Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
Add more filters

Publication year range
1.
Nature ; 621(7977): 129-137, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37587346

ABSTRACT

Homologous recombination (HR) deficiency is associated with DNA rearrangements and cytogenetic aberrations1. Paradoxically, the types of DNA rearrangements that are specifically associated with HR-deficient cancers only minimally affect chromosomal structure2. Here, to address this apparent contradiction, we combined genome-graph analysis of short-read whole-genome sequencing (WGS) profiles across thousands of tumours with deep linked-read WGS of 46 BRCA1- or BRCA2-mutant breast cancers. These data revealed a distinct class of HR-deficiency-enriched rearrangements called reciprocal pairs. Linked-read WGS showed that reciprocal pairs with identical rearrangement orientations gave rise to one of two distinct chromosomal outcomes, distinguishable only with long-molecule data. Whereas one (cis) outcome corresponded to the copying and pasting of a small segment to a distant site, a second (trans) outcome was a quasi-balanced translocation or multi-megabase inversion with substantial (10 kb) duplications at each junction. We propose an HR-independent replication-restart repair mechanism to explain the full spectrum of reciprocal pair outcomes. Linked-read WGS also identified single-strand annealing as a repair pathway that is specific to BRCA2 deficiency in human cancers. Integrating these features in a classifier improved discrimination between BRCA1- and BRCA2-deficient genomes. In conclusion, our data reveal classes of rearrangements that are specific to BRCA1 or BRCA2 deficiency as a source of cytogenetic aberrations in HR-deficient cells.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Chromosome Aberrations , DNA Repair , Neoplasms , Humans , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , BRCA2 Protein/deficiency , BRCA2 Protein/genetics , Chromosome Inversion , DNA Repair/genetics , Neoplasms/genetics , Translocation, Genetic/genetics , Homologous Recombination , Cytogenetic Analysis , Chromosome Aberrations/classification
2.
Nature ; 619(7968): 176-183, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286593

ABSTRACT

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.


Subject(s)
Chromosomal Instability , Chromosome Segregation , Chromosomes , Epigenesis, Genetic , Micronuclei, Chromosome-Defective , Neoplasms , Animals , Humans , Mice , Chromatin/genetics , Chromosomal Instability/genetics , Chromosomes/genetics , Chromosomes/metabolism , Histones/chemistry , Histones/metabolism , Neoplasms/genetics , Neoplasms/pathology , Mitosis , DNA Copy Number Variations , Protein Processing, Post-Translational
3.
Nature ; 606(7912): 172-179, 2022 06.
Article in English | MEDLINE | ID: mdl-35545680

ABSTRACT

Missense driver mutations in cancer are concentrated in a few hotspots1. Various mechanisms have been proposed to explain this skew, including biased mutational processes2, phenotypic differences3-6 and immunoediting of neoantigens7,8; however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical 'free fitness' framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer1, we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.


Subject(s)
Carcinogenesis , Evolution, Molecular , Lung Neoplasms , Mutation , Carcinogenesis/genetics , Carcinogenesis/immunology , Datasets as Topic , Genes, p53 , Genetic Fitness , Genomics , Healthy Volunteers , Humans , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Mutation/genetics , Mutation, Missense , Reproducibility of Results
4.
Nature ; 612(7938): 106-115, 2022 12.
Article in English | MEDLINE | ID: mdl-36289342

ABSTRACT

How cell-to-cell copy number alterations that underpin genomic instability1 in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer2, remains understudied. Here, by applying scaled single-cell whole-genome sequencing3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific high-level amplifications in known oncogenes were highly prevalent in tumours bearing fold-back inversions, relative to tumours with homologous recombination deficiency, and were associated with increased clone-to-clone phenotypic variation. Parallel haplotype-specific alterations were also commonly observed, leading to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. Serrate variants were increased in tumours with fold-back inversions and were highly correlated with increased genomic diversity of cellular populations. Together, our findings show that cell-to-cell structural variation contributes to the origins of phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into the genomic and mutational states of individual cancer cells.


Subject(s)
Genomics , Mutation , Ovarian Neoplasms , Single-Cell Analysis , Triple Negative Breast Neoplasms , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phylogeny , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
5.
Nature ; 599(7886): 679-683, 2021 11.
Article in English | MEDLINE | ID: mdl-34759319

