Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Plant J ; 109(3): 541-554, 2022 02.
Article in English | MEDLINE | ID: mdl-34773305

ABSTRACT

Insulators characterized in Drosophila and mammals have been shown to play a key role in the restriction of promiscuous enhancer-promoter interactions, as well as reshaping the topological landscape of chromosomes. Yet the role of insulators in plants remains poorly understood, in large part because of a lack of well-characterized insulators and binding factor(s). In this study, we isolated a 1.2-kb RS2-9 insulator from the Oryza sativa (rice) genome that can, when interposed between an enhancer and promoter, efficiently block the activation function of both constitutive and floral organ-specific enhancers in transgenic Arabidopsis and Nicotiana tabacum (tobacco). In the rice genome, the genes flanking RS2-9 exhibit an absence of mutual transcriptional interactions, as well as a lack of histone modification spread. We further determined that O. sativa Homeobox 1 (OSH1) bound two regions of RS2-9, as well as over 50 000 additional sites in the rice genome, the majority of which resided in intergenic regions. Mutation of one of the two OSH1-binding sites in RS2-9 impaired insulation activity by up to 60%, whereas the mutation of both binding sites virtually abolished insulator function. We also demonstrated that OSH1 binding sites were associated with 72% of the boundaries of topologically associated domains (TADs) identified in the rice genome, which is comparable to the 77% of TAD boundaries bound by the insulator CCCTC-binding factor (CTCF) in mammals. Taken together, our findings indicate that OSH1-RS2-9 acts as a true insulator in plants, and highlight a potential role for OSH1 in gene insulation and topological organization in plant genomes.


Subject(s)
Enhancer Elements, Genetic/physiology , Oryza/genetics , Oryza/metabolism , Promoter Regions, Genetic/physiology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Transcription Factors/physiology
2.
Transgenic Res ; 31(6): 647-660, 2022 12.
Article in English | MEDLINE | ID: mdl-36053433

ABSTRACT

Insulators in vertebrates play a role in genome architecture and orchestrate temporo-spatial enhancer-promoter interactions. In plants, insulators and their associated binding factors have not been documented as of yet, largely as a result of a lack of characterized insulators. In this study, we took a comprehensive strategy to identify and validate the enhancer-blocking insulator CW198. We show that a 1.08-kb CW198 fragment from Arabidopsis can, when interposed between an enhancer and a promoter, efficiently abrogate the activation function of both constitutive and floral organ-specific enhancers in transgenic Arabidopsis and tobacco plants. In plants, both transcriptional crosstalk and spreading of histone modifications were rarely detectable across CW198, which resembles the insulation property observed across the CTCF insulator in the mammalian genome. Taken together, our findings support that CW198 acts as an enhancer-blocking insulator in both Arabidopsis and tobacco. The significance of the present findings and their relevance to the mitigation of mutual interference between enhancers and promoters, as well as multiple promoters in transgenes, is discussed.


Subject(s)
Arabidopsis , Insulator Elements , Animals , Insulator Elements/genetics , Enhancer Elements, Genetic/genetics , Arabidopsis/genetics , Promoter Regions, Genetic/genetics , Transgenes/genetics , Nicotiana/genetics , Mammals/genetics
3.
Biochem Biophys Res Commun ; 529(4): 1045-1052, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32819563

ABSTRACT

The phosphoinositide phosphatase, myotubularinrelated protein 14 (MTMR14), plays a critical role in the regulating autophagy. However, its functional contribution to neuronal autophagy is still unclear. In the present study, we attempted to explore the effects of MTMR14 on ischemic stroke progression, as well as the underlying molecular mechanisms. Oxygen-glucose deprivation/reoxygenation (OGDR)-induced primary cortical neurons and pheochromocytoma (PC12) cells, and middle cerebral artery occlusion (MCAO)-operated mice were used to establish cerebral ischemia/reperfusion (I/R) injury in vitro and in vivo, respectively. OGDR treatment markedly decreased the expression of MTMR14 expression from mRNA and protein levels in the cultured primary neurons and PC12 cells. Functional analysis showed that OGDR-reduced cell viability was further accelerated by MTMR14 knockdown. On the contrary, MTMR14 over-expression significantly rescued the cell survival in OGDR-exposed cells. Moreover, autophagic markers including LC3BII and Beclin 1 were highly up-regulated in OGDR-incubated neurons and PC12 cells, while being further exacerbated by MTMR14 deletion. However, promoting MTMR14 dramatically alleviated LC3BII and Beclin 1 expression levels stimulated by OGDR. Importantly, we found that MTMR14-regulated autophagy was through its interactions with phosphatase and tensin homolog (PTEN). MTMR14 negatively modulated PTEN protein expression levels in OGDR-exposed cells. In vivo, MCAO-operated mice exhibited significantly reduced expression of MTMR14 in the ischemic penumbra tissues. After MCAO operation, MTMR14 over-expression effectively reduced infarct volume and neurological deficits scores, along with decreased activation of LC3B in neurons. Consistently, MCAO-increased PTEN, LC3BII and Beclin 1 were repressed by MTMR14 in mice. An interaction between MTMR14 and PTEN in response to MCAO was confirmed in vivo. Together, these results indicated the neuroprotective effects of MTMR14 on modulating PTEN-dependent excessive autophagy during cerebral I/R injury. Thus, targeting MTMR14 may provide feasible therapy for ischemic stroke onset and progression.


Subject(s)
Autophagy , Neuroprotective Agents/metabolism , PTEN Phosphohydrolase/metabolism , Phosphoric Monoester Hydrolases/metabolism , Stroke/metabolism , Animals , Glucose/deficiency , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Oxygen , PC12 Cells , Protein Binding , Rats , Rats, Sprague-Dawley
4.
Planta ; 239(2): 469-78, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24221021

ABSTRACT

The genetic engineering of agronomic traits requires an array of highly specific and tightly regulated promoters that drive expression in floral tissues. In this study, we isolated and characterized two tobacco APETALA1-like (AP1-like) promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using the GUS reporter system, along with tissue-specific ablation analyses. Our results demonstrated that the two promoters are active in floral inflorescences but not in vegetative apical meristems or other vegetative tissues, as reflected by strong GUS staining and DT-A-mediated ablation of apical shoot tips during reproductive but not vegetative growth. We also showed that the NtAP1Lb1 promoter was more active than NtAP1La in inflorescences, as the former yielded higher frequencies and greater phenotypic evidence of tissue ablation compared to the latter. We further revealed that both promoters were uniformly expressed in the meristems of stage 1 and 2 floral buds, but were differentially expressed in floral organs later during development. While NtAP1La was found to be active in stage 4-5 carpels, later becoming confined to ovary tissue from stage 9 onwards, NtAP1Lb1 activity was apparent in all floral organs from stages 3 to 7, becoming completely absent in all floral organs from stage 11 onward. Therefore, it seems that the two tobacco promoters have acquired similar but distinct inflorescence-, floral meristem- and floral organ-specific and development-dependent regulatory features without any leaky activity in vegetative tissues. These features are novel and have rarely been observed in other flower-specific promoters characterized to date. The potential application of these promoters for engineering sterility, increasing biomass production and modifying flower architecture, as well as their putative use in flower-specific transgene excision, will be discussed.


Subject(s)
Flowers/genetics , Gene Expression Regulation, Developmental , Nicotiana/genetics , Plant Proteins/genetics , Promoter Regions, Genetic/genetics , Base Sequence , Binding Sites , Computational Biology , DNA Primers/genetics , Flowers/cytology , Flowers/growth & development , Gene Expression Regulation, Plant , Genes, Reporter , Inflorescence/cytology , Inflorescence/genetics , Inflorescence/growth & development , Meristem/cytology , Meristem/genetics , Meristem/growth & development , Molecular Sequence Data , Organ Specificity , Plants, Genetically Modified , Sequence Analysis, DNA , Nicotiana/cytology , Nicotiana/growth & development
5.
Plant Biotechnol J ; 12(7): 951-62, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24893677

ABSTRACT

Molecular stacking enables multiple traits to be effectively engineered in crops using a single vector. However, the co-existence of distinct plant promoters in the same transgenic unit might, like their mammalian counterparts, interfere with one another. In this study, we devised a novel approach to investigate enhancer-promoter and promoter-promoter interactions in transgenic plants and demonstrated that three of four flower-specific enhancer/promoters were capable of distantly activating a pollen- and stigma-specific Pps promoter (fused to the cytotoxic DT-A gene) in other tissues, as revealed by novel tissue ablation phenotypes in transgenic plants. The NtAGI1 enhancer exclusively activated stamen- and carpel-specific DT-A expression, thus resulting in tissue ablation in an orientation-independent manner; this activation was completely abolished by the insertion of an enhancer-blocking insulator (EXOB) between the NtAGI1 enhancer and Pps promoter. Similarly, AGL8 and AP1Lb1, but not AP1La, promoters also activated distinct tissue-specific DT-A expression and ablation, with the former causing global growth retardation and the latter ablating apical inflorescences. While the tissue specificity of the enhancer/promoters generally defined their activation specificities, the strength of their activity in particular tissues or developmental stages appeared to determine whether activation actually occurred. Our findings provide the first evidence that plant-derived enhancer/promoters can distantly interact/interfere with one another, which could pose potential problems for the tissue-specific engineering of multiple traits using a single-vector stacking approach. Therefore, our work highlights the importance of adopting enhancer-blocking insulators in transformation vectors to minimize promoter-promoter interactions. The practical and fundamental significance of these findings will be discussed.


Subject(s)
Enhancer Elements, Genetic/physiology , Nicotiana/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic/physiology , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Plant , Genetic Engineering/methods , Genetic Vectors , Plants, Genetically Modified/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Transformation, Genetic , Transgenes
6.
Zhongguo Yi Liao Qi Xie Za Zhi ; 38(4): 312-4, 2014 Jul.
Article in Zh | MEDLINE | ID: mdl-25330620

ABSTRACT

This paper analysed the rhinoscope's clinical value in microsurgical treatment of intracranial aneurysms. Application of the rhinoscope in 87 patients, only 2 patients had ruptured during operation. However, 11 cases had ruptured in 94 cases without using rhinoscope, P < 0.05, they had a significant difference. By DSA follow-up review, 82 cases of used rhinoscope only 2 cases had remained the aneurysm neck, but 9 cases had the aneurysm neck in 77 cases which had not used the rhinoscope in the microsurgical treatment, P < 0.05, they also had significant difference. The application of rhinoscope in microsurgical treatment of intracranial aneurysms intraoperative, can reduce the risk of the intraoperative aneurysm rupture. It can achieve better clinical effect.


Subject(s)
Endoscopy , Intracranial Aneurysm/surgery , Adult , Aged , Female , Humans , Male , Microsurgery , Middle Aged , Nose/surgery , Treatment Outcome
7.
Plant Divers ; 46(1): 70-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38343594

ABSTRACT

Here, we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China. We found that community structure in this forest changed over a 15-year period. Specifically, renewal and death of common species was large, with the renewal of individuals mainly concentrated within a few populations, especially those of Aidia canthioides and Cryptocarya concinna. The numbers of individual deaths for common species were concentrated in the small and mid-diameter level. The spatial distribution of community species diversity fluctuated in each monitoring period, showing a more dispersed diversity after the 15-year study period, and the coefficient of variation on quadrats increased. In 2010, the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years. Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests. Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long- and short-term causes of dynamic fluctuations of community structure and species diversity, and reveal the factors that drive changes in community structure.

8.
Mol Neurobiol ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191692

ABSTRACT

Micronutrient deficiencies and excesses are closely related to developing and treating depression. Traditional and effective antidepressants include tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and lithium. There is no consensus on the fluctuation of zinc (Zn2+), magnesium (Mg2+), calcium (Ca2+), copper (Cu2+), iron (Fe2+), and manganese (Mn2+) ion levels in depressed individuals before and after therapy. In order to determine whether there were changes in blood and cerebrospinal fluid (CSF) levels of these ions in depressed patients compared with healthy controls and depressed patients treated with TCAs, SSRIs, or lithium, we applied a systematic review and meta-analysis. Using the Stata 17.0 software, we performed a systematic review and meta-analysis of the changes in ion levels in human samples from healthy controls, depressive patients, and patients treated with TCAs, SSRIs, and lithium, respectively. By searching the PubMed, EMBASE, Google Scholar, Web of Science, China National Knowledge Infrastructure (CNKI), and WAN FANG databases, 75 published analyzable papers were chosen. In the blood, the levels of Zn2+ and Mg2+ in depressed patients had decreased while the Ca2+ and Cu2+ levels had increased compared to healthy controls, Fe2+ and Mn2+ levels have not significantly changed. After treatment with SSRIs, the levels of Zn2+ and Ca2+ in depressed patients increased while Cu2+ levels decreased. Mg2+ and Ca2+ levels were increased in depressed patients after Lithium treatment. The findings of the meta-analysis revealed that micronutrient levels were closely associated with the onset of depression and prompted more research into the underlying mechanisms as well as the pathophysiological and therapeutic implications.

9.
Biochem Biophys Res Commun ; 436(2): 344-8, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23743189

ABSTRACT

Although numerous studies have shown that tumor necrosis factor receptor-associated factor 4 (TRAF4) plays an important role in the carcinogenesis of many tumor types, its exact molecular mechanism remains elusive. In this study, we examined the regulation function of TRAF2 to the cytoplasmic/nuclear distribution of TRAF4 in the breast cancer cell line. Using cell immunofluorescent staining, we found that TRAF2 and TRAF4 were co-localized to the cytoplasm in MCF-7 cells. Co-immunoprecipitation showed that TRAF2 could interact with TRAF4 in MCF-10A, MCF-7 and MDA-MB-231 cell lines. Western blotting showed TRAF2 depletion by targeted siRNA in MDA-MB-231 cells led to reduced TRAF4 expression in the cytoplasm and augmented TRAF4 expression in the nucleus. Cytoplasmic expression of TRAF4 was augmented and nuclear expression was reduced when MCF-7 cells were transfected with hTRAF2pLPCX-HA-Flag/P874. MCF-7 cells expressing hTRAF2pLPCX-HA-Flag/P874 had enhanced cell proliferation rates. The nuclear expression of NF-κB significantly increased after TNF-α treatment. When hTRAF2pLPCX-HA-Flag/P874 and the siRNA-TRAF4 plasmid were cotransfected, the nuclear expression of NF-κB was significantly reduced compared with cells transfected with hTRAF2pLPCX-HA-Flag/P874 only. In conclusion, TRAF2 appears to interact with TRAF4 and affect the localization of TRAF4 in breast cancer cell lines. The overexpression of TRAF2 augmented the cytoplasmic expression of TRAF4 which promoted cell proliferation and inhibited cell apoptosis by activating NF-κB nuclear transcription. TRAF4 may play an important role in the activation of NF-κB via TRAF2.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 4/metabolism , Apoptosis , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Proliferation , Female , Humans , MCF-7 Cells , Microscopy, Fluorescence , NF-kappa B/metabolism , Protein Binding , RNA Interference , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 4/genetics , Tumor Necrosis Factor-alpha/pharmacology
10.
Materials (Basel) ; 16(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37048851

ABSTRACT

As a technology for micro-deformed solid-phase connection, transient liquid phase (TLP) diffusion bonding plays a key role in the manufacture of heating components of aero engines. However, the harmful brittle phase and high hardness limit the application of TLP diffusion bonding in nickel-based superalloys. In this paper, a new strategy in which a low-boron and high-titanium interlayer can restrain the brittle phase and reduce the hardness of the TLP-diffusion-bonded joint is proposed. With this strategy, the Ni3Al joint can achieve a high strength of 860.84 ± 26.9 MPa under conditions of 1250 °C, 6 h and 5 MPa. The microhardness results show that the average microhardness of the joint area is 420.33 ± 3.15 HV and is only 4.3% higher than that of the Ni3Al base material, which proves that this strategy can effectively inhibit the formation of the harmful brittle phase in the joint area. The results of EBSD show that 7.7% of the twin boundaries exist in the isothermal solidification zone, and only small amounts of secondary precipitates are observed at the grain boundaries in the joint, which indicates that twin boundaries may play a dominant role in crack initiation. This study provides a feasible avenue to suppress the brittle phase in TLP-diffusion-bonded joints.

11.
Chemosphere ; 341: 140005, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652249

ABSTRACT

Trihalomethanes (THMs) are classified as volatile organic compounds, considered to be a disinfection by-product during water disinfection process. THMs have been shown to be cytotoxic, genotoxic and mutagenic, with a risk of cancer when they contact with people directly. To protect public health and monitor water quality, it is important to monitor and measure THMs in drinking water. Therefore, it is crucial to develop fast, accurate, highly sensitivity and green analysis methods of THMs in various complicated matrices. Here, this review presents an overall summary of the current state of the pretreatment and detection methods for THMs in various sample matrices since 2005. In addition to the traditionally used pretreatment methods for THMs (such as headspace extraction, microwave-assisted extraction, liquid-liquid extraction), the new-developed methods, including solid-phase extraction, QuEChERS and different microextraction methods, have been summarized. The detection methods include gas chromatography-based methods, sensors and several other approaches. Additionally, benefits and limitations of different techniques were also discussed and compared. This study is anticipated to offer fruitful insights into the further advancement and widespread applications of pretreatment and detection technologies for THMs as well as for related substances.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis , Chromatography, Gas , Disinfection , Water Quality , Drinking Water/analysis
12.
Plants (Basel) ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37050169

ABSTRACT

Plant chitinases (EC 3.2.1.14) are pathogenesis-related (PR) proteins and are well studied in many plant species. However, little is known about the genomic organization and expression of chitinase genes in strawberries (Fragaria vesca). Here, 23 FvChi genes were identified in the genome of strawberry (F. vesca) and divided into GH18 and GH19 subfamilies based on phylogenetic relationships. A detailed bioinformatics analysis of the FvChi genes was performed, including gene physicochemical properties, chromosomal location, exon-intron distribution, domain arrangement, and subcellular localization. Twenty-two FvChi genes showed upregulation after Colletotrichum gloeosporioides infection. Following the exogenous application of SA, FvChi-3, 4, and 5 showed significant changes in expression. The ectopic expression of FvChi-14 in Arabidopsis thaliana increased resistance to C. higginsianum via controlling the SA and JA signaling pathway genes (AtPR1, AtICS1, AtPDF1.2, and AtLOX3). The FvChi-14 protein location was predicted in the cell wall or extracellular matrix. We speculate that FvChi-14 is involved in disease resistance by regulating the SA and JA signaling pathways. The findings of this study provide a theoretical reference for the functional studies of FvChi genes and new candidates for strawberry stress resistance breeding programs.

13.
Plant Mol Biol Report ; 30: 983-991, 2012.
Article in English | MEDLINE | ID: mdl-24415838

ABSTRACT

Retinoblastoma-related (RBR) genes, a conserved gene family in higher eukaryotes, play important roles in cell differentiation, development, and mammalian cell death; however, little is known of their function in plants. In this study, a RBR gene was isolated from the Chinese wild grape, Vitis pseudoreticulata W. T. Wang clone "Baihe-35-1", and designated as VpRBR. The cDNA sequence of VpRBR was 3,030 bp and contained an open reading frame of 3,024 bp. Conceptual translation of this gene indicated a composition of 1,007 amino acids with a predicted molecular mass of 117.3 kDa. The predicted protein showed a retinoblastoma-associated protein domain A from amino acid residues 416 to 579, and domain B from residues 726 to 855. The result of expression analysis indicated that VpRBR was expressed in tissues, leaves, stem, tendrils, flower, and grape skin at different expression levels. Further quantitative reverse transcription-PCR (qRT-PCR) data indicated that VpRBR levels were higher in Erysiphe necator-treated "Baihe-35-1" and "Baihe-13-1", two resistant clones of Chinese wild V. pseudoreticulata, than in E. necator-treated "Hunan-1", a susceptible clone of V. pseudoreticulata. Furthermore, the expression of VpRBR in response to salicylic acid (SA), methyl jasmonate (MeJA), and ethylene (Eth) in grape leaves was also investigated. Taken together, these data indicate that VpRBR may contribute to some aspect of powdery mildew resistance in grape.

14.
Crit Rev Anal Chem ; : 1-20, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35320052

ABSTRACT

Capsaicinoids, whose basic chemical structure is the vanilla amide of n-nonanoic acid, are responsible for chili pepper fruits' spicy flavor (pungency) and multiple pharmacological actions. Capsaicinoids are widely used to produce intense flavor food additives due to their sensory attributes of pungency, aroma, and color. To ensure strict quality control for capsaicinoids and maximize their positive effects, valid and sensitive pretreatment and determination methods are urgently needed. Consequently, this review provides a comprehensive summary of capsaicinoids' preparation and analytical technologies in food samples. Pretreatment techniques mainly include liquid-liquid extraction, solid-phase extraction, solid-phase microextraction, and dispersive solid-phase microextraction, among others. Detection methods include liquid chromatography coupled with different detectors, gas chromatography, electrochemical sensor methods, capillary electrophoresis, etc. Furthermore, the advantages and disadvantages of various pretreatment and analytical methods are compared and discussed. Thus, the present paper has attempted to shed light on novel and traditionalpretreatment methods and determination approaches and provided proper comments about their new developments and applications.

15.
Crit Rev Anal Chem ; : 1-30, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36045570

ABSTRACT

Sulfonylurea herbicides (SUHs) are widely used in agriculture because of their low dosage, low cost, and high selectivity. However, due to improper use and lack of effective management, their residues pose a threat to the human health through environment and food pollution. Therefore, there is a need for simple, quick, economical, and effective methods to analyze SUHs in plant-derived foods, crops, and environmental samples. The present article presents a comprehensive review of the pretreatment and analytical technologies used for SUHs in various sample matrices, focusing on the developments since 2010. The main pretreatment methods include liquid-liquid extraction, solid-phase extraction, QuEChERS, and different microextraction methods, whereas analytical methods mainly include liquid chromatography coupled with different detectors, capillary electrophoresis, among others. In addition, the present study also compared the advantages and disadvantages of the methods and the future development is prospected.


HIGHLIGHTProgress in pretreatment and analytical methods of sulfonylurea herbicides are summarized.Pros and cons of the pretreatment and determination methods have been given.Novel materials in solid-phase extraction and solid-phase microextraction are depicted.

16.
Biomed Res Int ; 2022: 9973232, 2022.
Article in English | MEDLINE | ID: mdl-36560962

ABSTRACT

In recent studies, stem cell-based therapy is a potential new approach in the treatment of stroke. The mechanism of human umbilical cord mesenchymal stem cell (hUMSC) transplantation as one of the new approaches in the treatment of ischemic stroke is still unclear. The aim of this study was to determine the traits of immune responses during stroke progression after treatment with human umbilical cord blood MSCs by bioinformatics, to predict potential prognostic biomarkers that could lead to sex differences, and to reveal potential therapeutic targets. The microarray dataset GSE78731 (mRNA profile) of middle cerebral artery occlusion (MCAO) rats was obtained from the Gene Expression Omnibus (GEO) database. First, two potentially expressed genes (DEGs) were screened using the Bioconductor R package. Ultimately, 30 specific DEGs were obtained (22 upregulated and 353 downregulated). Next, bioinformatic analysis was performed on these specific DEGs. We performed a comparison for the differentially expressed genes screened from between the hUMSC and MCAO groups. Gene Ontology enrichment and pathway enrichment analyses were then performed for annotation and visualization. Gene Ontology (GO) functional annotation analysis shows that DEGs are mainly enriched in leukocyte migration, neutrophil activation, neutrophil degranulation, the external side of plasma membrane, cytokine receptor binding, and carbohydrate binding. KEGG pathway enrichment analysis showed that the first 5 enrichment pathways were cytokine-cytokine receptor interaction, chemokine signal pathway, viral protein interaction with cytokine and cytokine receptor, cell adhesion molecules (CAMs), and phagosome. The top 10 key genes of the constructed PPI network were screened, including Cybb, Ccl2, Cd68, Ptprc, C5ar1, Il-1b, Tlr2, Itgb2, Itgax, and Cd44. In summary, hUMSC is likely to be a promising means of treating IS by immunomodulation.


Subject(s)
Mesenchymal Stem Cells , Stroke , Humans , Female , Male , Rats , Animals , Prognosis , Protein Interaction Maps/genetics , Gene Expression Profiling , Infarction, Middle Cerebral Artery , Computational Biology , Cytokines/genetics , Gene Ontology , NADPH Oxidase 2/genetics
17.
Int J Mol Med ; 40(5): 1315-1322, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28901379

ABSTRACT

The overexpression of eyes absent (Eya) 2 has been found in several human cancers. However, its biological roles and clinical significance in human astrocytoma have not yet been explored. This study investigated the clinical significance and biological roles of Eya2 in human astrocytoma tissues and cell lines. Using immunohistochemistry, we found Eya2 overexpression in 33 out of 90 (36.7%) astrocytoma specimens. The rate of Eya2 overexpression was higher in grade III-IV (48.1%) than in grade â… +Ⅱ astrocytomas (21.1%). Transfection with an Eya2 expression plasmid was performed in A172 cells with a low endogenous expression of Eya2 and the knockdown of Eya2 was carried out in U251 cells with a high endogenous expression using siRNA. Eya2 overexpression induced A172 cell proliferation and invasion, while the knockdown of Eya2 using siRNA decreased the proliferation and invasion of U251 cells. In addition, we found that transfection with the Eya2 expression plasmid facilitated cell cycle progression, and that the knockdown of Eya2 inhibited cell cycle progression, accompanied by a change in the expression of cell cycle-related proteins, including cyclin D1 and cyclin E. Eya2 also positively regulated extracellular signal-regulated kinase (ERK) activity and matrix metalloproteinase (MMP)9 expression. The blockade of ERK signaling using an inhibitor abolished the effects of Eya2 on A172 cell invasion and MMP9 production. In addition, we found that there was a positive correlation between Eya2 and Six1 in the astrocytoma cell lines. Immunoprecipitation revealed that Eya2 interacted with Six1 protein in the U251 cell line, which exhibited a high expression of both proteins. Eya2 failed to upregulate MMP expression in the A172 cells in which Six1 was silenced. On the whole, our data indicate that Eya2 may serve as a potential oncoprotein in human astrocytoma. Eya2 regulates astrocytoma cell proliferation and invasion, possibly through the regulation of ERK signaling.


Subject(s)
Astrocytoma/genetics , Astrocytoma/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression , Intracellular Signaling Peptides and Proteins/genetics , Matrix Metalloproteinase 9/metabolism , Nuclear Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Signal Transduction , Adult , Aged , Astrocytoma/pathology , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Humans , Immunohistochemistry , Middle Aged , Neoplasm Grading , Protein Binding
18.
Plant Physiol Biochem ; 112: 346-361, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28131063

ABSTRACT

Plants use resistance (R) proteins to detect pathogen effector proteins and activate their innate immune response against the pathogen. The majority of these proteins contain an NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain along with a leucine-rich repeat (LRR), and some also bear a toll interleukin 1 receptor (TIR) domain. In this study, we characterized a gene encoding a TIR-NB-ARC-LRR R protein (VpTNL1) (GenBank accession number KX649890) from wild Chinese grapevine Vitis pseudoreticulata accession "Baihe-35-1", which was identified previously from a transcriptomic analysis of leaves inoculated with powdery mildew (PM; Erysiphe necator (Schw.)). The VpTNL1 transcript was found to be highly induced in V. pseudoreticulata following inoculation with E. necator, as well as treatment with salicylic acid (SA). Sequence analysis demonstrated that the deduced amino acid sequence contained a TIR domain at the N-terminus, along with an NB-ARC and four LRRs domains within the C-terminus. Constitutive expression of VpTNL1 in Arabidopsis thaliana resulted in either a wild-type or dwarf phenotype. Intriguingly, the phenotypically normal transgenic lines displayed enhanced resistance to Arabidopsis PM, Golovinomyces cichoracearum, as well as to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Similarly, constitutive expression of VpTNL1 in Nicotiana tabacum was found to confer enhanced resistance to tobacco PM, Erysiphe cichoacearum DC. Subsequent isolation of the VpTNL1 promoter and deletion analysis indicated that TC-rich repeats and TCA elements likely play an important role in its response to E. necator and SA treatment, respectively. Taken together, these results indicate that VpTNL1 contributes to PM resistance in grapevine and provide an interesting gene target for the future amelioration of grape via breeding and/or biotechnology.


Subject(s)
Arabidopsis/microbiology , Ascomycota/physiology , Disease Resistance/genetics , Genes, Plant , Nicotiana/microbiology , Plant Diseases/microbiology , Pseudomonas/physiology , Vitis/genetics , Amino Acid Sequence , Arabidopsis/genetics , Ascomycota/drug effects , Base Sequence , Cloning, Molecular , Disease Resistance/drug effects , Leucine-Rich Repeat Proteins , Phylogeny , Plant Diseases/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Pseudomonas/drug effects , Salicylic Acid/pharmacology , Sequence Alignment , Nicotiana/drug effects , Nicotiana/genetics
19.
Front Plant Sci ; 6: 1087, 2015.
Article in English | MEDLINE | ID: mdl-26697041

ABSTRACT

Plant resistance proteins mediate pathogen recognition and activate innate immune responses to restrict pathogen proliferation. One common feature of these proteins is an NB-ARC domain. In this study, we characterized a gene encoding a protein with an NB-ARC domain from wild Chinese grapevine Vitis pseudoreticulata accession "Baihe-35-1," which was identified in a transcriptome analysis of the leaves following inoculation with Erysiphe necator (Schw.), a causal agent of powdery mildew. Transcript levels of this gene, designated VpCN (GenBank accession number KT265084), increased strongly after challenge of grapevine leaves with E. necator. The deduced amino acid sequence was predicted to contain an NB-ARC domain in the C-terminus and an RxCC-like domain similar to CC domain of Rx protein in the N-terminus. Ectopic expression of VpCN in Arabidopsis thaliana resulted in either a wild-type phenotype or a dwarf phenotype. The phenotypically normal transgenic A. thaliana showed enhance resistance to A. thaliana powdery mildew Golovinomyces cichoracearum, as well as to a virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Moreover, promoter::GUS (ß-glucuronidase) analysis revealed that powdery mildew infection induced the promoter activity of VpCN in grapevine leaves. Finally, a promoter deletion analysis showed that TC rich repeat elements likely play an important role in the response to E. necator infection. Taken together, our results suggest that VpCN contribute to powdery mildew disease resistant in grapevine.

20.
Oncol Lett ; 7(2): 411-414, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24396457

ABSTRACT

Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) was initially identified as a gene amplified and overexpressed in breast carcinoma. The present study investigated the expression and anti-apoptotic function of TRAF4 in human breast cancer MCF-7 cells. TRAF4 was found to be localized in the cytoplasm and nuclei of MCF-7 cells by immunofluorescence staining and western blotting. The expression of TRAF4 in normal MCF-10A breast cells was found to be lower than in MCF-7 and MDA-MB-231 breast cancer cells. Following TNF-α treatment, TRAF4 depletion by siRNA in the MCF-7 cells was observed to suppress cell proliferation and the nuclear expression of nuclear factor κB was significantly reduced. The percentage of early apoptotic cells in the MCF-7 cells was augmented upon TRAF4-knockdown, and an increase in G1 phase cells and a decrease in S phase cells was detected. These results indicate that TRAF4 has anti-apoptotic effects on apoptosis induced by TNF-α in MCF-7 cells.

SELECTION OF CITATIONS
SEARCH DETAIL