Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Physiol Plant ; 176(3): e14367, 2024.
Article in English | MEDLINE | ID: mdl-38837234

ABSTRACT

Inoculation of arbuscular mycorrhizal fungi (AMF) or biochar (BC) application can improve photosynthesis and promote plant growth under saline-alkali stress. However, little is known about the effects of the two combined on growth and physiological characteristics of switchgrass under saline-alkali stress. This study examined the effects of four treatments: (1) no AMF inoculation and no biochar addition (control), (2) biochar (BC) alone, (3) AMF (Rhizophagus irregularis, Ri) alone, and (4) the combination of both (BC+Ri) on the plant biomass, antioxidant enzymes, chlorophyll, and photosynthetic parameters of switchgrass under saline-alkali stress. The results showed that the above-ground, belowground and total biomass of switchgrass in the BC+Ri treatment group was significantly higher (+136.7%, 120.2% and 132.4%, respectively) than in other treatments compared with Control. BC+Ri treatment significantly increased plant leaves' relative chlorophyll content, antioxidant enzyme activity, and photosynthesis parameters. It is worth noting that the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency and other photosynthetic-related indexes of the BC+Ri treatment group were the highest (38% to 54% higher than other treatments). The fitting results of light response and CO2 response curves showed that the light saturation point, light compensation point, maximum carboxylation rate and maximum electron transfer rate of switchgrass in the Ri+BC treatment group were the highest. In conclusion, biochar combined with Ri has potential beneficial effects on promoting switchgrass growth under saline-alkali stress and improving the activity of antioxidant enzymes and photosynthetic characteristics of plants.


Subject(s)
Charcoal , Chlorophyll , Mycorrhizae , Panicum , Photosynthesis , Charcoal/pharmacology , Panicum/physiology , Panicum/drug effects , Panicum/growth & development , Photosynthesis/physiology , Chlorophyll/metabolism , Mycorrhizae/physiology , Glomeromycota/physiology , Alkalies , Biomass , Plant Leaves/physiology , Antioxidants/metabolism
2.
Ecotoxicol Environ Saf ; 281: 116592, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38901167

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) and biochar application individually can enhance plant tolerance to saline-alkali stress and promote plant growth efficiency. However, little is known about the potential synergistic effects of their combination on improving plant growth and soil quality under saline-alkali stress. This experiment adopted the potted method to explore the effects of four treatments on switchgrass growth and soil quality: biochar (BC), Rhizophagus irregularis (Ri), biochar + Ri (BR) and a control without biochar or Ri (CK). Compared to the CK treatment, the switchgrass biomass increased by 92.4 %, 148.6 %, and 177.3 % in the BC, Ri, and BR treatment groups, respectively. Similarly, the rhizosphere soil quality index increased by 29.33 %, 22.7 %, and 49.1 % in the respective treatment groups. The BR treatment significantly altered the rhizosphere soil microbial composition and diversity. Notably, compared to the other treatments, the archaeal α-diversity in the BR group showed a significant decrease. BR treatment significantly increased the relative abundance of bacteria, fungi and archaea at the genus level (e.g., Bacillus, Trichome and candidatus_methanopenens). Network analysis showed that the complexity and closeness of interactions between different microbial taxa were stronger in the BC, Ri and BR treatments than in the CK treatment, with BR being the more prominent. In summary, biochar combined with Ri has a better effect on promoting the growth of switchgrass under saline-alkali stress, improving the quality of saline-alkali soil, and increasing soil microbial diversity. This study provides a new approach for the efficient development and utilization of saline-alkali land.

3.
Rice (N Y) ; 16(1): 18, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37036613

ABSTRACT

Increased soil salinization is among the main factors that limits safe rice production. Arbuscular mycorrhizal fungi (AMF) have been shown to alleviate the toxic effects of salt stress in plants. However, more studies on AMF combined with other functional microorganisms are needed to further improve salt tolerance in rice. Therefore, the compound inoculum Funneliformis mosseae (Fm) together with two functional microorganisms, Piriformospora indica (Pi) and Agrobacterium rhizogenes (Ar) was evaluated for their effect on the rice growth, photosynthetic gas exchange parameters, ion homeostasis, and the expression of salt tolerance-related genes under 0, 80, 120 and 160 mM salt stress conditions. The results showed that: (1) the rice seedling biomass of the AMF compound inoculant treatment group was significantly higher than that of the non-inoculation treatment group (P < 0.05); (2) under NaCl stress, inoculation with AMF compound inoculants can activate the rice antioxidant enzyme system and improve osmoregulation ability; (3) AMF compound inoculants can increase the concentration of K+ in the plant and inhibit the transfer of Na+ to rice leaves, maintaining a high K+/Na+; and (4) AMF compound inoculants could induce and regulate the overexpression of genes related to salt tolerance, photosynthesis and ion homeostasis in rice, and improve the tolerance of rice under salt stress. Our study showed that AMF compound inoculants could improve the adaptability of rice under NaCl stress and promote plant growth by regulating the photosynthetic gas exchange parameter, reactive oxygen species (ROS) scavenging ability, and ion homeostasis of plants. These results suggest that AMF compound inoculants may play an important role in improving rice productivity in salinized soil.

SELECTION OF CITATIONS
SEARCH DETAIL