Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters

Publication year range
1.
Nature ; 581(7807): 164-170, 2020 05.
Article in English | MEDLINE | ID: mdl-32405018

ABSTRACT

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)1 is used for long-range three-dimensional distance and velocimetry in autonomous driving2,3. FMCW lidar maps distance to frequency4,5 using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar6,7 and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped8 and highly coherent5 laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb9. By fast chirping of the pump laser in the soliton existence range10 of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays11 based on nanophotonic gratings12, provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.

2.
Nature ; 583(7816): 385-390, 2020 07.
Article in English | MEDLINE | ID: mdl-32669694

ABSTRACT

High-speed actuation of laser frequency1 is critical in applications using lasers and frequency combs2,3, and is a prerequisite for phase locking, frequency stabilization and stability transfer among optical carriers. For example, high-bandwidth feedback control of frequency combs is used in optical-frequency synthesis4, frequency division5 and optical clocks6. Soliton microcombs7,8 have emerged as chip-scale frequency comb sources, and have been used in system-level demonstrations9,10. Yet integrated microcombs using thermal heaters have limited actuation bandwidths11,12 of up to 10 kilohertz. Consequently, megahertz-bandwidth actuation and locking of microcombs have only been achieved with off-chip bulk component modulators. Here we demonstrate high-speed soliton microcomb actuation using integrated piezoelectric components13. By monolithically integrating AlN actuators14 on ultralow-loss Si3N4 photonic circuits15, we demonstrate voltage-controlled soliton initiation, tuning and stabilization with megahertz bandwidth. The AlN actuators use 300 nanowatts of power and feature bidirectional tuning, high linearity and low hysteresis. They exhibit a flat actuation response up to 1 megahertz-substantially exceeding bulk piezo tuning bandwidth-that is extendable to higher frequencies by overcoming coupling to acoustic contour modes of the chip. Via synchronous tuning of the laser and the microresonator, we exploit this ability to frequency-shift the optical comb spectrum (that is, to change the comb's carrier-envelope offset frequency) and make excursions beyond the soliton existence range. This enables a massively parallel frequency-modulated engine16,17 for lidar (light detection and ranging), with increased frequency excursion, lower power and elimination of channel distortions resulting from the soliton Raman self-frequency shift. Moreover, by modulating at a rate matching the frequency of high-overtone bulk acoustic resonances18, resonant build-up of bulk acoustic energy allows a 14-fold reduction of the required driving voltage, making it compatible with CMOS (complementary metal-oxide-semiconductor) electronics. Our approach endows soliton microcombs with integrated, ultralow-power and fast actuation, expanding the repertoire of technological applications of microcombs.

3.
Opt Lett ; 48(9): 2309-2312, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37126261

ABSTRACT

Gain-switched semiconductor laser technology provides a simple and low-cost method to generate optical frequency combs. However, the spectral coverage of these compact comb sources has been limited to the near-infrared range. Here, we combine a gain-switched laser comb with a continuous-wave translation laser within a periodically poled lithium niobate microresonator and demonstrate efficient and broadband sum-frequency conversion, spectrally translating the near-infrared comb to the visible domain. The broadband nature of the nonlinear conversion arises from a chirping of the domain inversion grating period along the microresonator circumference. We also validate the coherence of the visible-wavelength comb teeth which underlines the general applicability of this spectral translation approach.

4.
Phys Rev Lett ; 123(25): 253902, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31922800

ABSTRACT

High-order-dispersion-induced dispersive waves emitted by dissipative Kerr solitons are frequently observed in microresonator frequency comb generation. Also known as soliton Cherenkov radiation, this type of dispersive wave plays a critical role in comb spectrum broadening as well as the formation of soliton bound states. Here, we report the experimental observation of symmetry breaking in the group velocity of counterpropagating solitons in a crystalline microresonator. Induced by the polychromatic Cherenkov radiation, soliton bound states are formed, showing different group velocities with different spatiotemporal separations between constituent solitons. By bidirectionally pumping the microresonator with laser fields of equal power and frequency, we demonstrate the degeneracy lifting of repetition rates of the counterpropagating solitons. Our work not only shines new light on the impact of dispersive waves in nonlinear cavities, but also introduces a novel approach to develop compact dual-comb spectrometers.

5.
Phys Rev Lett ; 122(1): 013902, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012679

ABSTRACT

Continuous-wave-driven Kerr nonlinear microresonators give rise to self-organization in terms of dissipative Kerr solitons, which constitute optical frequency combs that can be used to generate low-noise microwave signals. Here, by applying either amplitude or phase modulation to the driving laser we create an intracavity potential trap to discipline the repetition rate of the solitons. We demonstrate that this effect gives rise to a novel spectral purification mechanism of the external microwave signal frequency, leading to reduced phase noise of the output signal. We experimentally observe that the microwave signal generated from disciplined solitons is injection locked by the external drive at long timescales, but exhibits an unexpected suppression of the fast timing jitter. Counterintuitively, this filtering takes place for frequencies that are substantially lower than the cavity decay rate. As a result, while the long timescale stability of the Kerr frequency comb's repetition rate is improved by more than 4 orders of magnitude, the purified microwave signal shows a reduction of the phase noise by 30 dB at offset frequencies above 10 kHz.

6.
Opt Lett ; 43(7): 1415-1418, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29600993

ABSTRACT

We exploit the strong polarization dependence of the thermooptic coefficients in a lithium niobate whispering-gallery-mode resonator to create a self-referenced thermometer. An unprecedented temperature sensitivity of 3.0 GHz/K in the frequency difference between modes of orthogonal polarizations is demonstrated. In order to lock the lasers to the mode resonances, we use a simple intracavity phase modulation approach that provides for superbly low frequency instability. We demonstrate a record room-temperature thermometer detectivity of 40 nK with 1 s of averaging time. Simulations based on the fluctuation-dissipation theorem are performed to calculate the fundamental thermorefractive noise, showing that the detectivity could be improved with reduced laser-locking instabilities.

7.
Opt Lett ; 40(23): 5431-4, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26625018

ABSTRACT

We observe couplings between orthogonally polarized modes in a birefringent whispering-gallery-mode resonator. The modes show strong interactions leading to polarization conversion and avoid mode crossings. We show that a phenomenological model, based on the coupled-mode theory, is in good agreement with the experiments. The device provides an excellent laboratory to perform controllable and tunable mode interactions.

8.
Phys Rev Lett ; 112(16): 160801, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24815630

ABSTRACT

We demonstrate thermometry with a resolution of 80 nK/Hz using an isotropic crystalline whispering-gallery mode resonator based on a dichroic dual-mode technique. We simultaneously excite two modes that have a mode frequency ratio that is very close to two (±0.3 ppm). The wavelength and temperature dependence of the refractive index means that the frequency difference between these modes is an ultrasensitive proxy of the resonator temperature. This approach to temperature sensing automatically suppresses sensitivity to thermal expansion and vibrationally induced changes of the resonator. We also demonstrate active suppression of temperature fluctuations in the resonator by controlling the intensity of the driving laser. The residual temperature fluctuations are shown to be below the limits set by fundamental thermodynamic fluctuations of the resonator material.

9.
Nat Commun ; 13(1): 4764, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35963859

ABSTRACT

Solitons are shape preserving waveforms that are ubiquitous across nonlinear dynamical systems from BEC to hydrodynamics, and fall into two separate classes: bright solitons existing in anomalous group velocity dispersion, and switching waves forming 'dark solitons' in normal dispersion. Bright solitons in particular have been relevant to chip-scale microresonator frequency combs, used in applications across communications, metrology, and spectroscopy. Both have been studied, yet the existence of a structure between this dichotomy has only been theoretically predicted. We report the observation of dissipative structures embodying a hybrid between switching waves and dissipative solitons, existing in the regime of vanishing group velocity dispersion where third-order dispersion is dominant, hence termed as 'zero-dispersion solitons'. They are observed to arise from the interlocking of two modulated switching waves, forming a stable solitary structure consisting of a quantized number of peaks. The switching waves form directly via synchronous pulse-driving of a Si3N4 microresonator. The resulting comb spectrum spans 136 THz or 97% of an octave, further enhanced by higher-order dispersive wave formation. This dissipative structure expands the domain of Kerr cavity physics to the regime near to zero-dispersion and could present a superior alternative to conventional solitons for broadband comb generation.

10.
Sci Adv ; 8(50): eadd8252, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36516262

ABSTRACT

Silicon nitride (Si3N4) is an ever-maturing integrated platform for nonlinear optics but mostly considered for third-order [χ(3)] nonlinear interactions. Recently, second-order [χ(2)] nonlinearity was introduced into Si3N4 via the photogalvanic effect, resulting in the inscription of quasi-phase-matched χ(2) gratings. However, the full potential of the photogalvanic effect in microresonators remains largely unexplored for cascaded effects. Here, we report combined χ(2) and χ(3) nonlinear effects in a normal dispersion Si3N4 microresonator. We demonstrate that the photo-induced χ(2) grating also provides phase-matching for the sum-frequency generation process, enabling the initiation and successive switching of primary combs. In addition, the doubly resonant pump and second-harmonic fields allow for effective third-harmonic generation, where a secondary optically written χ(2) grating is identified. Last, we reach a broadband microcomb state evolved from the sum-frequency-coupled primary comb. These results expand the scope of cascaded effects in microresonators.

11.
Nat Commun ; 13(1): 3522, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35725718

ABSTRACT

Frequency modulated continuous wave laser ranging (FMCW LiDAR) enables distance mapping with simultaneous position and velocity information, is immune to stray light, can achieve long range, operate in the eye-safe region of 1550 nm and achieve high sensitivity. Despite its advantages, it is compounded by the simultaneous requirement of both narrow linewidth low noise lasers that can be precisely chirped. While integrated silicon-based lasers, compatible with wafer scale manufacturing in large volumes at low cost, have experienced major advances and are now employed on a commercial scale in data centers, and impressive progress has led to integrated lasers with (ultra) narrow sub-100 Hz-level intrinsic linewidth based on optical feedback from photonic circuits, these lasers presently lack fast nonthermal tuning, i.e. frequency agility as required for coherent ranging. Here, we demonstrate a hybrid photonic integrated laser that exhibits very narrow intrinsic linewidth of 25 Hz while offering linear, hysteresis-free, and mode-hop-free-tuning beyond 1 GHz with up to megahertz actuation bandwidth constituting 1.6 × 1015 Hz/s tuning speed. Our approach uses foundry-based technologies - ultralow-loss (1 dB/m) Si3N4 photonic microresonators, combined with aluminium nitride (AlN) or lead zirconium titanate (PZT) microelectromechanical systems (MEMS) based stress-optic actuation. Electrically driven low-phase-noise lasing is attained by self-injection locking of an Indium Phosphide (InP) laser chip and only limited by fundamental thermo-refractive noise at mid-range offsets. By utilizing difference-drive and apodization of the photonic chip to suppress mechanical vibrations of the chip, a flat actuation response up to 10 MHz is achieved. We leverage this capability to demonstrate a compact coherent LiDAR engine that can generate up to 800 kHz FMCW triangular optical chirp signals, requiring neither any active linearization nor predistortion compensation, and perform a 10 m optical ranging experiment, with a resolution of 12.5 cm. Our results constitute a photonic integrated laser system for scenarios where high compactness, fast frequency actuation, and high spectral purity are required.

12.
Nat Commun ; 13(1): 1771, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365647

ABSTRACT

The past decade has witnessed major advances in the development and system-level applications of photonic integrated microcombs, that are coherent, broadband optical frequency combs with repetition rates in the millimeter-wave to terahertz domain. Most of these advances are based on harnessing of dissipative Kerr solitons (DKS) in microresonators with anomalous group velocity dispersion (GVD). However, microcombs can also be generated with normal GVD using localized structures that are referred to as dark pulses, switching waves or platicons. Compared with DKS microcombs that require specific designs and fabrication techniques for dispersion engineering, platicon microcombs can be readily built using CMOS-compatible platforms such as thin-film (i.e., thickness below 300 nm) silicon nitride with normal GVD. Here, we use laser self-injection locking to demonstrate a fully integrated platicon microcomb operating at a microwave K-band repetition rate. A distributed feedback (DFB) laser edge-coupled to a Si3N4 chip is self-injection-locked to a high-Q ( > 107) microresonator with high confinement waveguides, and directly excites platicons without sophisticated active control. We demonstrate multi-platicon states and switching, perform optical feedback phase study and characterize the phase noise of the K-band platicon repetition rate and the pump laser. Laser self-injection-locked platicons could facilitate the wide adoption of microcombs as a building block in photonic integrated circuits via commercial foundry service.

13.
Nat Commun ; 12(1): 1425, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33658513

ABSTRACT

Dissipative Kerr soliton generation using self-injection-locked III-V lasers has enabled fully integrated hybrid microcombs that operate in turnkey mode and can access microwave repetition rates. Yet, continuous-wave-driven soliton microcombs exhibit low energy conversion efficiency and high optical power threshold, especially when the repetition frequencies are within the microwave range that is convenient for direct detection with off-the-shelf electronics. Here, by actively switching the bias current of injection-locked III-V semiconductor lasers with switching frequencies in the X-band and K-band microwave ranges, we pulse-pump both crystalline and integrated microresonators with picosecond laser pulses, generating soliton microcombs with stable repetition rates and lowering the required average pumping power by one order of magnitude to a record-setting level of a few milliwatts. In addition, we unveil the critical role of the phase profile of the pumping pulses, and implement phase engineering on the pulsed pumping scheme, which allows for the robust generation and the stable trapping of solitons on intracavity pulse pedestals. Our work leverages the advantages of the gain switching and the pulse pumping techniques, and establishes the merits of combining distinct compact comb platforms that enhance the potential of energy-efficient chipscale microcombs.

14.
Nat Commun ; 12(1): 235, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431830

ABSTRACT

Soliton microcombs constitute chip-scale optical frequency combs, and have the potential to impact a myriad of applications from frequency synthesis and telecommunications to astronomy. The demonstration of soliton formation via self-injection locking of the pump laser to the microresonator has significantly relaxed the requirement on the external driving lasers. Yet to date, the nonlinear dynamics of this process has not been fully understood. Here, we develop an original theoretical model of the laser self-injection locking to a nonlinear microresonator, i.e., nonlinear self-injection locking, and construct state-of-the-art hybrid integrated soliton microcombs with electronically detectable repetition rate of 30 GHz and 35 GHz, consisting of a DFB laser butt-coupled to a silicon nitride microresonator chip. We reveal that the microresonator's Kerr nonlinearity significantly modifies the laser diode behavior and the locking dynamics, forcing laser emission frequency to be red-detuned. A novel technique to study the soliton formation dynamics as well as the repetition rate evolution in real-time uncover non-trivial features of the soliton self-injection locking, including soliton generation at both directions of the diode current sweep. Our findings provide the guidelines to build electrically driven integrated microcomb devices that employ full control of the rich dynamics of laser self-injection locking, key for future deployment of microcombs for system applications.

15.
Science ; 373(6550): 99-103, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34210884

ABSTRACT

Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor-compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.

16.
Sci Adv ; 6(39)2020 Sep.
Article in English | MEDLINE | ID: mdl-32978157

ABSTRACT

With optical spectral marks equally spaced by a frequency in the microwave or the radio frequency domain, optical frequency combs have been used not only to synthesize optical frequencies from microwave references but also to generate ultralow-noise microwaves via optical frequency division. Here, we combine two compact frequency combs, namely, a soliton microcomb and a semiconductor gain-switched comb, to demonstrate low-noise microwave generation based on a novel frequency division technique. Using a semiconductor laser that is driven by a sinusoidal current and injection-locked to microresonator solitons, our scheme transfers the spectral purity of a dissipative soliton oscillator into the subharmonic frequencies of the microcomb repetition rate. In addition, the gain-switched comb provides dense optical spectral emissions that divide the line spacing of the soliton microcomb. With the potential to be fully integrated, the merger of the two chipscale devices may profoundly facilitate the wide application of frequency comb technology.

17.
Nat Commun ; 11(1): 2402, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32409631

ABSTRACT

Optical soliton molecules are bound states of solitons that arise from the balance between attractive and repulsive effects. Having been observed in systems ranging from optical fibres to mode-locked lasers, they provide insights into the fundamental interactions between solitons and the underlying dynamics of the nonlinear systems. Here, we enter the multistability regime of a Kerr microresonator to generate superpositions of distinct soliton states that are pumped at the same optical resonance, and report the discovery of heteronuclear dissipative Kerr soliton molecules. Ultrafast electrooptical sampling reveals the tightly short-range bound nature of such soliton molecules, despite comprising cavity solitons of dissimilar amplitudes, durations and carrier frequencies. Besides the significance they hold in resolving soliton dynamics in complex nonlinear systems, such heteronuclear soliton molecules yield coherent frequency combs whose unusual mode structure may find applications in metrology and spectroscopy.

18.
Temperature (Austin) ; 2(1): 36-7, 2015.
Article in English | MEDLINE | ID: mdl-27226990

ABSTRACT

This article demonstrates a thermometer based on millimeter-scale crystalline disk optical-resonator. By measuring the relative speed difference between 2 colors of light that travel inside the disk, the temperature changes of the disk was measured with a precision of 30 billionths of a degree.

SELECTION OF CITATIONS
SEARCH DETAIL