ABSTRACT

Inactive state-selective KRAS(G12C) inhibitors1-8 demonstrate a 30-40% response rate and result in approximately 6-month median progression-free survival in patients with lung cancer9. The genetic basis for resistance to these first-in-class mutant GTPase inhibitors remains under investigation. Here we evaluated matched pre-treatment and post-treatment specimens from 43 patients treated with the KRAS(G12C) inhibitor sotorasib. Multiple treatment-emergent alterations were observed across 27 patients, including alterations in KRAS, NRAS, BRAF, EGFR, FGFR2, MYC and other genes. In preclinical patient-derived xenograft and cell line models, resistance to KRAS(G12C) inhibition was associated with low allele frequency hotspot mutations in KRAS(G12V or G13D), NRAS(Q61K or G13R), MRAS(Q71R) and/or BRAF(G596R), mirroring observations in patients. Single-cell sequencing in an isogenic lineage identified secondary RAS and/or BRAF mutations in the same cells as KRAS(G12C), where they bypassed inhibition without affecting target inactivation. Genetic or pharmacological targeting of ERK signalling intermediates enhanced the antiproliferative effect of G12C inhibitor treatment in models with acquired RAS or BRAF mutations. Our study thus suggests a heterogenous pattern of resistance with multiple subclonal events emerging during G12C inhibitor treatment. A subset of patients in our cohort acquired oncogenic KRAS, NRAS or BRAF mutations, and resistance in this setting may be delayed by co-targeting of ERK signalling intermediates. These findings merit broader evaluation in prospective clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Acetonitriles/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line , Cohort Studies , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , MAP Kinase Signaling System/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Piperazines/pharmacology , Piperazines/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays
6.
J Pathol ; 262(2): 129-136, 2024 02.
Article in English | MEDLINE | ID: mdl-38013631

ABSTRACT

Trastuzumab has demonstrated clinical efficacy in the treatment of HER2-positive serous endometrial cancer (EC), which led to its incorporation into standard-of-care management of this aggressive disease. Acquired resistance remains an important challenge, however, and its underlying mechanisms in EC are unknown. To define the molecular changes that occur in response to anti-HER2 therapy in EC, targeted next-generation sequencing (NGS), HER2 immunohistochemistry (IHC), and fluorescence in situ hybridization (FISH) were performed on pre- and post-treatment tumour samples from 14 patients with EC treated with trastuzumab or trastuzumab emtansine. Recurrent tumours after anti-HER2 therapy acquired additional genetic alterations compared with matched pre-treatment ECs and frequently showed decreased HER2 protein expression by IHC (7/14, 50%). Complete/near-complete absence of HER2 protein expression (score 0/1+) observed post-treatment (4/14, 29%) was associated with retained HER2 gene amplification (n = 3) or copy number neutral status (n = 1). Whole-exome sequencing performed on primary and recurrent tumours from the latter case, which exhibited genetic heterogeneity of HER2 amplification in the primary tumour, revealed selection of an early HER2-non-amplified clone following therapy. Our findings demonstrate that loss of target expression, by selection of HER2-non-amplified clones or, more commonly, by downregulation of expression, may constitute a mechanism of resistance to anti-HER2 therapy in HER2-positive EC. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Endometrial Neoplasms , Receptor, ErbB-2 , Female , Humans , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , In Situ Hybridization, Fluorescence , Neoplasm Recurrence, Local/genetics , Trastuzumab/therapeutic use , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Gene Amplification
7.
Cancer ; 130(10): 1733-1746, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38422006

ABSTRACT

The DNA mismatch repair (MMR) pathway is critical for correcting DNA mismatches generated during DNA replication. MMR-deficiency (MMR-D) leads to microsatellite instability (MSI) associated with an increased mutation rate, driving cancer development. This is particularly relevant in endometrial cancer (EC) as 25%-30% of tumors are of MMR-D/MSI-high (MSI-H) phenotype. Comprehensive assessment using immunohistochemistry (IHC) and sequencing-based techniques are necessary to fully evaluate ECs given the importance of molecular subtyping in staging and prognosis. This also influences treatment selection as clinical trials have demonstrated survival benefits for immune checkpoint inhibitors (ICIs) alone and in combination with chemotherapy for MMR-D/MSI-H EC patients in various treatment settings. As a portion of MMR-D/MSI-H ECs are driven by Lynch syndrome, an inherited cancer predisposition syndrome that is also associated with colorectal cancer, this molecular subtype also prompts germline assessment that can affect at-risk family members. Additionally, heterogeneity in the tumor immune microenvironment and tumor mutation burden (TMB) have been described by MMR mechanism, meaning MLH1 promoter hypermethylation versus germline/somatic MMR gene mutation, and this may affect response to ICI therapies. Variations by ancestry in prevalence and mechanism of MMR-D/MSI-H tumors have also been reported and may influence health disparities given observed differences in tumors of Black compared to White patients which may affect ICI eligibility. These observations highlight the need for additional prospective studies to evaluate the nuances regarding MMR-D heterogeneity as well as markers of resistance to inform future trials of combination therapies to further improve outcomes for patients with EC.


Subject(s)
DNA Mismatch Repair , Endometrial Neoplasms , Immune Checkpoint Inhibitors , Microsatellite Instability , Humans , Immune Checkpoint Inhibitors/therapeutic use , Endometrial Neoplasms/genetics , Endometrial Neoplasms/drug therapy , Female , DNA Mismatch Repair/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
8.
Cancer ; 130(4): 576-587, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37886874

ABSTRACT

BACKGROUND: Racial disparities in outcomes exist in endometrial cancer (EC). The contribution of ancestry-based variations in germline pathogenic variants (gPVs) is unknown. METHODS: Germline assessment of ≥76 cancer predisposition genes was performed in patients with EC undergoing tumor-normal Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets sequencing from January 1, 2015 through June 30, 2021. Self-reported race/ethnicity and Ashkenazi Jewish ancestry data classified patients into groups. Genetic ancestry was inferred from Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets. Rates of gPV and genetic counseling were compared by ancestry. RESULTS: Among 1625 patients with EC, 216 (13%) had gPVs; 15 had >1 gPV. Rates of gPV varied by self-reported ancestry (Ashkenazi Jewish, 40/202 [20%]; Asian, 15/124 [12%]; Black/African American (AA), 12/171 [7.0%]; Hispanic, 15/124 [12%]; non-Hispanic (NH) White, 129/927 [14%]; missing, 5/77 [6.5%]; p = .009], with similar findings by genetic ancestry (p < .001). We observed a lower likelihood of gPVs in patients of Black/AA (odds ratio [OR], 0.44; 95% CI, 0.22-0.81) and African (AFR) ancestry (OR, 0.42; 95% CI, 0.18-0.85) and a higher likelihood in patients of Ashkenazi Jewish genetic ancestry (OR, 1.62; 95% CI; 1.11-2.34) compared with patients of non-Hispanic White/European ancestry, even after adjustment for age and molecular subtype. Somatic landscape influenced gPVs with lower rates of microsatellite instability-high tumors in patients of Black/AA and AFR ancestry. Among those with newly identified gPVs (n = 114), 102 (89%) were seen for genetic counseling, with lowest rates among Black/AA (75%) and AFR patients (67%). CONCLUSIONS: In those with EC, gPV and genetic counseling varied by ancestry, with lowest rates among Black/AA and AFR patients, potentially contributing to disparities in outcomes given implications for treatment and cancer prevention. PLAIN LANGUAGE SUMMARY: Black women with endometrial cancer do worse than White women, and there are many reasons for this disparity. Certain genetic changes from birth (mutations) can increase the risk of cancer, and it is unknown if rates of these changes are different between different ancestry groups. Genetic mutations in 1625 diverse women with endometrial cancer were studied and the lowest rates of mutations and genetic counseling were found in Black and African ancestry women. This could affect their treatment options as well as their families and may make disparities worse.


Subject(s)
Endometrial Neoplasms , Ethnicity , Racial Groups , Female , Humans , Endometrial Neoplasms/genetics , Germ Cells
9.
Mod Pathol ; : 100541, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897452

ABSTRACT

Genetic alterations in the retinoblastoma susceptibility gene (RB1) are present in up to 40% of triple-negative breast cancers (BCs) and frequent in tumors with neuroendocrine differentiation, including small cell neuroendocrine carcinoma. Data on RB1 genetic alterations in estrogen receptor (ER)-positive BCs is scarce. In this study, we sought to define the morphologic, immunohistochemical and genetic features of ER-positive BCs harboring somatic alterations in RB1, with emphasis on neuroendocrine differentiation. ER-positive BCs with pathogenic RB1 genetic alterations were identified in less than 1% of cases from a cohort of 6,026 BCs previously subjected to targeted next-generation sequencing, including 23 primary BCs (pBCs) and 32 recurrent/metastatic BCs (mBCs). In cases where loss of heterozygosity (LOH) of the wild type RB1 allele could be assessed (93%, 51/55), most pBCs (82%, 18/22) and mBCs (90%, 26/29) exhibited biallelic RB1 inactivation, primarily through loss-of-function mutation and LOH (98%, 43/44). Upon histologic review, a subset of RB1-altered tumors exhibited neuroendocrine morphology (13%, 7/55), which correlated with expression of neuroendocrine markers (39%, 9/23) in both pBC (27%, 3/11) and mBCs (50%, 6/12). Loss of Rb protein expression was observed in BCs with biallelic RB1 loss only, with similar frequency in pBCs (82%, 9/11) and mBCs (75%, 9/12). All cases with neuroendocrine marker expression (n=9) and/or neuroendocrine morphology (n=7) harbored biallelic genetic inactivation of RB1 and exhibited Rb loss of expression. TP53 (53%, 29/55) and PIK3CA (45%, 25/55) were the most frequently co-mutated genes across the cohort. Overall, these findings suggest that ER-positive BCs with biallelic RB1 genetic alterations frequently exhibit Rb protein loss, which correlates with neuroendocrine differentiation in select BCs. This study provides insights into the molecular and phenotypic heterogeneity of BCs with RB1 genetic inactivation, underscoring the need for further research into the potential clinical implications associated with these tumors.

10.
Mod Pathol ; 37(2): 100375, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37925055

ABSTRACT

CDH1 encodes for E-cadherin, and its loss of function is the hallmark of invasive lobular carcinoma (ILC). Albeit vanishingly rare, biallelic CDH1 alterations may be found in nonlobular breast carcinomas (NL-BCs). We sought to determine the clinicopathologic characteristics and repertoire of genetic alterations of NL-BCs harboring CDH1 biallelic genetic alterations. Analysis of 5842 breast cancers (BCs) subjected to clinical tumor-normal sequencing with an FDA-cleared multigene panel was conducted to identify BCs with biallelic CDH1 pathogenic/likely pathogenic somatic mutations lacking lobular features. The genomic profiles of NL-BCs with CDH1 biallelic genetic alterations were compared with those of ILCs and invasive ductal carcinomas (IDCs), matched by clinicopathologic characteristics. Of the 896 CDH1-altered BCs, 889 samples were excluded based on the diagnosis of invasive mixed ductal/lobular carcinoma or ILC or the detection of monoallelic CDH1 alterations. Only 7 of the 5842 (0.11%) BCs harbored biallelic CDH1 alterations and lacked lobular features. Of these, 4/7 (57%) cases were ER-positive/HER2-negative, 1/7 (14%) was ER-positive/HER2-positive, and 2/7 (29%) were ER-negative/HER2-negative. In total, 5/7 (71%) were of Nottingham grade 2, and 2/7 (29%) were of grade 3. The NL-BCs with CDH1 biallelic genetic alterations included a mucinous carcinoma (n = 1), IDCs with focal nested growth (n = 2), IDC with solid papillary (n = 1) or apocrine (n = 2) features, and an IDC of no special type (NST; n = 1). E-cadherin expression, as detected by immunohistochemistry, was absent (3/5) or aberrant (discontinuous membranous/cytoplasmic/granular; 2/5). However, NL-BCs with CDH1 biallelic genetic alterations displayed recurrent genetic alterations, including TP53, PIK3CA (57%, 4/7; each), FGFR1, and NCOR1 (28%, 2/7, each) alterations. Compared with CDH1 wild-type IDC-NSTs, NL-BCs less frequently harbored GATA3 mutations (0% vs 47%, P = .03), but no significant differences were detected when compared with matched ILCs. Therefore, NL-BCs with CDH1 biallelic genetic alterations are vanishingly rare, predominantly comprise IDCs with special histologic features, and have genomic features akin to luminal B ER-positive BCs.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Humans , Female , Carcinoma, Lobular/pathology , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Cadherins/genetics , Genomics , Antigens, CD/genetics
11.
Gynecol Oncol ; 185: 58-67, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38368814

ABSTRACT

OBJECTIVE: Adenoid cystic carcinoma (AdCC) of the Bartholin's gland (AdCC-BG) is a very rare gynecologic vulvar malignancy. AdCC-BGs are slow-growing but locally aggressive and are associated with high recurrence rates. Here we sought to characterize the molecular underpinning of AdCC-BGs. METHODS: AdCC-BGs (n = 6) were subjected to a combination of RNA-sequencing, targeted DNA-sequencing, reverse-transcription PCR, fluorescence in situ hybridization (FISH) and MYB immunohistochemistry (IHC). Clinicopathologic variables, somatic mutations, copy number alterations and chimeric transcripts were assessed. RESULTS: All six AdCC-BGs were biphasic, composed of ductal and myoepithelial cells. Akin to salivary gland and breast AdCCs, three AdCC-BGs had the MYB::NFIB fusion gene with varying breakpoints, all of which were associated with MYB overexpression by IHC. Two AdCC-BGs were underpinned by MYBL1 fusion genes with different gene partners, including MYBL1::RAD51B and MYBL1::EWSR1 gene fusions, and showed MYB protein expression. Although the final AdCC-BG studied had MYB protein overexpression, no gene fusion was identified. AdCC-BGs harbored few additional somatic genetic alterations, and only few mutations in cancer-related genes were identified, including GNAQ, GNAS, KDM6A, AKT1 and BCL2, none of which were recurrent. Two AdCC-BGs, both with a MYB::NFIB fusion gene, developed metastatic disease. CONCLUSIONS: AdCC-BGs constitute a convergent phenotype, whereby activation of MYB or MYBL1 can be driven by the MYB::NFIB fusion gene or MYBL1 rearrangements. Our observations further support the notion that AdCCs, irrespective of organ site, constitute a genotypic-phenotypic correlation. Assessment of MYB or MYBL1 rearrangements may be used as an ancillary marker for the diagnosis of AdCC-BGs.


Subject(s)
Bartholin's Glands , Carcinoma, Adenoid Cystic , Gene Rearrangement , Oncogene Proteins, Fusion , Proto-Oncogene Proteins c-myb , Trans-Activators , Vulvar Neoplasms , Humans , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/metabolism , Female , Vulvar Neoplasms/genetics , Vulvar Neoplasms/pathology , Vulvar Neoplasms/metabolism , Bartholin's Glands/pathology , Bartholin's Glands/metabolism , Middle Aged , Oncogene Proteins, Fusion/genetics , Trans-Activators/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Adult , Aged , Proto-Oncogene Proteins
12.
Gynecol Oncol ; 182: 32-38, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246044

ABSTRACT

OBJECTIVES: Mesonephric (MA) and mesonephric-like (MLA) adenocarcinomas are rare cancers, and data on clinical behavior and response to therapy are limited. We sought to report molecular features, treatment, and outcomes of MA/MLA from a single institution. METHODS: Patients with MA (cervix) or MLA (uterus, ovary, other) treated at Memorial Sloan Kettering Cancer Center (MSK) from 1/2008-12/2021 underwent pathologic re-review. For patients with initial treatment at MSK, progression-free survival (PFS1) was calculated as time from initial surgery to progression or death; second PFS (PFS2) was calculated as time from start of treatment for recurrence to subsequent progression or death. Overall survival (OS) was calculated for all patients. Images were retrospectively reviewed to determine treatment response. Somatic genetic alterations were assessed by clinical tumor-normal sequencing (MSK-Integrated Mutation Profiling of Actionable Cancer Targets [MSK-IMPACT]). RESULTS: Of 81 patients with confirmed gynecologic MA/MLA, 36 received initial treatment at MSK. Sites of origin included cervix (n = 9, 11%), uterus (n = 42, 52%), ovary (n = 28, 35%), and other (n = 2, 2%). Of the 36 patients who received initial treatment at MSK, 20 (56%) recurred; median PFS1 was 33 months (95% CI: 17-not evaluable), median PFS2 was 8.3 months (95% CI: 6.9-14), and median OS was 87 months (95% CI: 58.2-not evaluable). Twenty-six of the 36 patients underwent MSK-IMPACT testing, and 25 (96%) harbored MAPK pathway alterations. CONCLUSION: Most patients diagnosed with early-stage disease ultimately recurred. Somatic MAPK signaling pathway mutations appear to be highly prevalent in MA/MLA, and therapeutics that target this pathway are worthy of further study.


Subject(s)
Adenocarcinoma , Humans , Female , Retrospective Studies , Adenocarcinoma/genetics , Adenocarcinoma/therapy , Adenocarcinoma/pathology , Mutation , Ovary/pathology , Cervix Uteri/pathology
13.
Gynecol Oncol ; 180: 35-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38041901

ABSTRACT

OBJECTIVE: To define molecular features of ovarian cancer (OC) with germline pathogenic variants (PVs) in non-BRCA homologous recombination (HR) genes and analyze survival compared to BRCA1/2 and wildtype (WT) OC. METHODS: We included patients with OC undergoing tumor-normal sequencing (MSK-IMPACT) from 07/01/2015-12/31/2020, including germline assessment of BRCA1/2 and other HR genes ATM, BARD1, BRIP1, FANCA, FANCC, NBN, PALB2, RAD50, RAD51B, RAD51C, and RAD51D. Biallelic inactivation was assessed within tumors. Progression-free (PFS) and overall survival (OS) were calculated from pathologic diagnosis using the Kaplan-Meier method with left truncation. Whole-exome sequencing (WES) was performed in a subset. RESULTS: Of 882 patients with OC, 56 (6.3%) had germline PVs in non-BRCA HR genes; 95 (11%) had BRCA1-associated OC (58 germline, 37 somatic); and 59 (6.7%) had BRCA2-associated OC (40 germline, 19 somatic). High rates of biallelic alterations were observed among germline PVs in BRIP1 (11/13), PALB2 (3/4), RAD51B (3/4), RAD51C (3/4), and RAD51D (8/10). In cases with WES (27/35), there was higher tumor mutational burden (TMB; median 2.5 [1.1-6.0] vs. 1.2 mut/Mb [0.6-2.6]) and enrichment of HR-deficient (HRD) mutational signatures in tumors associated with germline PALB2 and RAD51B/C/D compared with BRIP1 PVs (p < 0.01). Other features of HRD, including telomeric-allelic imbalance (TAI) and large-scale state transitions (LSTs), were similar. Although there was heterogeneity in PFS/OS by gene group, only BRCA1/2-associated OC had improved survival compared to WT OC (p < 0.01). CONCLUSIONS: OCs associated with germline PVs in non-BRCA HR genes represent a heterogenous group, with PALB2 and RAD51B/C/D associated with an HRD phenotype.


Subject(s)
BRCA1 Protein , Ovarian Neoplasms , Humans , Female , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Ovarian Neoplasms/pathology , Germ-Line Mutation , Homologous Recombination , Phenotype , Germ Cells/pathology , Genetic Predisposition to Disease
14.
Gynecol Oncol ; 183: 126-132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493020

ABSTRACT

OBJECTIVES: Although genetic testing (GT) is universally recommended for patients with epithelial ovarian cancer (EOC), rates are low (34%). In 1/2019, we implemented mainstreaming-GT in parallel with tumor testing via MSK-IMPACT within oncology clinics. We sought to determine GT rates pre/post-mainstreaming and patient characteristics associated with GT. METHODS: Patients with newly diagnosed EOC seen at our institution from 7/1/2015-3/31/2022 were included. Clinical data were abstracted including social determinants of health (SDOH) variables, race/ethnicity, marital status, insurance, language, comorbidities, employment, and Yost index, a measure of socioeconomic status. GT rates were calculated overall and pre-/post-mainstreaming (1/2019). Logistic regression models were fit to identify variables associated with GT. RESULTS: Of 1742 patients with EOC, 1591 (91%) underwent GT. Rates of GT increased from 87% to 95% after mainstreaming (p < 0.001). Among 151 patients not undergoing GT, major reasons were lack of provider recommendation (n = 76, 50%) and logistical issues (n = 38, 25%) with few declining (n = 14, 9%) or having medical complications preventing GT (n = 7, 4.6%). High-grade serous histology, advanced stage (III/IV), and having a spouse/partner were associated with increased GT uptake (p < 0.01). Among SDOH variables, there were no differences by insurance, Yost score, language, comorbidities, employment, or race/ethnicity. In multivariable models, likelihood of GT increased with mainstreaming, even after adjustment for histology, stage, and marital status (OR 3.77; 95% CI: 2.56-5.66). CONCLUSIONS: Mainstreaming increased the likelihood of GT in patients with EOC. We found lower testing rates in patients without partners/spouses, non-high-grade serous histology, and early-stage disease, representing potential areas for future interventions.


Subject(s)
Carcinoma, Ovarian Epithelial , Genetic Testing , Ovarian Neoplasms , Humans , Female , Middle Aged , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/pathology , Genetic Testing/statistics & numerical data , Genetic Testing/methods , Ovarian Neoplasms/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Aged , Adult , Patient Acceptance of Health Care/statistics & numerical data
15.
J Surg Oncol ; 129(1): 120-125, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100711

ABSTRACT

The molecular subtypes of endometrial carcinoma (EC) were first described by The Cancer Genome Atlas (TCGA) a decade ago. Using surrogate approaches, the molecular classification has been demonstrated to be prognostic across EC patients and to have predictive implications. Starting in 2020, the molecular classification has been incorporated into multiple guidelines as part of the risk assessment and most recently into the International Federation of Gynecology and Obstetrics (FIGO) staging. This review article discusses the implementation of the EC molecular classification into clinical practice, the therapeutic implications, and the molecular and clinical heterogeneity of the EC molecular subtypes.


Subject(s)
Endometrial Neoplasms , Female , Humans , Neoplasm Staging , Endometrial Neoplasms/genetics , Endometrial Neoplasms/therapy , Endometrial Neoplasms/pathology , Prognosis
16.
Int J Gynecol Cancer ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782452

ABSTRACT

OBJECTIVE: We assessed the prognosis and molecular subtypes of early stage endometrioid endometrial cancer with isolated tumor cells within sentinel lymph nodes (SLNs) compared with node negative disease. METHODS: Patients diagnosed with stage IA, IB, or II endometrioid endometrial cancer and primary surgical management were identified from January 1, 2007 to December 31, 2019. All SLNs underwent ultrastaging according to the institutional protocol. Patients with cytokeratin positive cells, micrometastases, and macrometastases were excluded. Clinical, pathology, and molecular subtype data were reviewed. RESULTS: Overall, 1214 patients with early stage endometrioid endometrial cancer met the inclusion criteria, of whom 1089 (90%) had node negative disease and 125 (10%) had isolated tumor cells. Compared with node negative disease, the presence of isolated tumor cells had a greater association with deep myometrial invasion, lymphovascular space invasion, receipt of adjuvant therapy, and adjuvant chemotherapy with or without radiation (p<0.01). There was no significant difference in survival rates between patients with isolated tumor cells and node negative disease (3 year progression free survival rate 94% vs 91%, respectively, p=0.21; 3 year overall survival rate 98% vs 96%, respectively, p=0.45). Progression free survival did not significantly differ among patients with isolated tumor cells who received no adjuvant therapy or chemotherapy with or without radiation (p=0.31). There was no difference in the distribution of molecular subtypes between patients with isolated tumor cells (n=28) and node negative disease (n=194; p=0.26). Three year overall survival rates differed significantly when stratifying the entire cohort by molecular subtype (p=0.04). CONCLUSIONS: Patients with isolated tumor cells demonstrated less favorable uterine pathologic features and received more adjuvant treatment with similar survival compared with patients with nodenegative disease. Among the available data, molecular classification did not have a significant association with the presence of isolated tumor cells, although copy number-high status was a poor prognostic indicator in early stage endometrioid endometrial cancer.

