed biosensor showed remarkable reproducibility, stability, and selectivity. The accurate detection of MC-LR with limits of detection of 1.2 and 5.9 pg/mL was made possible by the high quenching efficiency of TAMRA and the effective cutting ability of the editable CRISPR-Cas12a system.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Electrochemical Techniques , Luminescent Measurements , Marine Toxins , Microcystins , Microcystins/analysis , Microcystins/chemistry , Marine Toxins/chemistry , CRISPR-Cas Systems/genetics , Biosensing Techniques/methods , Zeolites/chemistry , Metal-Organic Frameworks/chemistry , Imidazoles/chemistry , Limit of Detection , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/chemistry
19.
Anal Chem ; 96(36): 14471-14479, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39185581

ABSTRACT

The spatial constraints imposed by the DNA structure have significant implications for the walking efficiency of three-dimensional DNA walkers. However, accurately quantifying and manipulating steric hindrance remains a challenging task. This study presents a steric hindrance-controlled DNA walker utilizing an enzymatic strand displacement amplification (ESDA) strategy for detecting microRNA-21 (miR-21) with tunable dynamic range and sensitivity. The steric hindrance of the DNA walker was precisely manipulated by varying the length of empty bases from 6.5 Što 27.4 Šat the end of the track strand and adjusting the volumetric dimensions of the hairpin structure from 9.13 nm3 to 26.2 nm3 at the terminus of the single-foot DNA walking strand. This method demonstrated a tunable limit of detection for miR-21 ranging from 3.6 aM to 35.6 nM, along with a dynamic range from ∼100-fold to ∼166 000-fold. Impressively, it exhibited successful identification of cancer cells and clinical serum samples with high miR-21 expression. The proposed novel strategy not only enables tunable detection of miRNA through the regulation of steric hindrance but also achieves accurate and quantitative analysis of the steric hindrance effect, promising broader applications in personalized medicine, early disease detection, and drug development.


Subject(s)
DNA , MicroRNAs , Nucleic Acid Amplification Techniques , MicroRNAs/analysis , MicroRNAs/blood , Humans , DNA/chemistry , Limit of Detection , Biosensing Techniques
20.
Anal Chem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324019

ABSTRACT

Cascade molecular events in complex systems are of vital importance for enhancing molecular diagnosis and information processing. However, the conversion of a cascaded biosensing system into a multilayer encrypted molecular keypad lock remains a significant challenge in the development of molecular logic devices. In this study, we present a photocleavable DNA nanotube-based dual-amplified resonance Rayleigh scattering (RRS) system for detecting microRNA-126 (miR-126). The cascading dual-amplification biosensing system provides a multilayer-encrypted prototype with the functionality of a molecular computing cascade keypad lock. RRS signals were greatly amplified by using photocleavable DNA nanotubes and enzyme-assisted strand displacement amplification (SDA). In the presence of miR-126, enzyme-assisted SDA produced numerous identical nucleotide fragments as the target, which were then specifically attached to magnetic beads through the DNA nanotube by using a Y-shaped DNA scaffold. Upon ultraviolet irradiation, the DNA nanotube was released into the solution, resulting in an increase in the intensity of the RRS signal. This strategy demonstrated a low limit of detection (0.16 fM) and a wide dynamic range (1 fM to 1 nM) for miR-126. Impressively, the enzyme-assisted SDA offers a molecular computing model for generating the target pool, which serves as the input element for unlocking the system. By cascading the molecular computing process, we successfully constructed a molecular keypad lock with a multilevel authentication technique. The proposed system holds great potential for applications in molecular diagnosis and information security, indicating significant value in integrating molecular circuits for intelligent sensing.

SELECTION OF CITATIONS
SEARCH DETAIL