Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 635
Filter
Add more filters

Publication year range
1.
Nature ; 586(7831): 763-768, 2020 10.
Article in English | MEDLINE | ID: mdl-33057201

ABSTRACT

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Subject(s)
Clonal Hematopoiesis/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , Whole Genome Sequencing , Adult , Africa/ethnology , Aged , Aged, 80 and over , Black People/genetics , Cell Self Renewal/genetics , DNA-Binding Proteins/genetics , Dioxygenases , Female , Germ-Line Mutation/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , National Heart, Lung, and Blood Institute (U.S.) , Phenotype , Precision Medicine , Proto-Oncogene Proteins/genetics , Tripartite Motif Proteins/genetics , United States , alpha Karyopherins/genetics
2.
Nucleic Acids Res ; 52(1): e5, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37953325

ABSTRACT

The versatility of cellular response arises from the communication, or crosstalk, of signaling pathways in a complex network of signaling and transcriptional regulatory interactions. Understanding the various mechanisms underlying crosstalk on a global scale requires untargeted computational approaches. We present a network-based statistical approach, MuXTalk, that uses high-dimensional edges called multilinks to model the unique ways in which signaling and regulatory interactions can interface. We demonstrate that the signaling-regulatory interface is located primarily in the intermediary region between signaling pathways where crosstalk occurs, and that multilinks can differentiate between distinct signaling-transcriptional mechanisms. Using statistically over-represented multilinks as proxies of crosstalk, we infer crosstalk among 60 signaling pathways, expanding currently available crosstalk databases by more than five-fold. MuXTalk surpasses existing methods in terms of model performance metrics, identifies additions to manual curation efforts, and pinpoints potential mediators of crosstalk. Moreover, it accommodates the inherent context-dependence of crosstalk, allowing future applications to cell type- and disease-specific crosstalk.


Subject(s)
Gene Expression Regulation , Signal Transduction , Databases, Factual , Gene Regulatory Networks
3.
Hum Mol Genet ; 32(4): 696-707, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36255742

ABSTRACT

BACKGROUND: Asthma is a heterogeneous common respiratory disease that remains poorly understood. The established genetic associations fail to explain the high estimated heritability, and the prevalence of asthma differs between populations and geographic regions. Robust association analyses incorporating different genetic ancestries and whole-genome sequencing data may identify novel genetic associations. METHODS: We performed family-based genome-wide association analyses of childhood-onset asthma based on whole-genome sequencing (WGS) data for the 'The Genetic Epidemiology of Asthma in Costa Rica' study (GACRS) and the Childhood Asthma Management Program (CAMP). Based on parent-child trios with children diagnosed with asthma, we performed a single variant analysis using an additive and a recessive genetic model and a region-based association analysis of low-frequency and rare variants. RESULTS: Based on 1180 asthmatic trios (894 GACRS trios and 286 CAMP trios, a total of 3540 samples with WGS data), we identified three novel genetic loci associated with childhood-onset asthma: rs4832738 on 4p14 ($P=1.72\ast{10}^{-9}$, recessive model), rs1581479 on 8p22 ($P=1.47\ast{10}^{-8}$, additive model) and rs73367537 on 10q26 ($P=1.21\ast{10}^{-8}$, additive model in GACRS only). Integrative analyses suggested potential novel candidate genes underlying these associations: PGM2 on 4p14 and FGF20 on 8p22. CONCLUSION: Our family-based whole-genome sequencing analysis identified three novel genetic loci for childhood-onset asthma. Gene expression data and integrative analyses point to PGM2 on 4p14 and FGF20 on 8p22 as linked genes. Furthermore, region-based analyses suggest independent potential low-frequency/rare variant associations on 8p22. Follow-up analyses are needed to understand the functional mechanisms and generalizability of these associations.


Subject(s)
Asthma , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease , Asthma/genetics , Genetic Loci , Whole Genome Sequencing , Polymorphism, Single Nucleotide/genetics , Fibroblast Growth Factors/genetics
4.
PLoS Genet ; 18(11): e1010464, 2022 11.
Article in English | MEDLINE | ID: mdl-36383614

ABSTRACT

The identification and understanding of gene-environment interactions can provide insights into the pathways and mechanisms underlying complex diseases. However, testing for gene-environment interaction remains a challenge since a.) statistical power is often limited and b.) modeling of environmental effects is nontrivial and such model misspecifications can lead to false positive interaction findings. To address the lack of statistical power, recent methods aim to identify interactions on an aggregated level using, for example, polygenic risk scores. While this strategy can increase the power to detect interactions, identifying contributing genes and pathways is difficult based on these relatively global results. Here, we propose RITSS (Robust Interaction Testing using Sample Splitting), a gene-environment interaction testing framework for quantitative traits that is based on sample splitting and robust test statistics. RITSS can incorporate sets of genetic variants and/or multiple environmental factors. Based on the user's choice of statistical/machine learning approaches, a screening step selects and combines potential interactions into scores with improved interpretability. In the testing step, the application of robust statistics minimizes the susceptibility to main effect misspecifications. Using extensive simulation studies, we demonstrate that RITSS controls the type 1 error rate in a wide range of scenarios, and we show how the screening strategy influences statistical power. In an application to lung function phenotypes and human height in the UK Biobank, RITSS identified highly significant interactions based on subcomponents of genetic risk scores. While the contributing single variant interaction signals are weak, our results indicate interaction patterns that result in strong aggregated effects, providing potential insights into underlying gene-environment interaction mechanisms.


Subject(s)
Models, Genetic , Polymorphism, Single Nucleotide , Humans , Genetic Loci , Gene-Environment Interaction , Phenotype , Computer Simulation , Genome-Wide Association Study
5.
J Allergy Clin Immunol ; 153(2): 378-388, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37852328

ABSTRACT

This article provides an overview of the findings obtained from the Vitamin D Antenatal Asthma Reduction Trial (VDAART) spanning a period of 15 years. The review covers various aspects, including the trial's rationale, study design, and initial intent-to-treat analyses, as well as an explanation of why those analyses did not achieve statistical significance. Additionally, the article delves into the post hoc results obtained from stratified intent-to-treat analyses based on maternal vitamin D baseline levels and genotype-stratified analyses. These results demonstrate a statistically significant reduction in asthma among offspring aged 3 and 6 years when comparing vitamin D supplementation (4400 IU/d) to the standard prenatal multivitamin with vitamin D (400 IU/d). Furthermore, these post hoc analyses found that vitamin D supplementation led to a decrease in total serum IgE levels and improved lung function in children compared to those whose mothers received a placebo alongside the standard prenatal multivitamin with vitamin D. Last, the article concludes with recommendations regarding the optimal dosing of vitamin D for pregnant women to prevent childhood asthma as well as suggestions for future trials in this field.


Subject(s)
Asthma , Vitamin D , Child , Female , Humans , Pregnancy , Asthma/prevention & control , Dietary Supplements , Vitamin D/therapeutic use , Child, Preschool , Clinical Trials as Topic
6.
J Allergy Clin Immunol ; 153(3): 695-704, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38056635

ABSTRACT

BACKGROUND: Piwi-interacting RNAs (piRNAs), comprising the largest noncoding RNA group, regulate transcriptional processes. Whether piRNAs are associated with type 2 (T2)-high asthma is unknown. OBJECTIVE: We sought to investigate the association between piRNAs and T2-high asthma in childhood asthma. METHODS: We sequenced plasma samples from 462 subjects in the Childhood Asthma Management Program (CAMP) as the discovery cohort and 1165 subjects in the Genetics of Asthma in Costa Rica Study (GACRS) as a replication cohort. Sequencing reads were filtered first, and piRNA reads were annotated and normalized. Linear regression was used for the association analysis of piRNAs and peripheral blood eosinophil count, total serum IgE level, and long-term asthma exacerbation in children with asthma. Mediation analysis was performed to investigate the effect direction. We then ascertained if the circulating piRNAs were present in asthmatic airway epithelial cells in a Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) public data set. RESULTS: Fifteen piRNAs were significantly associated with eosinophil count in CAMP (P ≤ .05), and 3 were successfully replicated in GACRS. Eleven piRNAs were associated with total IgE in CAMP, and one of these was replicated in GACRS. All 22 significant piRNAs were identified in epithelial cells in vitro, and 6 of these were differentially expressed between subjects with asthma and healthy controls. Fourteen piRNAs were associated with long-term asthma exacerbation, and effect of piRNAs on long-term asthma exacerbation are mediated through eosinophil count and serum IgE level. CONCLUSION: piRNAs are associated with peripheral blood eosinophils and total serum IgE in childhood asthma and may play important roles in T2-high asthma.


Subject(s)
Asthma , Piwi-Interacting RNA , Child , Humans , RNA, Small Interfering/genetics , Asthma/genetics , Immunoglobulin E/genetics , Phenotype
7.
J Allergy Clin Immunol ; 154(1): 94-100.e13, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38244724

ABSTRACT

BACKGROUND: Asthmatic symptoms often start during early childhood. Impulse oscillometry (IOS) is feasible in preschool children who may be unable to reliably perform spirometry measurements. OBJECTIVE: We sought to evaluate the use of IOS in a multicenter, multiethnic high-risk asthma cohort titled the Vitamin D Antenatal Asthma Reduction Trial. METHODS: The trial recruited pregnant women whose children were followed from birth to age 8 years. Lung function was assessed with IOS at ages 4, 5, and 6 years and spirometry at ages 5, 6, 7, and 8 years. Asthma status, respiratory symptoms, and medication use were assessed with repeated questionnaires from birth to age 8 years. RESULTS: In total, 220 children were included in this secondary analysis. Recent respiratory symptoms and short-acting ß2-agonist use were associated with increased respiratory resistance at 5 Hz at age 4 years (ß = 2.6; 95% CI, 1.0 to 4.4; P = .002 and ß = 3.4; 95% CI, 0.7 to 6.2; P = .015, respectively). Increased respiratory resistance at 5 Hz at age 4 years was also associated with decreased lung function from ages 5 to 8 years (ß = -0.3; 95% CI, -0.5 to -0.1; P < .001 for FEV1 at 8 years) and active asthma at age 8 years (ß = 2.0; 95% CI, 0.2 to 3.8; P = .029). CONCLUSIONS: Increased respiratory resistance in preschool IOS is associated with frequent respiratory symptoms as well as school-age asthma and lung function impairment. Our findings suggest that IOS may serve as a potential objective measure for early identification of children who are at high risk of respiratory morbidity.


Subject(s)
Asthma , Oscillometry , Humans , Asthma/physiopathology , Asthma/diagnosis , Child, Preschool , Female , Child , Male , Respiratory Function Tests , Lung/physiopathology , Infant , Pregnancy , Spirometry , Infant, Newborn
8.
Article in English | MEDLINE | ID: mdl-38825025

ABSTRACT

BACKGROUND: Eicosanoids are lipid mediators including thromboxanes (TXs), prostaglandins (PGs), and leukotrienes with a pathophysiological role in established atopic disease. However, their role in the inception of disease is unclear. This study aimed to investigate the association between urinary eicosanoids in early life and development of atopic disease. METHODS: This study quantified the levels of 21 eicosanoids in urine from children from the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) (age 1 year, n = 450) and VDAART (Vitamin D Antenatal Asthma Reduction Trial) (age 3 years, n = 575) mother-child cohorts and analyzed the associations with development of wheeze/asthma, atopic dermatitis, and biomarkers of type-2 inflammation, applying false discovery rate of 5% (FDR5%) multiple testing correction. RESULTS: In both cohorts, analyses adjusted for environmental determinants showed that higher TXA2 eicosanoids in early life were associated with increased risk of developing atopic dermatitis (P < FDR5%) and type-2 inflammation (P < .05). In VDAART, lower PGE2 and PGI2 eicosanoids and higher isoprostanes were also associated with increased risk of atopic dermatitis (P < FDR5%). For wheeze/asthma, analyses in COPSAC2010 showed that lower isoprostanes and PGF2 eicosanoids and higher PGD2 eicosanoids at age 1 year associated with an increased risk at age 1-10 years (P < .05), whereas analyses in VDAART showed that lower PGE2 and higher TXA2 eicosanoids at age 3 years associated with an increased risk at 6 years (P < FDR5%). CONCLUSIONS: This study suggests that early life perturbations in the eicosanoid metabolism are present before the onset of atopic disease in childhood, which provides pathophysiological insight in the inception of atopic diseases.

