ABSTRACT
The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant "one cell, one hormone" model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.
Subject(s)
Fishes , Mammals , Animals , Fishes/genetics , Fishes/metabolism , Pituitary Gland/metabolism , Hormones/metabolismABSTRACT
In fish, prolactin-producing cells (lactotropes) are located in the anterior part of the pituitary and play an essential role in osmoregulation. However, small satellite lactotrope clusters have been described in other parts of the pituitary in several species. The functional and developmental backgrounds of these satellite clusters are not known. We recently discovered two distinct prolactin-expressing cell types in Japanese medaka (Oryzias latipes), a euryhaline species, using single cell transcriptomics. In the present study, we characterize these two transcriptomically distinct lactotrope cell types and explore the hypothesis that they represent spatially distinct cell clusters, as found in other species. Single cell RNA sequencing shows that one of the two lactotrope cell types exhibits an expression profile similar to that of stem cell-like folliculo-stellate cell populations. Using in situ hybridization, we show that the medaka pituitary often develops additional small satellite lactotrope cell clusters, like in other teleost species. These satellite clusters arise early during development and grow in cell number throughout life regardless of the animal's sex. Surprisingly, our data do not show a correspondence between the stem cell-like lactotropes and these satellite lactotrope clusters. Instead, our data support a scenario in which the stem cell-like lactotropes are an intrinsic stage in the development of every spatially distinct lactotrope cluster. In addition, lactotrope activity in both spatially distinct lactotrope clusters decreases when environmental salinity increases, supporting their role in osmoregulation. However, this decrease appears weaker in the satellite lactotrope cell clusters, suggesting that these lactotropes are regulated differently.
Subject(s)
Oryzias , Pituitary Gland, Anterior , Animals , Prolactin/metabolism , Oryzias/genetics , Oryzias/metabolism , Pituitary Gland, Anterior/metabolism , Pituitary Gland/metabolism , In Situ HybridizationABSTRACT
Pituitary endocrine cells fire action potentials (APs) to regulate their cytosolic Ca2+ concentration and hormone secretion rate. Depending on animal species, cell type, and biological conditions, pituitary APs are generated either by TTX-sensitive Na+ currents (INa), high-voltage activated Ca2+ currents (ICa), or by a combination of the two. Previous computational models of pituitary cells have mainly been based on data from rats, where INa is largely inactivated at the resting potential, and spontaneous APs are predominantly mediated by ICa. Unlike in rats, spontaneous INa-mediated APs are consistently seen in pituitary cells of several other animal species, including several species of fish. In the current work we develop a computational model of gonadotropin releasing cells in the teleost fish medaka (Oryzias latipes). The model stands out from previous modeling efforts by being (1) the first model of a pituitary cell in teleosts, (2) the first pituitary cell model that fires sponateous APs that are predominantly mediated by INa, and (3) the first pituitary cell model where the kinetics of the depolarizing currents, INa and ICa, are directly fitted to voltage-clamp data. We explore the firing properties of the model, and compare it to the properties of previous models that fire ICa-based APs. We put a particular focus on how the big conductance K+ current (IBK) modulates the AP shape. Interestingly, we find that IBK can prolong AP duration in models that fire ICa-based APs, while it consistently shortens the duration of the predominantly INa-mediated APs in the medaka gonadotroph model. Although the model is constrained to experimental data from gonadotroph cells in medaka, it may likely provide insights also into other pituitary cell types that fire INa-mediated APs.
Subject(s)
Gonadotrophs/metabolism , Models, Biological , Oryzias/metabolism , Action Potentials , Animals , Calcium/metabolism , Computational Biology , Computer Simulation , Female , Fish Proteins/metabolism , Gonadotropins, Pituitary/metabolism , Ion Channels/metabolism , Kinetics , Large-Conductance Calcium-Activated Potassium Channels/metabolismABSTRACT
Gonadotropin-releasing hormone (Gnrh) plays a major role in the regulation of physiological and behavioural processes related to reproduction. In the pituitary, it stimulates gonadotropin synthesis and release via activation of Gnrh receptors (Gnrhr), belonging to the G protein-coupled receptor superfamily. Evidence suggests that differential regulation of the two gonadotropins (Fsh and Lh) is achieved through activation of distinct intracellular pathways and, probably, through the action of distinct receptors. However, the roles of the different Gnrhr isoforms in teleosts are still not well understood. This study investigates the gene expression of Gnrhr in the pituitary gland of precociously maturing Atlantic salmon (Salmo salar) male parr. A total of six Gnrhr paralogs were identified in the Atlantic salmon genome and named according to phylogenetic relationship; gnrhr1caα, gnrhr1caß, gnrhr1cbα, gnrhr1cbß, gnrhr2bbα, gnrhr2bbß. All paralogs, except gnrhr1caα, were expressed in male parr pituitary during gonadal maturation as evidenced by qPCR analysis. Only one gene, gnrhr2bbα, was differentially expressed depending on maturational stage (yearly cycle), with high expression levels in maturing fish, increasing in parallel with gonadotropin subunit gene expression. Additionally, a correlation in daily expression levels was detected between gnrhr2bbα and lhb (daily cycle) in immature fish in mid-April. Double fluorescence in situ hybridization showed that gnrhr2bbα was expressed exclusively in lhb gonadotropes in the pituitary, with no expression detected in fshb cells. These results suggest the involvement of receptor paralog gnrhr2bbα in the regulation of lhb cells, and not fshb cells, in sexually maturing Atlantic salmon male parr.
Subject(s)
Luteinizing Hormone/metabolism , Receptors, LHRH/metabolism , Salmo salar/metabolism , Animals , Gene Expression Regulation, Developmental , Gonadotropins/metabolism , Male , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, LHRH/genetics , Salmo salar/genetics , Sexual Maturation/genetics , Testis/metabolism , Tissue DistributionABSTRACT
Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.
Subject(s)
Fishes , Gonadotrophs/metabolism , Mammals , Pituitary Gland/metabolism , Animals , Sexual MaturationABSTRACT
Reproduction in vertebrates is controlled by the brain-pituitary-gonad axis, where the two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) play vital parts by activating their cognate receptors in the gonads. The main purpose of this work was to study intra- and interspecies ligand promiscuity of teleost gonadotropin receptors, since teleost receptor specificity is unclear, in contrast to mammalian receptors. Receptor activation was investigated by transfecting COS-7 cells with either Fsh receptor (mdFshr, tiFshr) or Lh receptor (mdLhr, tiLhr), and tested for activation by recombinant homologous and heterologous ligands (mdFshßα, mdLhßα, tiFshßα, tiLhßα) from two representative fish orders, Japanese medaka (Oryzias latipes, Beloniformes) and Nile tilapia (Oreochromis niloticus, Cichliformes). Results showed that each gonadotropin preferentially activates its own cognate receptor. Cross-reactivity was detected to some extent as mdFshßα was able to activate the mdLhr, and mdLhßα the mdFshr. Medaka pituitary extract (MPE) stimulated CRE-LUC activity in COS-7 cells expressing mdlhr, but could not stimulate cells expressing mdfshr. Recombinant tiLhßα, tiFshßα and tilapia pituitary extract (TPE) could activate the mdLhr, suggesting cross-species reactivity for mdLhr. Cross-species reactivity was also detected for mdFshr due to activation by tiFshßα, tiLhßα, and TPE, as well as for tiFshr and tiLhr due to stimulation by mdFshßα, mdLhßα, and MPE. Tissue distribution analysis of gene expression revealed that medaka receptors, fshr and lhr, are highly expressed in both ovary and testis. High expression levels were found for lhr also in brain, while fshr was expressed at low levels. Both fshr and lhr mRNA levels increased significantly during testis development. Amino acid sequence alignment and three-dimensional modelling of ligands and receptors highlighted conserved beta sheet domains of both Fsh and Lh between Japanese medaka and Nile tilapia. It also showed a higher structural homology and similarity of transmembrane regions of Lhr between both species, in contrast to Fshr, possibly related to the substitution of the conserved cysteine residue in the transmembrane domain 6 in medaka Fshr with glycine. Taken together, this is the first characterization of medaka Fshr and Lhr using homologous ligands, enabling to better understand teleost hormone-receptor interactions and specificities. The data suggest partial ligand promiscuity and cross-species reactivity between gonadotropins and their receptors in medaka and tilapia.