17.
Int J Gynecol Cancer ; 34(5): 697-704, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38508587

ABSTRACT

OBJECTIVES: To investigate the association of molecular and pathologic factors with concurrent or recurrent ovarian disease to guide ovarian preservation in endometrioid endometrial cancer. METHODS: Patients with endometrial cancer ≤50 years of age at diagnosis were grouped by elective oophorectomy versus ovarian preservation at staging (January 2010 to June 2021). Tumors were stratified by molecular sub-type and CTNNB1 mutational status with next generation sequencing and immunohistochemistry. Germline data identified patients with Lynch syndrome. Associations between molecular/pathologic features and concurrent ovarian disease in patients electing oophorectomy were compared with the Wilcoxon rank-sum and Fisher's exact tests. Associations with isolated ovarian recurrences in patients who chose ovarian preservation were examined using survival analyses. RESULTS: Among 317 patients with endometrial cancer who underwent bilateral oophorectomy, 27 (9%) had malignant ovarian tumors, of whom 11 (41%) had no gross ovarian involvement on intra-operative survey. For patients with sequencing, concurrent malignant ovarian tumors were diagnosed in 0/14 (0%) POLE, 2/48 (4%) copy number-low/no specific molecular profile, 10/22 (45%) microsatellite instability-high, and 3/6 (50%) copy number-high/TP53abnormal patients (p<0.001). Concurrent malignant ovarian tumors were present in 1/30 (3%) hotspot CTNNB1-mutated versus 10/60 (17%) wildtype/CTNNB1 non-hotspot mutated endometrial cancer patients (p=0.11) and 7/28 (25%) Lynch versus 7/74 (9%) non-Lynch syndrome patients (p=0.06). Concurrent malignant ovarian tumors were present in patients with higher grade endometrial cancer (5% grade 1 vs 20% grade 2 and 24% grade 3; p<0.001), present versus absent lymphovascular space invasion (20% vs 6%; p=0.004), positive versus negative pelvic washings (28% vs 7%; p=0.016), and ≥50% versus <50% myoinvasion (24% vs 7%; p=0.004). Of 103 patients who chose ovarian preservation, four had isolated ovarian recurrences (two had high-risk pathologic features and two had high-risk molecular features). CONCLUSIONS: The integration of molecular and pathologic data may improve risk stratification of pre-menopausal patients with endometrial cancer and enhance candidate selection for ovarian preservation.


Subject(s)
Carcinoma, Endometrioid , Endometrial Neoplasms , Humans , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/genetics , Endometrial Neoplasms/surgery , Middle Aged , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Carcinoma, Endometrioid/surgery , Adult , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/surgery , Ovariectomy , Organ Sparing Treatments/methods , beta Catenin/genetics , Patient Selection , Fertility Preservation/methods , Retrospective Studies
18.
Mod Pathol ; 36(6): 100144, 2023 06.
Article in English | MEDLINE | ID: mdl-36828363

ABSTRACT

Acinic cell carcinoma (AciCC) is a tumor that is recognized in both the breast and salivary glands. Recently, the recurrent genomic rearrangement, t(4;9)(q13;q31) was identified in salivary AciCC that results in constitutive upregulation of the nuclear transcription factor NR4A3, which can be detected by immunohistochemistry. In this study, we sought to evaluate NR4A3 expression in breast AciCC using immunohistochemistry. Strong and diffuse nuclear staining was considered a positive result. Sixteen AciCCs were studied, including 8 pure AciCCs and 8 AciCCs admixed with other types (invasive carcinoma of no special type in 5 cases and metaplastic carcinoma in 3 cases). All 16 AciCCs showed negative results for NR4A3 expression. Four cases with available material were evaluated for rearrangements of the NR4A3 gene by fluorescence in situ hybridization and no rearrangements were observed. Whole-genome sequencing of 1 AciCC revealed a TP53 splice-site mutation, high levels of genomic instability, and genomic features of homologous recombination DNA repair defects; a structural variant analysis of this case did not reveal the presence of a t(4;9) rearrangement. We conclude that breast AciCCs consistently lack NR4A3 rearrangement or overexpression, unlike most of the salivary AciCCs, and that consistent with previous results, breast AciCCs are associated with genomic alterations more similar to those seen in triple-negative breast carcinomas than salivary gland AciCCs. These results suggest that unlike other salivary gland-like tumors that occur in the breast, the molecular underpinnings of the salivary gland and breast AciCCs are different and that the salivary gland and breast AciCCs likely represent distinct entities.


Subject(s)
Carcinoma, Acinar Cell , Carcinoma , Receptors, Steroid , Salivary Gland Neoplasms , Humans , Carcinoma, Acinar Cell/genetics , Carcinoma, Acinar Cell/pathology , In Situ Hybridization, Fluorescence , Salivary Gland Neoplasms/pathology , Carcinoma/genetics , Gene Rearrangement , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , DNA-Binding Proteins/genetics , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/genetics
19.
Mod Pathol ; 36(11): 100321, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652400

ABSTRACT

Next-generation sequencing (NGS) studies have demonstrated that co-occurring sporadic endometrioid endometrial carcinoma (EEC) and endometrioid ovarian carcinoma (EOC) are clonally related, suggesting that they originate from a single primary tumor. Despite clonality, synchronous EEC and EOC when diagnosed at early stage behave indolently, similar to isolated primary EEC or isolated primary EOC. In the present study, we compared the DNA methylation signatures of co-occurring EEC and EOC with those of isolated primary EEC and isolated primary EOC. We also performed targeted NGS to assess the clonal relatedness of 7 co-occurring EEC and EOC (4 synchronous EEC and EOC and 3 metastatic EEC based on pathologic criteria). NGS confirmed a clonal relationship in all co-occurring EEC and EOC. DNA methylation profiling showed distinct epigenetic signatures of isolated primary EEC and isolated primary EOC. Endometrial tumors from co-occurring EEC and EOC clustered with isolated primary EEC while their ovarian counterparts clustered with isolated primary EOC. Three co-occurring EEC and EOC cases with peritoneal lesions showed a closer epigenetic signature and copy number variation profile between the peritoneal lesion and EOC than EEC. In conclusion, synchronous sporadic EEC and EOC are clonally related but demonstrate a shift in DNA methylation signatures between ovarian and endometrial tumors as well as epigenetic overlap between ovarian and peritoneal tumors. Our results suggest that tumor microenvironment in the ovary may play a role in epigenetic modulation of metastatic EEC.


Subject(s)
Carcinoma, Endometrioid , Endometrial Neoplasms , Ovarian Neoplasms , Female , Humans , DNA Methylation , DNA Copy Number Variations , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Carcinoma, Ovarian Epithelial/genetics , Tumor Microenvironment
20.
Mod Pathol ; 36(11): 100299, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37558129

ABSTRACT

Anti-HER2 targeted therapies have recently demonstrated clinical activity in the treatment of high-grade endometrial carcinomas (ECs), particularly serous carcinomas with HER2 amplification and/or overexpression. Intratumor heterogeneity of HER2 amplification or HER2 genetic intratumor heterogeneity (G-ITH) has been associated with resistance to anti-HER2 therapies in breast and gastroesophageal cancers; however, its clinical relevance in EC is unknown. To characterize HER2 G-ITH in EC, archival specimens from a clinically annotated cohort of 57 ECs treated with trastuzumab or trasutuzmab emtansine in the recurrent (n = 38) or adjuvant (n = 19) setting were subjected to central pathology review, HER2 assessment by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), and next-generation sequencing. HER2 G-ITH, defined as HER2 amplification in 5% to 50% of tumor cells examined by FISH, was identified in 36% (19/53) of ECs and was associated with lower HER2 copy number and levels of protein expression. HER2 IHC revealed spatially distinct areas of strong expression juxtaposed with areas of low/absent expression in tumors with the "cluster" pattern of G-ITH, whereas the "mosaic" pattern was typically associated with a diffuse admixture of cells with variable levels of HER2 expression. HER2 G-ITH was frequently observed in cases with IHC/FISH or FISH/next-generation sequencing discrepancies and/or with an equivocal/negative FISH result (9/13, 69%). Although the objective response rate to anti-HER2 therapy in recurrent ECs was 52% (13/25) for tumors lacking HER2 G-ITH, none (0%, 0/10) of the patients with HER2 G-ITH achieved a complete or partial response (P = .005). HER2 G-ITH was significantly associated with worse progression-free survival (hazard ratio, 2.88; 95% CI, 1.33-6.27; P = .005) but not overall survival. HER2 IHC score, HER2/CEP17 ratio, HER2 copy number, histologic subtype, and other genetic alterations, including PIK3CA hotspot mutations, were not significantly associated with therapeutic response or survival outcomes. Treatment responses were not restricted to serous carcinomas, supporting consideration of anti-HER2 therapy in patients with HER2-positive high-grade ECs of non-serous histology. Our results demonstrate that HER2 G-ITH is an important determinant of response to trastuzumab and trastuzumab emtansine in EC, providing a rationale for the development of novel therapeutic strategies to target HER2-nonamplified resistant tumor subpopulations, such as HER2 antibody-drug conjugates with bystander effects.


Subject(s)
Breast Neoplasms , Carcinoma , Endometrial Neoplasms , Female , Humans , Trastuzumab/therapeutic use , Ado-Trastuzumab Emtansine/therapeutic use , In Situ Hybridization, Fluorescence , Receptor, ErbB-2/metabolism , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Carcinoma/drug therapy , Breast Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL