Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Med Biol ; 69(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38271723

ABSTRACT

Object. The existing diagnostic paradigm for diabetic retinopathy (DR) greatly relies on subjective assessments by medical practitioners utilizing optical imaging, introducing susceptibility to individual interpretation. This work presents a novel system for the early detection and grading of DR, providing an automated alternative to the manual examination.Approach. First, we use advanced image preprocessing techniques, specifically contrast-limited adaptive histogram equalization and Gaussian filtering, with the goal of enhancing image quality and module learning capabilities. Second, a deep learning-based automatic detection system is developed. The system consists of a feature segmentation module, a deep learning feature extraction module, and an ensemble classification module. The feature segmentation module accomplishes vascular segmentation, the deep learning feature extraction module realizes the global feature and local feature extraction of retinopathy images, and the ensemble module performs the diagnosis and classification of DR for the extracted features. Lastly, nine performance evaluation metrics are applied to assess the quality of the model's performance.Main results. Extensive experiments are conducted on four retinal image databases (APTOS 2019, Messidor, DDR, and EyePACS). The proposed method demonstrates promising performance in the binary and multi-classification tasks for DR, evaluated through nine indicators, including AUC and quadratic weighted Kappa score. The system shows the best performance in the comparison of three segmentation methods, two convolutional neural network architecture models, four Swin Transformer structures, and the latest literature methods.Significance. In contrast to existing methods, our system demonstrates superior performance across multiple indicators, enabling accurate screening of DR and providing valuable support to clinicians in the diagnostic process. Our automated approach minimizes the reliance on subjective assessments, contributing to more consistent and reliable DR evaluations.


Subject(s)
Deep Learning , Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/diagnostic imaging , Algorithms , Neural Networks, Computer , Computers
2.
Transl Cancer Res ; 12(12): 3581-3590, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38192980

ABSTRACT

Background: The Cox regression model is not sufficiently accurate to predict the survival prognosis of nasopharyngeal carcinoma (NPC) patients. It is impossible to calculate and rank the importance of impact factors due to the low predictive accuracy of the Cox regression model. So, we developed a system. Using the SEER (The Surveillance, Epidemiology, and End Results) database data on NPC patients, we proposed the use of random survival forest (RSF) and survival-support vector machine (SVM) from the machine learning methods to develop a survival prediction system specifically for NPC patients. This approach aimed to make up for the insufficiency of the Cox regression model. We also used the Cox regression model to validate the development of the nomogram and compared it with machine learning methods. Methods: A total of 1,683 NPC patients were extracted from the SEER database from January 2010 to December 2015. We used R language for modeling work, established the nomogram of survival prognosis of NPC patients by Cox regression model, ranked the correlation of influencing factors by RSF model VIMP (variable important) method, developed a survival prognosis system for NPC patients based on survival-SVM, and used C-index for model evaluation and performance comparison. Results: Although the Cox regression models can be developed to predict the prognosis of NPC patients, their accuracy was lower than that of machine learning methods. When we substituted the data for the Cox model, the C-index for the training set was only 0.740, and the C-index for the test set was 0.721. In contrast, the C index of the survival-SVM model was 0.785. The C-index of the RSF model was 0.729. The importance ranking of each variable could be obtained according to the VIMP method. Conclusions: The prediction results from the Cox model are not as good as those of the RSF method and survival-SVM based on the machine learning method. For the survival prognosis of NPC patients, the machine learning method can be considered for clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL