Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Ecotoxicol Environ Saf ; 273: 116146, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38412634

ABSTRACT

Filter-feeding bivalves could accumulate paralytic shellfish toxins (PSTs) produced by harmful dinoflagellates through diet. Despite that bivalves are resistant to these neurotoxins due to possessing PST-resistant sodium channel, exposure to PSTs-producing dinoflagellates impair bivalve survival. We hypothesized that ingesting PSTs-producing dinoflagellates may influence the gut microbiota, and then the health of bivalves. To test this idea, we compared the gut microbiota of the scallop Patinopecten yessoensis, after feeding with PST-producing or non-toxic dinoflagellates. Exposure to PSTs-producing dinoflagellates resulted in a decline of gut microbial diversity and a disturbance of community structure, accompanied by a significant increase in the abundance and richness of pathogenic bacteria, represented by Vibrio. Moreover, network analysis demonstrated extensive positive correlations between pathogenic bacteria abundances and PSTs concentrations in the digestive glands of the scallops. Furthermore, isolation of a dominant Vibrio strain and its genomic analysis revealed a variety of virulence factors, including the tolC outer membrane exporter, which were expressed in the gut microbiota. Finally, the infection experiment demonstrated scallop mortality caused by the isolated Vibrio strain; further, the pathogenicity of this Vibrio strain was attenuated by a mutation in the tolC gene. Together, these findings demonstrated that the PSTs may affect gut microbiota via direct and taxa-specific interactions with opportunistic pathogens, which proliferate after transition from seawater to the gut environment. The present study has revealed novel mechanisms towards deciphering the puzzles in environmental disturbances-caused death of an important aquaculture species.


Subject(s)
Bivalvia , Dinoflagellida , Gastrointestinal Microbiome , Pectinidae , Shellfish Poisoning , Toxins, Biological , Animals , Dinoflagellida/chemistry , Dysbiosis , Shellfish
2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473861

ABSTRACT

Acute ammonia exposure has detrimental effects on shrimp, but the underlying mechanisms remain to be fully explored. In the present study, we investigated the impact of acute ammonia exposure on the gut microbiota of the white shrimp Litopenaeus vannamei and its association with shrimp mortality. Exposure to a lethal concentration of ammonia for 48 h resulted in increased mortality in L. vannamei, with severe damage to the hepatopancreas. Ammonia exposure led to a significant decrease in gut microbial diversity, along with the loss of beneficial bacterial taxa and the proliferation of pathogenic Vibrio strains. A phenotypic analysis revealed a transition from the dominance of aerobic to facultative anaerobic strains due to ammonia exposure. A functional analysis revealed that ammonia exposure led to an enrichment of genes related to biofilm formation, host colonization, and virulence pathogenicity. A species-level analysis and experiments suggest the key role of a Vibrio harveyi strain in causing shrimp disease and specificity under distinct environments. These findings provide new information on the mechanism of shrimp disease under environmental changes.


Subject(s)
Gastrointestinal Microbiome , Penaeidae , Animals , Ammonia , Dysbiosis , Penaeidae/genetics , Hepatopancreas
3.
Sensors (Basel) ; 22(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36146074

ABSTRACT

The synthesis between face sketches and face photos has important application values in law enforcement and digital entertainment. In cases of a lack of paired sketch-photo data, this paper proposes an unsupervised model to solve the problems of missing key facial details and a lack of realism in the synthesized images of existing methods. The model is built on the CycleGAN architecture. To retain more semantic information in the target domain, a multi-scale feature extraction module is inserted before the generator. In addition, the convolutional block attention module is introduced into the generator to enhance the ability of the model to extract important feature information. Via CBAM, the model improves the quality of the converted image and reduces the artifacts caused by image background interference. Next, in order to preserve more identity information in the generated photo, this paper constructs the multi-level cycle consistency loss function. Qualitative experiments on CUFS and CUFSF public datasets show that the facial details and edge structures synthesized by our model are clearer and more realistic. Meanwhile the performance indexes of structural similarity and peak signal-to-noise ratio in quantitative experiments are also significantly improved compared with other methods.


Subject(s)
Algorithms , Face , Signal-To-Noise Ratio
4.
Sensors (Basel) ; 22(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35746177

ABSTRACT

As one of the most critical elements in the hydrological cycle, real-time and accurate rainfall measurement is of great significance to flood and drought disaster risk assessment and early warning. Using commercial microwave links (CMLs) to conduct rainfall measure is a promising solution due to the advantages of high spatial resolution, low implementation cost, near-surface measurement, and so on. However, because of the temporal and spatial dynamics of rainfall and the atmospheric influence, it is necessary to go through complicated signal processing steps from signal attenuation analysis of a CML to rainfall map. This article first introduces the basic principle and the revolution of CML-based rainfall measurement. Then, the article illustrates different steps of signal process in CML-based rainfall measurement, reviewing the state of the art solutions in each step. In addition, uncertainties and errors involved in each step of signal process as well as their impacts on the accuracy of rainfall measurement are analyzed. Moreover, the article also discusses how machine learning technologies facilitate CML-based rainfall measurement. Additionally, the applications of CML in monitoring phenomena other than rain and the hydrological simulation are summarized. Finally, the challenges and future directions are discussed.


Subject(s)
Environmental Monitoring , Microwaves , Floods , Hydrology , Rain
5.
Sensors (Basel) ; 19(6)2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30909467

ABSTRACT

As wireless sensing has developed, wireless behavior recognition has become a promising research area, in which human motion duration is one of the basic and significant parameters to measure human behavior. At present, however, there is no consideration of the duration estimation of human motion leveraging wireless signals. In this paper, we propose a novel system for robust duration estimation of human motion (R-DEHM) with WiFi in the area of interest. To achieve this, we first collect channel statement information (CSI) measurements on commodity WiFi devices and extract robust features from the CSI amplitude. Then, the back propagation neural network (BPNN) algorithm is introduced for detection by seeking a cutting line of the features for different states, i.e., moving human presence and absence. Instead of directly estimating the duration of human motion, we transform the complex and continuous duration estimation problem into a simple and discrete human motion detection by segmenting the CSI sequences. Furthermore, R-DEHM is implemented and evaluated in detail. The results of our experiments show that R-DEHM achieves the human motion detection and duration estimation with the average detection rate for human motion more than 94% and the average error rate for duration estimation less than 8%, respectively.


Subject(s)
Algorithms , Motion , Humans , Principal Component Analysis , Signal-To-Noise Ratio , Wireless Technology
6.
Sensors (Basel) ; 17(1)2017 Jan 14.
Article in English | MEDLINE | ID: mdl-28098818

ABSTRACT

As an important coexistence technology, channel hopping can reduce the interference among Wireless Body Area Networks (WBANs). However, it simultaneously brings some issues, such as energy waste, long latency and communication interruptions, etc. In this paper, we propose an enhanced channel hopping mechanism that allows multiple WBANs coexisted in the same channel. In order to evaluate the coexistence performance, some critical metrics are designed to reflect the possibility of channel conflict. Furthermore, by taking the queuing and non-queuing behaviors into consideration, we present a set of analysis approaches to evaluate the coexistence capability. On the one hand, we present both service-dependent and service-independent analysis models to estimate the number of coexisting WBANs. On the other hand, based on the uniform distribution assumption and the additive property of Possion-stream, we put forward two approximate methods to compute the number of occupied channels. Extensive simulation results demonstrate that our estimation approaches can provide an effective solution for coexistence capability estimation. Moreover, the enhanced channel hopping mechanism can significantly improve the coexistence capability and support a larger arrival rate of WBANs.

7.
Int J Rheum Dis ; 26(1): 88-98, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36239067

ABSTRACT

OBJECTIVE: To explore the role of protein arginine methyltransferase 1 (PRMT1) in the development of rheumatoid arthritis (RA). METHODS: Fibroblast-like synoviocytes (FLS) were isolated from synovial tissues, cultured and transfected with plasmid vector or short hairpin RNA (shRNA). The morphology and surface markers of FLS were investigated by light microscopy and flow cytometry. The expression levels of PRMT1, Zeste Homolog 2 (EZH2), matrix metalloproteinase-2 (MMP-2) and MMP-9 were detected by real-time polymerase chain reaction and Western blotting. Cell viability was tested by MTT assay, cell proliferation was assessed by EdU assay, cell invasion was evaluated by Transwell invasion test, cell migration was detected by wound healing assay, and cell apoptosis was detected by flow cytometry. RESULTS: The expression of PRMT1 was elevated in RA synovial tissues compared with control tissues. FLS from control tissues showed a lower level of PRMT1 than FLS from RA tissues, and FLS from RA tissues had a stronger ability of cell survival and metastasis than those from control tissues. When silencing PRMT1 expression, FLS from RA tissues showed a decreased ability of cell survival and metastasis. Additionally, FLS from RA tissues expressed a higher level of MMP-2 and MMP-9. When silencing PRMT1 expression, the expression of MMP-2 and MMP-9 of FLS was suppressed. Furthermore, the effect of PRMT1 on FLS was mediated by EZH2. CONCLUSION: We found that PRMT1 had an overall effect on FLS via EZH2, which contributed to the development of RA. Hence, PRMT1 and EZH2 provide potential targets for RA treatment.


Subject(s)
Arthritis, Rheumatoid , Protein-Arginine N-Methyltransferases , Repressor Proteins , Synoviocytes , Humans , Arthritis, Rheumatoid/metabolism , Cell Proliferation , Cell Survival , Cells, Cultured , Fibroblasts/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Synovial Membrane/metabolism , Synoviocytes/metabolism
8.
PeerJ Comput Sci ; 9: e1272, 2023.
Article in English | MEDLINE | ID: mdl-37346532

ABSTRACT

Few-shot relation extraction is used to solve the problem of long tail distribution of data by matching between query instances and support instances. Existing methods focus only on the single direction process of matching, ignoring the symmetry of the data in the process. To address this issue, we propose the bidirectional matching and aggregation network (BMAN), which is particularly powerful when the training data is symmetrical. This model not only tries to extract relations for query instances, but also seeks relational prototypes about the query instances to validate the feature representation of the support set. Moreover, to avoid overfitting in bidirectional matching, the data enhancement method was designed to scale up the number of instances while maintaining the scope of the instance relation class. Extensive experiments on FewRel and FewRel2.0 public datasets are conducted and evaluate the effectiveness of BMAN.

9.
mLife ; 2(2): 178-189, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38817626

ABSTRACT

Microbial lysis of dimethylsulfoniopropionate (DMSP) is a key step in marine organic sulfur cycling and has been recently demonstrated to play an important role in mediating interactions between bacteria, algae, and zooplankton. To date, microbes that have been found to lyse DMSP are largely confined to free-living and surface-attached bacteria. In this study, we report for the first time that a symbiont (termed "Rhodobiaceae bacterium HWgs001") in the gill of the marine scallop Argopecten irradians irradians can lyse and metabolize DMSP. Analysis of 16S rRNA gene sequences suggested that HWgs001 accounted for up to 93% of the gill microbiota. Microscopic observations suggested that HWgs001 lived within the gill tissue. Unlike symbionts of other bivalves, HWgs001 belongs to Alphaproteobacteria rather than Gammaproteobacteria, and no genes for carbon fixation were identified in its small genome. Moreover, HWgs001 was found to possess a dddP gene, responsible for the lysis of DMSP to acrylate. The enzymatic activity of dddP was confirmed using the heterologous expression, and in situ transcription of the gene in scallop gill tissues was demonstrated using reverse-transcription PCR. Together, these results revealed a taxonomically and functionally unique symbiont, which represents the first-documented DMSP-metabolizing symbiont likely to play significant roles in coastal marine ecosystems.

10.
Toxins (Basel) ; 14(2)2022 01 31.
Article in English | MEDLINE | ID: mdl-35202135

ABSTRACT

The cysteine aspartic acid-specific protease (caspase) family is distributed across vertebrates and invertebrates, and its members are involved in apoptosis and response to cellular stress. The Zhikong scallop (Chlamys farreri) is a bivalve mollusc that is well adapted to complex marine environments, yet the diversity of caspase homologues and their expression patterns in the Zhikong scallop remain largely unknown. Here, we identified 30 caspase homologues in the genome of the Zhikong scallop and analysed their expression dynamics during all developmental stages and following exposure to paralytic shellfish toxins (PSTs). The 30 caspase homologues were classified as initiators (caspases-2/9 and caspases-8/10) or executioners (caspases-3/6/7 and caspases-3/6/7-like) and displayed increased copy numbers compared to those in vertebrates. Almost all of the caspase-2/9 genes were highly expressed throughout all developmental stages from zygote to juvenile, and their expression in the digestive gland and kidney was slightly influenced by PSTs. The caspase-8/10 genes were highly expressed in the digestive gland and kidney, while PSTs inhibited their expression in these two organs. After exposure to different Alexandrium PST-producing algae (AM-1 and ACDH), the number of significantly up-regulated caspase homologues in the digestive gland increased with the toxicity level of PST derivatives, which might be due to the higher toxicity of GTXs produced by AM-1 compared to the N-sulphocarbamoyl analogues produced by ACDH. However, the effect of these two PST-producing algae strains on caspase expression in the kidney seemed to be stronger, possibly because the PST derivatives were transformed into highly toxic compounds in scallop kidney, and suggested an organ-dependent response to PSTs. These results indicate the dedicated control of caspase gene expression and highlight their contribution to PSTs in C. farreri. This work provides a further understanding of the role of caspase homologues in the Zhikong scallop and can guide future studies focussing on the role of caspases and their interactions with PSTs.


Subject(s)
Caspases/genetics , Dinoflagellida , Marine Toxins/toxicity , Pectinidae/enzymology , Animals , Gastrointestinal Tract/metabolism , Kidney/metabolism , Pectinidae/genetics , Phylogeny
11.
Inorg Chem ; 49(15): 6948-54, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20604563

ABSTRACT

The spectroelectrochemistry of iron porphinones and their nitrosyl complexes were examined by infrared spectroscopy, as well as ferrous octaethylporphyrin nitrosyl. With the use of d(8)-THF, the solvent was transparent down to 1200 cm(-1). For the porphinones, the reduction of the macrocycle ring could be observed by the changes in the nu(CO) band and, for the nitrosyl complex, the changes in the nitrosyl ligand were directly observable from the nu(NO) band. Formation of the ferrous complexes led to a small downshift in the nu(CO) band. Further reduction to the formal Fe("I") complex led to more complex spectra which were interpreted with the help of density functional theory (DFT) calculations. The reduction of Fe(OEP)(NO) and its porphinone analogues was also examined. The reduction of the iron porphyrin and porphinone nitrosyl complexes lead to substantial decreases in the nu(NO) band from 1665 to 1670 cm(-1) to 1442-3 cm(-1). The energy of the nu(NO) band in the reduced complex was unaffected by the presence of carbonyl groups on the porphinone ring, indicating little additional delocalization of the electron density of the Fe-NO moiety because of the carbonyl groups. The identity of the nu(NO) bands was confirmed with (15)N substitution of the Fe(OEP)(NO) complex. The nu(CO) band on the porphinone ring was found to be sensitive to the degree than electron density was delocalized to the ring.

12.
Inorg Chem ; 36(14): 3113-3118, 1997 Jul 02.
Article in English | MEDLINE | ID: mdl-11669965

ABSTRACT

The reaction of hydroxylamine with a series of metal porphyrins was examined in methanol/chloroform media. The reductive nitrosylation reaction was observed for the manganese and iron porphyrins, leading to a nitrosyl complex that precipitated out of the solution in good isolatable yield (80-90%). This reaction could be used synthetically for the generation of iron and manganese porphyrin nitrosyl complexes and was particularly useful for making isotopically labeled nitrosyl complexes. On the other hand, Co(II)(TPP) and Cr(TPP)(Cl) did not react with hydroxylamine under anaerobic conditions. With trace amounts of oxygen, the reaction of Co(II)(TPP) with hydroxylamine led to the formation of a stable cobalt(III)-bis(hydroxylamine) complex. The infrared, resonance Raman, and proton NMR spectra were consistent with a cobalt(III)-bis(hydroxylamine) complex. The cyclic voltammetry and visible spectroelectrochemistry of this complex were examined. The one-electron reduction of Co(III)(TPP)(NH(2)OH)(2)(+) formed Co(II)(TPP), for which there was no evidence for the coordination of hydroxylamine. Further reduction led to Co(I)(TPP)(-), which reacted with the halogenated solvent to form a cobalt-alkyl complex. The difference in the reactivity of these four metal porphyrins with hydroxylamine correlated well with their E(1/2) values. Iron(III) and manganese(III) porphyrins were relatively easy to reduce and readily underwent the reductive nitrosylation reaction, while cobalt(II) and chromium(III) porphyrins are unreactive. The one-electron oxidation of the hydroxylamine complex with a M(III) porphyrin would be expected to oxidize the N-atom in the coordinated hydroxylamine. The oxidation of M(III)(NH(2)OH) with the loss of a proton would form M(II)(N(I)H(2)O)(+) by an internal electron transfer, which will eventually lead to M(NO). The relationship between the reductive nitrosyl reaction and the enzymatic interconversion of NO and hydroxylamine was discussed.

SELECTION OF CITATIONS
SEARCH DETAIL