Subject(s)
Oryzias/metabolism , Receptors, FSH/metabolism , Receptors, LH/metabolism , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Female , Follicle Stimulating Hormone/chemistry , Follicle Stimulating Hormone/metabolism , Gene Expression Regulation, Developmental , Luteinizing Hormone/chemistry , Luteinizing Hormone/metabolism , Male , Models, Molecular , Receptors, FSH/genetics , Receptors, Gonadotropin/metabolism , Receptors, LH/genetics , Signal TransductionABSTRACT
BACKGROUND: The impossibility of closing the life cycle of the European eel (Anguilla anguilla) in captivity troubles the future of this critically endangered species. In addition, the European eel is a highly valued and demanded resource, thus the successful closing of its life cycle would have a substantial economic and ecological impact. With the aim of obtaining the highest gamete quality, the study of the effects of environmental factors, such as temperature, on reproductive performance may prove valuable. This is especially true for the exposure to cold water, which has been reported to improve sexual development in multiple other Actinopterygii species. RESULTS: European eel males treated with cold seawater (10 °C, T10) for 2 weeks showed an increase in the proliferation and differentiation of spermatogonial cells until the differentiated spermatogonial type A cell stage, and elevated testosterone and 11-ketotestosterone plasma levels. Transcriptomes from the tissues of the brain-pituitary-gonad (BPG) axis of T10 samples revealed a differential gene expression profile compared to the other experimental groups, with clustering in a principal component analysis and in heat maps of all differentially expressed genes. Furthermore, a functional analysis of differentially expressed genes revealed enriched gene ontology terms involved in the regulation of circadian rhythm, histone modification, meiotic nuclear division, and others. CONCLUSIONS: Cold seawater treatment had a clear effect on the activity of the BPG-axis of European eel males. In particular, our cold seawater treatment induces the synchronization and increased proliferation and differentiation of specific spermatogonial cells. In the transcriptomic results, genes related to thermoception were observed. This thermoception may have caused the observed effects through epigenetic mechanisms, since all analysed tissues further revealed differentially expressed genes involved in histone modification. The presented results support our hypothesis that a low temperature seawater treatment induces an early sexual developmental stage in European eels. This hypothesis is logical given that the average temperature experienced by eels in the early stages of their oceanic reproductive migration is highly similar to that of this cold seawater treatment. Further studies are needed to test whether a cold seawater treatment can improve the response of European eels to artificial hormonal treatment, as the results suggest.
Subject(s)
Anguilla/growth & development , Brain/drug effects , Cold Temperature , Pituitary Gland/drug effects , Seawater/chemistry , Sexual Maturation/drug effects , Testis/drug effects , Anguilla/genetics , Anguilla/metabolism , Animals , Brain/metabolism , Brain/physiology , Male , Molecular Sequence Annotation , Pituitary Gland/metabolism , Pituitary Gland/physiology , Testis/metabolism , Testis/physiology , Time Factors , Transcriptome/drug effectsABSTRACT
The hormone melatonin connects environmental cues, such as photoperiod and temperature, with a number of physiological and behavioural processes, including seasonal reproduction, through binding to their cognate receptors. This study reports the structural, functional and physiological characterization of five high-affinity melatonin receptors (Mtnr1aaα, Mtnr1aaß, Mtnr1ab, Mtnr1al, Mtnr1b) in Atlantic salmon. Phylogenetic analysis clustered salmon melatonin receptors into three monophyletic groups, Mtnr1A, Mtnr1Al and Mtnr1B, but no functional representative of the Mtnr1C group. Contrary to previous studies in vertebrates, pharmacological characterization of four receptors in COS-7, CHO and SH-SY5Y cell lines (Mtnr1Aaα, Mtnr1Aaß, Mtnr1Ab, Mtnr1B) showed induction of intracellular cAMP levels following 2-iodomelatonin or melatonin exposure. No consistent response was measured after N-acetyl-serotonin or serotonin exposure. Melatonin receptor genes were expressed at all levels of the hypothalamo-pituitary-gonad axis, with three genes (mtnr1aaß, mtnr1ab and mtnr1b) detected in the pituitary. Pituitary receptors displayed daily fluctuations in mRNA levels during spring, prior to the onset of gonadal maturation, but not in autumn, strongly implying a direct involvement of melatonin in seasonal processes regulated by the pituitary. To the best of our knowledge, this is the first report of cAMP induction mediated via melatonin receptors in a teleost species.
Subject(s)
Receptors, Melatonin/metabolism , Salmo salar/metabolism , Animals , Cyclic AMP/metabolism , Phylogeny , Pituitary Gland/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Melatonin/genetics , Salmo salar/genetics , Seasons , Signal Transduction/genetics , Signal Transduction/physiologyABSTRACT
The two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are of particular importance within the hypothalamic-pituitary-gonadal (HPG) axis of vertebrates. In the current study, we demonstrate the production and validation of Japanese medaka (Oryzias latipes) recombinant (md) gonadotropins Fshß (mdFshß), Lhß (mdLhß), Fshßα (mdFshßα), and Lhßα (mdLhßα) by Pichia pastoris, the generation of specific rabbit antibodies against their respective ß subunits, and their use within the development and validation of competitive enzyme-linked immunosorbent assays (ELISAs) for quantification of medaka Fsh and Lh. mdFsh and mdLh were produced as single-chain polypeptides by linking the α subunit with mdFshß or mdLhß mature protein coding sequences to produce a "tethered" polypeptide with the ß-chain at the N-terminal and the α-chain at the C-terminal. The specificity of the antibodies raised against mdFshß and mdLhß was determined by immunofluorescence (IF) for Fshß and Lhß on medaka pituitary tissue, while comparison with fluorescence in situ hybridization (FISH) for fshb and lhb mRNA was used for validation. Competitive ELISAs were developed using antibodies against mdFshß or mdLhß, and the tethered proteins mdFshßα or mdLhßα for standard curves. The standard curve for the Fsh ELISA ranged from 97.6â¯pg/ml to 50â¯ng/ml, and for the Lh ELISA from 12.21â¯pg/ml to 6.25â¯ng/ml. The sensitivity of the assays for Fsh and Lh was 44.7 and 70.8â¯pg/ml, respectively. A profile of pituitary protein levels of medaka Fsh and Lh comparing juveniles with adults showed significant increase of protein amount from juvenile group (body length from 12â¯mm to 16.5â¯mm) to adult group (body length from 21â¯mm to 26.5â¯mm) for both hormones in male medaka. Comparing these data to a developmental profile of pituitary mRNA expression of medaka fshb and lhb, the mRNA expression of lhb also increased during male maturation and a linear regression analysis revealed a significant increase of lhb expression with increased body length that proposes a linear model. However, fshb mRNA expression did not change significantly during male development and therefore was not correlated with body length. In summary, we have developed and validated homologous ELISA assays for medaka Fsh and Lh based on proteins produced in P. pastoris, assays that will be used to study the functions and regulations of Fsh and Lh in more detail.
Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Follicle Stimulating Hormone/metabolism , Gene Expression/genetics , Luteinizing Hormone/metabolism , Recombinant Proteins/metabolism , Animals , Female , Male , RabbitsABSTRACT
Through the action of cortisol, stress can affect reproductive biology with behavioural and physiological alterations. Using mixed sex primary pituitary cultures from Atlantic cod (Gadus morhua), the present study aimed to investigate potential direct effects of basal and stress level cortisol on the pituitary in terms of cell viability and reproduction-related gene expression at different stages of sexual maturity. Stress level of cortisol stimulated cell viability in cells derived from sexually maturing and mature fish. In cells from spent fish, high cortisol levels did not affect cell viability in terms of metabolic activity, but did stimulate viability in terms of membrane integrity. Basal cortisol levels did not affect cell viability. Ethanol, used as solvent for cortisol, decreased cell viability at all maturity stages, but did generally not affect gene expression. Genes investigated were fshb, lhb and two Gnrh receptors expressed in cod gonadotropes (gnrhr1b and gnrhr2a). Cortisol had dual effects on fshb expression; stimulating expression in cells from mature fish at stress dose, while inhibiting expression in cells from spent fish at both doses. In contrast, cortisol had no direct effect on lhb expression. While gnrhr2a transcript levels largely increased following cortisol treatment, gnrhr1b expression decreased in cells from spent fish and was unaffected at other maturity stages. These findings demonstrate that cortisol can act directly and differentially at the pituitary level in Atlantic cod and that factors facilitating these actions are dose-dependently activated and vary with level of sexual maturity.
Subject(s)
Gadus morhua/growth & development , Gadus morhua/genetics , Gene Expression Regulation, Developmental/drug effects , Hydrocortisone/pharmacology , Pituitary Gland/cytology , Reproduction/genetics , Sexual Maturation/genetics , Animals , Cell Survival/drug effects , Ethanol , Gonadotropins/genetics , Gonadotropins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , Reproduction/drug effects , Sexual Maturation/drug effects , SolventsABSTRACT
In vertebrates, the regulation of gametogenesis is under the control of gonadotropins (Gth), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh). In fish, the physiological role of Gths is not fully understood, especially in species with asynchronous ovarian development. To elucidate the role of Gths in species with asynchronous ovary, we studied European hake (Merluccius merluccius) during the reproductive season. For this aim, we first cloned and sequenced both hormones. Then, we characterized their amino acid sequence and performed phylogenetic analyses to verify the relationship to their orthologues in other species. In addition, the quantification of gene expression during their natural reproductive season was analyzed in wild-caught female hake. Our results revealed that fshb peaked during the vitellogenic phase, remaining high until spawning. This is in contrast to the situation in species with synchronous ovary. lhb, on the other hand, peaked during maturation as it is also common in species with synchronous ovarian development. Finally, combining double-labeling fluorescent in situ hybridization (FISH) for Gth mRNAs with immunofluorescence for Lh protein, we evidenced the specific expression of fshb and lhb in different cells within the proximal pars distalis (PPD) of the pituitary. In addition to gonadotrope cells specific to expression of either fshb or lhb, some cells showed co-expression of both genes. This suggests either that gonadotropes with co-expression are not yet specified or they could have a plasticity that permits changes from one cell phenotype to another during certain life stages and in turn during different physiological states.
Subject(s)
Follicle Stimulating Hormone , Luteinizing Hormone , Reproduction/physiology , Amino Acid Sequence , Animals , Cloning, Molecular , Female , Fluorescent Antibody Technique/veterinary , Follicle Stimulating Hormone/analysis , Follicle Stimulating Hormone/chemistry , Follicle Stimulating Hormone/genetics , Gadiformes , Gene Expression , In Situ Hybridization, Fluorescence/veterinary , Luteinizing Hormone/analysis , Luteinizing Hormone/chemistry , Luteinizing Hormone/genetics , Ovary/anatomy & histology , Phylogeny , Pituitary Gland/chemistry , RNA, Messenger/analysis , Seasons , Sequence Alignment , Sequence Analysis, DNA/veterinary , Species Specificity , Vitellogenesis/physiologyABSTRACT
Depending on the stage of gonad maturation, as well as other factors, gonadal steroids can exert either a positive or negative feedback at the brain and pituitary level. While this has been demonstrated in many teleost species, little is known about the nature of steroid feedback in Gadiform fish. Using an optimized in vitro model system of the Atlantic cod pituitary, the present study investigated the potential effects of two physiologically relevant doses of estradiol, testosterone (TS) or dihydrotestosterone (DHTS) on cell viability and gene expression of gonadotropin subunits (fshb/lhb) and two suggested reproduction-relevant gonadotropin-releasing hormone receptors (gnrhr1b/gnrhr2a) during three stages of sexual maturity. In general, all steroids stimulated cell viability in terms of metabolic activity and membrane integrity. Furthermore, all steroids affected fshb expression, with the effect depending on both the specific steroid, dose and maturity status. Conversely, only DHTS exposure affected lhb levels, and this occurred only during the spawning season. Using single-cell qPCR, co-transcription of gnrhr1b and gnrhr2a was confirmed to both fshb- and lhb- expressing gonadotropes, with gnrhr2a being the most prominently expressed isoform. While steroid exposure had no effect on gnrhr1b expression, all steroids affected gnrhr2a transcript levels in at least one maturity stage. These and previous results from our group point to Gnrhr2a as the main modulator of gonadotropin regulation in cod and that regulation of its gene expression level might function as a direct mechanism for steroid feedback at the pituitary level.
Subject(s)
Follicle Stimulating Hormone, beta Subunit/genetics , Gadus morhua/genetics , Gonadal Steroid Hormones/pharmacology , Luteinizing Hormone, beta Subunit/genetics , Receptors, LHRH/genetics , Animals , Cells, Cultured , Female , Follicle Stimulating Hormone, beta Subunit/metabolism , Gadus morhua/metabolism , Gene Expression Regulation/drug effects , Luteinizing Hormone, beta Subunit/metabolism , Male , Pituitary Gland/cytology , Pituitary Gland/metabolism , Receptors, LHRH/metabolismABSTRACT
Characterization of all the progestin receptor genes (PRs) found in the European eel has been performed. There were five membrane PRs (mPRs): mPRα (alpha), mPRAL1 (alpha-like1), mPRAL2 (alpha-like2), mPRγ (gamma), mPRδ (delta) and two nuclear PRs (nPRs or PGRs): pgr1 and pgr2. In silico studies showed that the C and E(F) domains of Pgr are well conserved among vertebrates whereas the A/B domain is not. Phylogeny and synteny analyses suggest that eel duplicated pgr (pgr1 and pgr2) originated from the teleost-specific third whole genome duplication (3R). mPR phylogeny placed three eel mPRs together with the mPRα clade, being termed mPRα, mPRAL1 and mPRAL2, while the other two eel mPRs clustered with mPRγ and mPRδ clades, respectively. The in vivo study showed differential expression patterns along the brain-pituitary-gonad axis. An increase in nPR transcripts was observed in brain (in pgr1) and pituitary (in pgr1 and pgr2) through the spermatogenesis, from the spermatogonia B/spermatocyte stage to the spermiation stage. In the testis, mPRγ, mPRδ and pgr2 transcripts showed the highest levels in testis with A spermatogonia as dominant germ cell, while the highest mPRα, mPRAL1 and mPRAL2 transcripts were observed in testis from spermiating males, where the dominant germ cell were spermatozoa. Further studies should elucidate the role of both nuclear and membrane progestin receptors on eel spermatogenesis.
Subject(s)
Eels/genetics , Progestins/genetics , Receptors, Progesterone/genetics , Spermatogenesis/genetics , Anguilla/genetics , Anguilla/growth & development , Animals , Eels/growth & development , Male , Membranes/metabolism , Phylogeny , Pituitary Gland/growth & development , Pituitary Gland/metabolism , Receptors, Progesterone/biosynthesis , Spermatozoa/growth & development , Spermatozoa/metabolism , Testis/growth & development , Testis/metabolismABSTRACT
We have previously characterized the response to gonadotropin-releasing hormone (Gnrh) 2 in luteinizing hormone (lhb)-expressing cells from green fluorescent protein (Gfp)-transgenic medaka (Oryzias latipes), with regard to changes in the cytosolic Ca(2+) concentration. In the current study we present the corresponding responses to Gnrh1 and Gnrh3. Ca(2+) imaging revealed three response patterns to Gnrh1 and Gnrh3, one monophasic and two types of biphasic patterns. There were few significant differences in the shape of the response patterns between the three Gnrh forms, although the amplitude of the Ca(2+) signal was considerably lower for Gnrh1 and Gnrh3 than for Gnrh2, and the distribution between the two different biphasic patterns differed. The different putative Ca(2+) sources were examined by depleting intracellular Ca(2+) stores with thapsigargin, or preventing influx of extracellular Ca(2+) by either extracellular Ca(2+) depletion or the L-type Ca(2+)-channel blocker verapamil. Both Gnrh1 and 3 relied on Ca(2+) from both intracellular and extracellular sources, with some unexpected differences in the relative contribution. Furthermore, gene expression of Gnrh-receptors (gnrhr) in whole pituitaries was studied during development from juvenile to adult. Only two of the four identified medaka receptors were expressed in the pituitary, gnrhr1b and gnrhr2a, with the newly discovered gnrhr2a showing the highest expression level at all stages as analyzed by quantitative PCR. While both receptors differed in expression level according to developmental stage, only the expression of gnrhr2a showed a clear-cut increase with gonadal maturation. RNA sequencing analysis of FACS-sorted Gfp-positive lhb-cells revealed that both gnrhr1b and gnrhr2a were expressed in lhb-expressing cells, and confirmed the higher expression of gnrhr2a compared to gnrhr1b. These results show that although lhb-expressing gonadotropes in medaka show similar Ca(2+) response patterns to all three endogenous Gnrh forms through the activation of two different receptors, gnrhr1b and gnrhr2a, the differences observed between the Gnrh forms indicate activation of different Ca(2+) signaling pathways.
Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Oryzias/metabolism , Receptors, LHRH/metabolism , Animals , Animals, Genetically Modified , CalciumABSTRACT
Activation at fertilization of the vertebrate egg is triggered by Ca(2+) waves. Recent studies suggest the phospholipase C zeta (PLCζ), a sperm-specific protein, triggers egg activation by an IP3-mediated Ca(2+) release and allow Ca(2+) waves at fertilization. In the present study we cloned, characterized, and phylogenetically positioned the European eel PLCζ (PLCζ1). It is 1521 bp long, with 10 exons encoding an open reading frame of 506 amino acids. The amino acid sequence contains an EF-hand domain, X and Y catalytic domains, and a carboxy-terminal C2 domain, all typical of other PLCζ orthologous. The tissue distribution was studied, and the gene expression was determined in testis during induced sexual maturation at three different thermal regimes. Also, brain and pituitary expression was studied through sex maturation at constant temperature. plcζ1 was expressed in brain of male and female, in testis but not in ovaries. By first time in vertebrates, it is reported plcζ1 expression in the pituitary gland. Testis plcζ1 expression increased through spermatogenesis under all the thermal regimes, but being significantly elevated at lower temperatures. It was very low when testis contained only spermatogonia or spermatocytes, while maximum expression was found during spermiogenesis. These results support the hypothesis for an eel sperm-specific PLCζ1 inducing egg activation, similarly to mammals and some teleosts, but different from some other teleost species, which express this protein in ovaries, but not in testes.
Subject(s)
Eels/physiology , RNA, Messenger/genetics , Spermatogenesis , Type C Phospholipases/metabolism , Amino Acid Sequence , Animals , Male , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid , Type C Phospholipases/chemistryABSTRACT
During the last two decades single-cell analysis (SCA) has revealed extensive phenotypic differences within homogenous cell populations. These phenotypic differences are reflected in the stochastic nature of gene regulation, which is often masked by qualitatively and quantitatively averaging in whole tissue analyses. The ability to isolate transcripts and investigate how genes are regulated at the single cell level requires highly sensitive and refined methods. This paper reviews different strategies currently used for SCA, including harvesting, reverse transcription, and amplification of the RNA, followed by methods for transcript quantification. The review provides the historical background to SCA, discusses limitations, and current and future possibilities in this exciting field of research.
Subject(s)
Cell Separation/methods , Gene Expression Profiling/methods , Gene Expression Regulation , RNA, Messenger/genetics , Single-Cell Analysis/methods , Cell Separation/instrumentation , Electrophoresis, Capillary/instrumentation , Electrophoresis, Capillary/methods , Escherichia coli/chemistry , Flow Cytometry/instrumentation , Flow Cytometry/methods , Gene Expression Profiling/instrumentation , Humans , Laser Capture Microdissection/instrumentation , Laser Capture Microdissection/methods , Microfluidics/instrumentation , Microfluidics/methods , Phenotype , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription , Single-Cell Analysis/instrumentation , Thermus/chemistryABSTRACT
RNA-Seq has become a widely used method to study transcriptomes, and it is now possible to perform RNA-Seq on almost any sample. Nevertheless, samples obtained from small cell populations are particularly challenging, as biases associated with low amounts of input RNA can have strong and detrimental effects on downstream analyses. Here we compare different methods to normalize RNA-Seq data obtained from minimal input material. Using RNA from isolated medaka pituitary cells, we have amplified material from six samples before sequencing. Both synthetic and real data are used to evaluate different normalization methods to obtain a robust and reliable pipeline for analysis of RNA-Seq data from samples with very limited input material. The analysis outlined here shows that quantile normalization outperforms other more commonly used normalization procedures when using amplified RNA as input and will benefit researchers employing low amounts of RNA in similar experiments.
Subject(s)
Oryzias/genetics , Sequence Analysis, RNA/methods , Animals , Animals, Genetically Modified , Cells, Cultured , Female , Gene Expression , Green Fluorescent Proteins/genetics , Pituitary Gland/cytology , RNA/isolation & purification , Reproducibility of ResultsABSTRACT
In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.
Subject(s)
Oryzias , Animals , Oryzias/metabolism , Seasons , Reproduction/physiology , Vertebrates/metabolism , Gonadotropin-Releasing Hormone/metabolism , Gonadotropins/metabolism , Mammals , Thyrotropin/metabolismABSTRACT
The onset of puberty and reproduction are tightly controlled by extrinsic and intrinsic inputs combined with genetically determined biological blueprints. Environmental inputs are then mediated by the brain-pituitary-gonad endocrine axis resulting in a unified output. In fish, one of the primary factors controlling the timing of sexual maturation is light, although how these signals are mediated in the brain and pituitary is not well understood. We therefore aimed to elucidate the molecular basis of the control of reproduction during the first spawning season in two year old female Atlantic cod. To this end, we measured GnRH and GnRH-R variant gene expression in brains and pituitaries collected from cod kept under four different photoperiod regimes: natural light (NL), continuous light (LL) and combined treatment of NL-LL and LL-NL. LL inhibited sexual development and spawning and LL-NL delayed sexual development and spawning. LL inhibited the spawning-related increase in brain GnRH3 and pituitary GnRH-R2a gene expression found under NL conditions, and the expression of these genes were delayed in concert with spawning of LL-NL cod. This study indicates that regulation of brain GnRH3 and pituitary GnRH-R2a genes likely mediates photoperiod induced changes in cod gonadal maturation.
Subject(s)
Brain/metabolism , Brain/radiation effects , Gadus morhua/metabolism , Gonadotropin-Releasing Hormone/metabolism , Light , Pituitary Gland/metabolism , Pituitary Gland/radiation effects , Animals , Female , PhotoperiodABSTRACT
BACKGROUND: Luteinizing hormone (LH) and follicle stimulating hormone (FSH), produced in gonadotrope cells in the adenohypophysis are key regulators of vertebrate reproduction. The differential regulation of these hormones, however, is poorly understood and little is known about gonadotrope embryonic development. We developed a stable transgenic line of medaka with the LH beta subunit gene (lhb) promotor driving green fluorescent protein (gfp) expression to characterize development of LH-producing gonadotropes in whole larvae and histological sections. Additionally, developmental and tissue-specific gene expression was examined. RESULTS: The lhb gene is maternally expressed during early embryogenesis. Transcript levels increase by stage 21 (36 hours post fertilization [hpf]) and then decrease during continued larval development. Examination of the expression of pituitary marker genes show that LH-producing cells are initially localized outside the primordial pituitary, and they were localized to the developing gut tube by 32 hpf. At hatching, lhb-GFP is clearly detected in the gut epithelium and in the anterior digestive tract. lhb-GFP expression later consolidate in the developing pituitary by 2 weeks postfertilization. CONCLUSIONS: During embryonic development, lhb is primarily expressed outside the central nervous system and pituitary. The novel expression of lhb in the embryonic gut suggests that LH has a hitherto unidentified developmental function.