9.
BMC Bioinformatics ; 25(1): 43, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273228

ABSTRACT

The computation of a similarity measure for genomic data is a standard tool in computational genetics. The principal components of such matrices are routinely used to correct for biases due to confounding by population stratification, for instance in linear regressions. However, the calculation of both a similarity matrix and its singular value decomposition (SVD) are computationally intensive. The contribution of this article is threefold. First, we demonstrate that the calculation of three matrices (called the covariance matrix, the weighted Jaccard matrix, and the genomic relationship matrix) can be reformulated in a unified way which allows for the application of a randomized SVD algorithm, which is faster than the traditional computation. The fast SVD algorithm we present is adapted from an existing randomized SVD algorithm and ensures that all computations are carried out in sparse matrix algebra. The algorithm only assumes that row-wise and column-wise subtraction and multiplication of a vector with a sparse matrix is available, an operation that is efficiently implemented in common sparse matrix packages. An exception is the so-called Jaccard matrix, which does not have a structure applicable for the fast SVD algorithm. Second, an approximate Jaccard matrix is introduced to which the fast SVD computation is applicable. Third, we establish guaranteed theoretical bounds on the accuracy (in [Formula: see text] norm and angle) between the principal components of the Jaccard matrix and the ones of our proposed approximation, thus putting the proposed Jaccard approximation on a solid mathematical foundation, and derive the theoretical runtime of our algorithm. We illustrate that the approximation error is low in practice and empirically verify the theoretical runtime scalings on both simulated data and data of the 1000 Genome Project.


Subject(s)
Genome , Genomics , Algorithms , Linear Models
10.
Am J Hum Genet ; 108(12): 2224-2237, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34752750

ABSTRACT

Over 100 million research participants around the world have had research array-based genotyping (GT) or genome sequencing (GS), but only a small fraction of these have been offered return of actionable genomic findings (gRoR). Between 2017 and 2021, we analyzed genomic results from 36,417 participants in the Mass General Brigham Biobank and offered to confirm and return pathogenic and likely pathogenic variants (PLPVs) in 59 genes. Variant verification prior to participant recontact revealed that GT falsely identified PLPVs in 44.9% of samples, and GT failed to identify 72.0% of PLPVs detected in a subset of samples that were also sequenced. GT and GS detected verified PLPVs in 1% and 2.5% of the cohort, respectively. Of 256 participants who were alerted that they carried actionable PLPVs, 37.5% actively or passively declined further disclosure. 76.3% of those carrying PLPVs were unaware that they were carrying the variant, and over half of those met published professional criteria for genetic testing but had never been tested. This gRoR protocol cost approximately $129,000 USD per year in laboratory testing and research staff support, representing $14 per participant whose DNA was analyzed or $3,224 per participant in whom a PLPV was confirmed and disclosed. These data provide logistical details around gRoR that could help other investigators planning to return genomic results.


Subject(s)
Biological Specimen Banks , Disease/genetics , Genetic Variation , Genome, Human , Genomics , Adult , Cohort Studies , DNA , Disclosure , Duty to Recontact , Female , Genetic Research , Genetic Testing , Genomics/economics , Genomics/standards , Genomics/trends , Humans , Informed Consent , Male , Middle Aged , Reproducibility of Results
11.
Eur Respir J ; 63(5)2024 May.
Article in English | MEDLINE | ID: mdl-38514093

ABSTRACT

RATIONALE: Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (ISGs). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning ISG induction and subsequent airway inflammation in genetically susceptible asthma patients remains largely unknown. OBJECTIVES: To decipher the functions of gasdermin B (encoded by GSDMB) in respiratory virus-induced lung inflammation. METHODS: In two independent cohorts, we analysed expression correlation between GSDMB and ISG s. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated GSDMB-overexpressing and GSDMB-deficient cells. A series of quantitative PCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISG induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine the role of GSDMB in respiratory syncytial virus-induced lung inflammation in vivo. RESULTS: GSDMB is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB in mouse airway epithelium led to enhanced ISGs induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. CONCLUSIONS: GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.


Subject(s)
Adaptor Proteins, Signal Transducing , Asthma , Gasdermins , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Humans , Asthma/metabolism , Asthma/genetics , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Genetic Predisposition to Disease , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/genetics , Epithelial Cells/metabolism , Cell Line , Bronchi/metabolism , Bronchi/pathology , Pneumonia/metabolism , Pneumonia/genetics , Pneumonia/virology , Female , Lung/metabolism , Lung/pathology
12.
Bioinformatics ; 39(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-37084264

ABSTRACT

MOTIVATION: Feature selection is a powerful dimension reduction technique which selects a subset of relevant features for model construction. Numerous feature selection methods have been proposed, but most of them fail under the high-dimensional and low-sample size (HDLSS) setting due to the challenge of overfitting. RESULTS: We present a deep learning-based method-GRAph Convolutional nEtwork feature Selector (GRACES)-to select important features for HDLSS data. GRACES exploits latent relations between samples with various overfitting-reducing techniques to iteratively find a set of optimal features which gives rise to the greatest decreases in the optimization loss. We demonstrate that GRACES significantly outperforms other feature selection methods on both synthetic and real-world datasets. AVAILABILITY AND IMPLEMENTATION: The source code is publicly available at https://github.com/canc1993/graces.


Subject(s)
Software , Sample Size
13.
Metabolomics ; 20(1): 16, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267770

ABSTRACT

INTRODUCTION: Meta-analyses across diverse independent studies provide improved confidence in results. However, within the context of metabolomic epidemiology, meta-analysis investigations are complicated by differences in study design, data acquisition, and other factors that may impact reproducibility. OBJECTIVE: The objective of this study was to identify maternal blood metabolites during pregnancy (> 24 gestational weeks) related to offspring body mass index (BMI) at age two years through a meta-analysis framework. METHODS: We used adjusted linear regression summary statistics from three cohorts (total N = 1012 mother-child pairs) participating in the NIH Environmental influences on Child Health Outcomes (ECHO) Program. We applied a random-effects meta-analysis framework to regression results and adjusted by false discovery rate (FDR) using the Benjamini-Hochberg procedure. RESULTS: Only 20 metabolites were detected in all three cohorts, with an additional 127 metabolites detected in two of three cohorts. Of these 147, 6 maternal metabolites were nominally associated (P < 0.05) with offspring BMI z-scores at age 2 years in a meta-analytic framework including at least two studies: arabinose (Coefmeta = 0.40 [95% CI 0.10,0.70], Pmeta = 9.7 × 10-3), guanidinoacetate (Coefmeta = - 0.28 [- 0.54, - 0.02], Pmeta = 0.033), 3-ureidopropionate (Coefmeta = 0.22 [0.017,0.41], Pmeta = 0.033), 1-methylhistidine (Coefmeta = - 0.18 [- 0.33, - 0.04], Pmeta = 0.011), serine (Coefmeta = - 0.18 [- 0.36, - 0.01], Pmeta = 0.034), and lysine (Coefmeta = - 0.16 [- 0.32, - 0.01], Pmeta = 0.044). No associations were robust to multiple testing correction. CONCLUSIONS: Despite including three cohorts with large sample sizes (N > 100), we failed to identify significant metabolite associations after FDR correction. Our investigation demonstrates difficulties in applying epidemiological meta-analysis to clinical metabolomics, emphasizes challenges to reproducibility, and highlights the need for standardized best practices in metabolomic epidemiology.


Subject(s)
Lysine , Metabolomics , Child , Female , Pregnancy , Humans , Child, Preschool , Body Mass Index , Reproducibility of Results , Linear Models
14.
Respir Res ; 25(1): 118, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459594

ABSTRACT

BACKGROUND: Vitamin D may help to alleviate asthma exacerbation because of its anti-inflammation effect, but the evidence is inconsistent in childhood asthma. MiRNAs are important mediators in asthma pathogenesis and also excellent non-invasive biomarkers. We hypothesized that circulating miRNAs are associated with asthma exacerbation and modified by vitamin D levels. METHODS: We sequenced baseline serum miRNAs from 461 participants in the Childhood Asthma Management Program (CAMP). Logistic regression was used to associate miRNA expression with asthma exacerbation through interaction analysis first and then stratified by vitamin D insufficient and sufficient groups. Microarray from lymphoblastoid B-cells (LCLs) treated by vitamin D or sham of 43 subjects in CAMP were used for validation in vitro. The function of miRNAs was associated with gene modules by weighted gene co-expression network analysis (WGCNA). RESULTS: We identified eleven miRNAs associated with asthma exacerbation with vitamin D effect modification. Of which, five were significant in vitamin D insufficient group and nine were significant in vitamin D sufficient group. Six miRNAs, including hsa-miR-143-3p, hsa-miR-192-5p, hsa-miR-151a-5p, hsa-miR-24-3p, hsa-miR-22-3p and hsa-miR-451a were significantly associated with gene modules of immune-related functions, implying miRNAs may mediate vitamin D effect on asthma exacerbation through immune pathways. In addition, hsa-miR-143-3p and hsa-miR-451a are potential predictors of childhood asthma exacerbation at different vitamin D levels. CONCLUSIONS: miRNAs are potential mediators of asthma exacerbation and their effects are directly impacted by vitamin D levels.


Subject(s)
Asthma , Circulating MicroRNA , MicroRNAs , Humans , MicroRNAs/metabolism , Circulating MicroRNA/genetics , Gene Expression Profiling , Asthma/diagnosis , Asthma/genetics , Vitamin D
15.
Allergy ; 79(5): 1195-1207, 2024 05.
Article in English | MEDLINE | ID: mdl-38164813

ABSTRACT

BACKGROUND: Lung function is an independent predictor of mortality. We evaluated the lung function trajectories of a cohort of patients with asthma receiving biologic therapy. METHODS: We identified 229 monoclonal antibody-naïve adult patients with moderate-to-severe asthma who initiated omalizumab, mepolizumab, or dupilumab between 2010 and 2022 in a large healthcare system in Boston, MA. Generalized additive mixed models were used to estimate the lung function trajectories during the 156 weeks following biologic initiation. Response was defined as an improvement in FEV1 or a decrease of ≤0.5% per year. The Kaplan-Meier estimator was used to assess time to no additional improvement in FEV1 in responders. All models were adjusted for age, sex, body mass index, smoking status, baseline exacerbation rate, and baseline blood eosinophil count. RESULTS: Eighty-eight patients initiated mepolizumab, 76 omalizumab, and 65 dupilumab. Baseline eosinophil count was highest in the mepolizumab group (405 cells/mcL) and lowest for omalizumab (250 cells/mcL). Both FEV1 and FVC improved in the mepolizumab group (FEV1 + 20 mL/year; FVC +43 mL/year). For omalizumab, there was an initial improvement in the first year followed by decline with an overall FEV1 loss of -44 mL/year and FVC -32 mL/year. For dupilumab, both FEV1 (+61 mL/year) and FVC (+74 mL/year) improved over time. Fifty percent of the mepolizumab group, 58% omalizumab, and 72% of dupilumab were responders. The median time to no additional FEV1 improvement in responders was 24 weeks for omalizumab, 48 weeks for mepolizumab, and 57 weeks for dupilumab. CONCLUSION: In this clinical cohort, mepolizumab, omalizumab, and dupilumab had beneficial effects on FEV1 and FVC with distinct post-initiation trajectories.


Subject(s)
Anti-Asthmatic Agents , Antibodies, Monoclonal, Humanized , Asthma , Omalizumab , Respiratory Function Tests , Humans , Asthma/drug therapy , Asthma/physiopathology , Antibodies, Monoclonal, Humanized/therapeutic use , Male , Female , Omalizumab/therapeutic use , Middle Aged , Anti-Asthmatic Agents/therapeutic use , Adult , Treatment Outcome , Severity of Illness Index , Lung/physiopathology , Lung/drug effects , Cohort Studies , Aged
16.
Allergy ; 79(2): 404-418, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38014461

ABSTRACT

BACKGROUND: While dysregulated sphingolipid metabolism has been associated with risk of childhood asthma, the specific sphingolipid classes and/or mechanisms driving this relationship remain unclear. We aimed to understand the multifaceted role between sphingolipids and other established asthma risk factors that complicate this relationship. METHODS: We performed targeted LC-MS/MS-based quantification of 77 sphingolipids in plasma from 997 children aged 6 years from two independent cohorts (VDAART and COPSAC2010 ). We examined associations of circulatory sphingolipids with childhood asthma, lung function, and three asthma risk factors: functional SNPs in ORMDL3, low vitamin D levels, and reduced gut microbial maturity. Given racial differences between these cohorts, association analyses were performed separately and then meta-analyzed together. RESULTS: We observed elevations in circulatory sphingolipids with asthma phenotypes and risk factors; however, there were differential associations of sphingolipid classes with clinical outcomes and/or risk factors. While elevations from metabolites involved in ceramide recycling and catabolic pathways were associated with asthma and worse lung function [meta p-value range: 1.863E-04 to 2.24E-3], increased ceramide levels were associated with asthma risk factors [meta p-value range: 7.75E-5 to .013], but not asthma. Further investigation identified that some ceramides acted as mediators while some interacted with risk factors in the associations with asthma outcomes. CONCLUSION: This study demonstrates the differential role that sphingolipid subclasses may play in asthma and its risk factors. While overall elevations in sphingolipids appeared to be deleterious overall; elevations in ceramides were uniquely associated with increases in asthma risk factors only; while elevations in asthma phenotypes were associated with recycling sphingolipids. Modification of asthma risk factors may play an important role in regulating sphingolipid homeostasis via ceramides to affect asthma. Further function work may validate the observed associations.


Subject(s)
Asthma , Sphingolipids , Child , Humans , Sphingolipids/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Ceramides/metabolism , Asthma/etiology , Asthma/genetics , Risk Factors
17.
COPD ; 21(1): 2321379, 2024 12.
Article in English | MEDLINE | ID: mdl-38655897

ABSTRACT

INTRODUCTION: Spirometry is the gold standard for COPD diagnosis and severity determination, but is technique-dependent, nonspecific, and requires administration by a trained healthcare professional. There is a need for a fast, reliable, and precise alternative diagnostic test. This study's aim was to use interpretable machine learning to diagnose COPD and assess severity using 75-second carbon dioxide (CO2) breath records captured with TidalSense's N-TidalTM capnometer. METHOD: For COPD diagnosis, machine learning algorithms were trained and evaluated on 294 COPD (including GOLD stages 1-4) and 705 non-COPD participants. A logistic regression model was also trained to distinguish GOLD 1 from GOLD 4 COPD with the output probability used as an index of severity. RESULTS: The best diagnostic model achieved an AUROC of 0.890, sensitivity of 0.771, specificity of 0.850 and positive predictive value (PPV) of 0.834. Evaluating performance on all test capnograms that were confidently ruled in or out yielded PPV of 0.930 and NPV of 0.890. The severity determination model yielded an AUROC of 0.980, sensitivity of 0.958, specificity of 0.961 and PPV of 0.958 in distinguishing GOLD 1 from GOLD 4. Output probabilities from the severity determination model produced a correlation of 0.71 with percentage predicted FEV1. CONCLUSION: The N-TidalTM device could be used alongside interpretable machine learning as an accurate, point-of-care diagnostic test for COPD, particularly in primary care as a rapid rule-in or rule-out test. N-TidalTM also could be effective in monitoring disease progression, providing a possible alternative to spirometry for disease monitoring.


Subject(s)
Capnography , Machine Learning , Pulmonary Disease, Chronic Obstructive , Severity of Illness Index , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Humans , Middle Aged , Male , Female , Capnography/methods , Aged , Logistic Models , Sensitivity and Specificity , Forced Expiratory Volume , Algorithms , Predictive Value of Tests , Area Under Curve , Case-Control Studies , Spirometry/instrumentation
18.
J Allergy Clin Immunol ; 151(2): 556-564, 2023 02.
Article in English | MEDLINE | ID: mdl-36400177

ABSTRACT

BACKGROUND: Prior studies suggest that vitamin D may modify the effects of environmental exposures; however, none have investigated gestational vitamin D and cumulative tobacco smoke exposure (TSE) throughout pregnancy and early life. OBJECTIVES: This study investigated the effects of early life TSE on child lung function and the modulatory effects of gestational vitamin D on this association. METHODS: The VDAART (Vitamin D Antenatal Asthma Reduction Trial) recruited nonsmoking pregnant women and followed the mother-child pairs to age 6 years. TSE was assessed with questionnaires and plasma cotinine measurements in the mothers (10-18 and 32-38 gestational weeks) and children (1, 3, and 6 years). Cumulative TSE was calculated from the repeated cotinine measurements. 25-hydroxyvitamin D (25[OH]D) levels were measured at 10-18 and 32-38 gestational weeks. Lung function was assessed at 6 years with spirometry and impulse oscillometry. RESULTS: Of the 476 mother-child pairs, 205 (43%) had increased cotinine levels at ≥1 time point. Cumulative TSE was associated with decreased FEV1 (ß = -0.043 L, P = .018) and increased respiratory resistance at 5 Hz (R5; ß = 0.060 kPa/L/s, P = .002). This association persisted in subjects with insufficient (<30 ng/mL) 25(OH)D levels throughout pregnancy (ß = 0.077 kPa/L/s, P = .016 for R5) but not among those with sufficient levels throughout pregnancy. CONCLUSIONS: Cumulative TSE from pregnancy to childhood is associated with dose- and duration-dependent decreases in child lung function at 6 years even in the absence of reported maternal smoking. Gestational vitamin D may modulate this effect and have therapeutic potential for minimizing the adverse effect of TSE on lung throughout early life. RANDOMIZED TRIAL: Maternal Vitamin D Supplementation to Prevent Childhood Asthma (VDAART); clinicaltrials.gov identifier: NCT00920621.


Subject(s)
Asthma , Nicotiana , Female , Humans , Pregnancy , Child , Cotinine , Vitamin D , Vitamins , Asthma/prevention & control , Lung
19.
J Allergy Clin Immunol ; 151(6): 1494-1502.e14, 2023 06.
Article in English | MEDLINE | ID: mdl-36649759

ABSTRACT

BACKGROUND: Environmental, genetic, and microbial factors are independently associated with childhood asthma. OBJECTIVE: We sought to determine the roles of environmental exposures and 17q12-21 locus genotype in the maturation of the early-life microbiome in childhood asthma. METHODS: We analyzed fecal 16s rRNA sequencing at age 3 to 6 months and age 1 year to characterize microbial maturation of offspring of participants in the Vitamin D Antenatal Reduction Trial. We determined associations of microbial maturation and environmental exposures in the mediation of asthma risk at age 3 years. We examined 17q12-21 genotype and microbial maturation associations with asthma risk in Vitamin D Antenatal Reduction Trial and the replication cohort Copenhagen Prospective Studies on Childhood Asthma 2010. RESULTS: Accelerated fecal microbial maturation at age 3 to 6 months and delayed maturation at age 1 year were associated with asthma (P < .001). Fecal Bacteroides was reduced at age 3 to 6 months in association with subsequent asthma (P = .006) and among subjects with lower microbial maturation at age 1 year (q = 0.009). Sixty-one percent of the association between breast-feeding and asthma was mediated by microbial maturation at age 3 to 6 months. Microbial maturation and 17q12-21 genotypes exhibited independent, additive effects on childhood asthma risk. CONCLUSIONS: The intestinal microbiome and its maturation mediates associations between environmental exposures including breast-feeding and asthma. The intestinal microbiome and 17q12-21 genotype appear to exert additive and independent effects on childhood asthma risk.


Subject(s)
Asthma , Gastrointestinal Microbiome , Humans , Female , Pregnancy , Infant , Child, Preschool , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Prospective Studies , Asthma/genetics , Vitamin D
20.
J Allergy Clin Immunol ; 152(6): 1646-1657.e11, 2023 12.
Article in English | MEDLINE | ID: mdl-37558060

ABSTRACT

BACKGROUND: Gestational vitamin D deficiency is implicated in development of respiratory diseases in offspring, but the mechanism underlying this relationship is unknown. OBJECTIVE: We sought to study the link between gestational vitamin D exposure and childhood asthma phenotypes using maternal blood metabolomics profiling. METHODS: Untargeted blood metabolic profiles were acquired using liquid chromatography-mass spectrometry at 1 week postpartum from 672 women in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort and at pregnancy weeks 32 to 38 from 779 women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) mother-child cohort. In COPSAC2010, we employed multivariate models and pathway enrichment analysis to identify metabolites and pathways associated with gestational vitamin D blood levels and investigated their relationship with development of asthma phenotypes in early childhood. The findings were validated in VDAART and in cellular models. RESULTS: In COPSAC2010, higher vitamin D blood levels at 1 week postpartum were associated with distinct maternal metabolome perturbations with significant enrichment of the sphingomyelin pathway (P < .01). This vitamin D-related maternal metabolic profile at 1 week postpartum containing 46 metabolites was associated with decreased risk of recurrent wheeze (hazard ratio [HR] = 0.92 [95% CI 0.86-0.98], P = .01) and wheeze exacerbations (HR = 0.90 [95% CI 0.84-0.97], P = .01) at ages 0 to 3 years. The same metabolic profile was similarly associated with decreased risk of asthma/wheeze at ages 0 to 3 in VDAART (odds ratio = 0.92 [95% CI 0.85-0.99], P = .04). Human bronchial epithelial cells treated with high-dose vitamin D3 showed an increased cytoplasmic sphingolipid level (P < .01). CONCLUSIONS: This exploratory metabolomics study in 2 independent birth cohorts demonstrates that the beneficial effect of higher gestational vitamin D exposure on offspring respiratory health is characterized by specific maternal metabolic alterations during pregnancy, which involves the sphingomyelin pathway.


Subject(s)
Asthma , Vitamin D , Child, Preschool , Female , Humans , Pregnancy , Metabolome , Prospective Studies , Respiratory Sounds , Sphingomyelins , Clinical Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL