Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
PLoS Genet ; 14(10): e1007688, 2018 10.
Article in English | MEDLINE | ID: mdl-30325918

ABSTRACT

Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, Ras mutations alone are insufficient for tumorigenesis, therefore it is paramount to identify cooperating cancer-relevant signaling pathways. We devised an in vivo near genome-wide, functional screen in Drosophila and discovered multiple novel, evolutionarily-conserved pathways controlling Ras-driven epithelial tumorigenesis. Human gene orthologs of the fly hits were significantly downregulated in thousands of primary tumors, revealing novel prognostic markers for human epithelial tumors. Of the top 100 candidate tumor suppressor genes, 80 were validated in secondary Drosophila assays, identifying many known cancer genes and multiple novel candidate genes that cooperate with Ras-driven tumorigenesis. Low expression of the confirmed hits significantly correlated with the KRASG12 mutation status and poor prognosis in pancreatic cancer. Among the novel top 80 candidate cancer genes, we mechanistically characterized the function of the top hit, the Tetraspanin family member Tsp29Fb, revealing that Tsp29Fb regulates EGFR signaling, epithelial architecture and restrains tumor growth and invasion. Our functional Drosophila screen uncovers multiple novel and evolutionarily conserved epithelial cancer genes, and experimentally confirmed Tsp29Fb as a key regulator of EGFR/Ras induced epithelial tumor growth and invasion.


Subject(s)
Drosophila Proteins/genetics , IMP Dehydrogenase/genetics , Neoplasms/genetics , Tetraspanin 29/genetics , Animals , Animals, Genetically Modified , Carcinogenesis/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Genes, ras , Genetic Testing/methods , Humans , IMP Dehydrogenase/metabolism , Male , Mice , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes , Signal Transduction , Tetraspanin 29/metabolism , Tumor Suppressor Proteins/genetics
2.
Bioinformatics ; 35(17): 3140-3142, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30657871

ABSTRACT

SUMMARY: Ordino is a web-based analysis tool for cancer genomics that allows users to flexibly rank, filter and explore genes, cell lines and tissue samples based on pre-loaded data, including The Cancer Genome Atlas, the Cancer Cell Line Encyclopedia and manually uploaded information. Interactive tabular data visualization that facilitates the user-driven prioritization process forms a core component of Ordino. Detail views of selected items complement the exploration. Findings can be stored, shared and reproduced via the integrated session management. AVAILABILITY AND IMPLEMENTATION: Ordino is publicly available at https://ordino.caleydoapp.org. The source code is released at https://github.com/Caleydo/ordino under the Mozilla Public License 2.0. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Neoplasms , Cell Line, Tumor , Genome , Humans , Software
3.
J Pharmacol Exp Ther ; 352(3): 579-89, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25576074

ABSTRACT

Polo-like kinase 1 (Plk1), a member of the Polo-like kinase family of serine/threonine kinases, is a key regulator of multiple steps in mitosis. Here we report on the pharmacological profile of volasertib, a potent and selective Plk inhibitor, in multiple preclinical models of acute myeloid leukemia (AML) including established cell lines, bone marrow samples from AML patients in short-term culture, and subcutaneous as well as disseminated in vivo models in immune-deficient mice. Our results indicate that volasertib is highly efficacious as a single agent and in combination with established and emerging AML drugs, including the antimetabolite cytarabine, hypomethylating agents (decitabine, azacitidine), and quizartinib, a signal transduction inhibitor targeting FLT3. Collectively, these preclinical data support the use of volasertib as a new therapeutic approach for the treatment of AML patients, and provide a foundation for combination approaches that may further improve and prolong clinical responses.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Pteridines/therapeutic use , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Female , HeLa Cells , Humans , Mice , Mice, Nude , Mice, SCID , Mice, Transgenic , Protein Kinase Inhibitors/pharmacology , Pteridines/pharmacology , Treatment Outcome , Xenograft Model Antitumor Assays/methods , Polo-Like Kinase 1
4.
Mol Cancer Ther ; 20(1): 96-108, 2021 01.
Article in English | MEDLINE | ID: mdl-33037135

ABSTRACT

Activation of TRAILR2 has emerged as an important therapeutic concept in cancer treatment. TRAILR2 agonistic molecules have only had limited clinical success, to date, due either to lack of efficacy or hepatotoxicity. BI 905711 is a novel tetravalent bispecific antibody targeting both TRAILR2 and CDH17 and represents a novel liver-sparing TRAILR2 agonist specifically designed to overcome the disadvantages of previous strategies. Here, we show that BI 905711 effectively triggered apoptosis in a broad panel of CDH17-positive colorectal cancer tumor cells in vitro. Efficient induction of apoptosis was dependent on the presence of CDH17, as exemplified by the greater than 1,000-fold drop in potency in CDH17-negative cells. BI 905711 demonstrated single-agent tumor regressions in CDH17-positive colorectal cancer xenografts, an effect that was further enhanced upon combination with irinotecan. Antitumor efficacy correlated with induction of caspase activation, as measured in both the tumor and plasma. Effective tumor growth inhibition was further demonstrated across a series of different colorectal cancer PDX models. BI 905711 induced apoptosis in both a cis (same cell) as well as trans (adjacent cell) fashion, translating into significant antitumor activity even in xenograft models with heterogeneous CDH17 expression. In summary, we demonstrate that BI 905711 has potent and selective antitumor activity in CDH17-positive colorectal cancer models both in vitro and in vivo. The high prevalence of over 95% CDH17-positive tumors in patients with colorectal cancer, the molecule preclinical efficacy together with its potential for a favorable safety profile, support the ongoing BI 905711 phase I trial in colorectal cancer and additional CDH17-positive cancer types (NCT04137289).


Subject(s)
Antibodies, Bispecific/pharmacology , Apoptosis , Cadherins/metabolism , Colorectal Neoplasms/pathology , Liver/pathology , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Xenograft Model Antitumor Assays , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Humans , Liver/drug effects , Mice , Neoplasm Metastasis , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Remission Induction
5.
Nat Genet ; 53(12): 1664-1672, 2021 12.
Article in English | MEDLINE | ID: mdl-34857952

ABSTRACT

Although single-gene perturbation screens have revealed a number of new targets, vulnerabilities specific to frequently altered drivers have not been uncovered. An important question is whether the compensatory relationship between functionally redundant genes masks potential therapeutic targets in single-gene perturbation studies. To identify digenic dependencies, we developed a CRISPR paralog targeting library to investigate the viability effects of disrupting 3,284 genes, 5,065 paralog pairs and 815 paralog families. We identified that dual inactivation of DUSP4 and DUSP6 selectively impairs growth in NRAS and BRAF mutant cells through the hyperactivation of MAPK signaling. Furthermore, cells resistant to MAPK pathway therapeutics become cross-sensitized to DUSP4 and DUSP6 perturbations such that the mechanisms of resistance to the inhibitors reinforce this mechanism of vulnerability. Together, multigene perturbation technologies unveil previously unrecognized digenic vulnerabilities that may be leveraged as new therapeutic targets in cancer.


Subject(s)
Dual Specificity Phosphatase 6/genetics , Dual-Specificity Phosphatases/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Phosphatases/genetics , Neoplasms/genetics , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Enzyme Activation , GTP Phosphohydrolases/genetics , Gene Knockout Techniques , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Membrane Proteins/genetics , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/therapy , Proto-Oncogene Proteins B-raf/genetics
6.
Metallomics ; 12(12): 2121-2133, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33295928

ABSTRACT

Organometallic metal(arene) anticancer agents were believed to confer low selectivity for potential cellular targets. However, the ruthenium(arene) pyridinecarbothioamide (plecstatin-1) showed target selectivity for plectin, a scaffold protein and cytolinker. We employed a three-dimensional cancer spheroid model and showed that plecstatin-1 limited spheroid growth, induced changes in the morphology and in the architecture of tumour spheroids by disrupting the cytoskeletal organization. Additionally, we demonstrated that plecstatin-1 induced oxidative stress, followed by the induction of an immunogenic cell death signature through phosphorylation of eIF2α, exposure of calreticulin, HSP90 and HSP70 on the cell membrane and secretion of ATP followed by release of high mobility group box-1.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Immunogenic Cell Death/drug effects , Ruthenium/pharmacology , Antineoplastic Agents/chemistry , Colorectal Neoplasms/pathology , HCT116 Cells , HT29 Cells , Humans , Ruthenium/chemistry , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Thioamides/chemistry , Thioamides/pharmacology , Tumor Cells, Cultured
7.
Oncotarget ; 11(14): 1257-1272, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32292575

ABSTRACT

SYK has been reported to possess both tumour promotor and repressor activities and deletion has been linked to a pro-proliferative / pro-invasive phenotype in breast tumours. It is unclear whether this is a consequence of protein deletion or loss of kinase activity. The SYK inhibitor, BI 1002494, caused no increase in proliferation in breast cancer cells or primary mammary epithelial cells in 2D or 3D cultures, nor changes in proliferation (CD1/2, CDK4, PCNA, Ki67) or invadopodia markers (MMP14, PARP, phospho-vimentin Ser56). BI 1002494 did not alter SYK protein expression. There was no change in phenotype observed in 3D cultures after addition of BI 1002494. Thirteen weeks of treatment with BI 1002494 resulted in no ductal branching or cellular proliferation in the mammary glands of mice. An in silico genetic analysis in breast tumour samples revealed no evidence that SYK has a typical tumour suppressor gene profile such as focal deletion, inactivating mutations or lower expression levels. Furthermore, SYK mutations were not associated with reduction in survival and disease-free period in breast cancer patients. In conclusion, small molecule inhibition of the kinase function of SYK does not contribute to a typical tumour suppressor profile.

8.
Metallomics ; 11(6): 1044-1048, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30942231

ABSTRACT

The ruthenium complex sodium trans-[tetrachloridobis(1H-indazole)ruthenate(iii)] (KP1339/IT-139) showed preclinical activity in a variety of in vivo tumor models including a highly predictive colon cancer model. The compound has entered clinical trials, where patients experienced disease stabilization accompanied by mild side effects. KP1339, a GRP78 inhibitor, disrupts endoplasmic reticulum (ER) homeostasis leading to cell death. The PERK/eIF2α-branch of the ER plays an essential role in the cascade of events triggering immunogenic cell death (ICD). ICD makes dying cancer cells 'visible' to the immune system, initiating a prolonged immune response against the tumor. As some metal-based chemotherapeutics such as oxaliplatin are able to induce ICD, we investigate whether KP1339 could also trigger induction of the ICD signature. For this, we employ a three-dimensional colon cancer spheroid model and show for the first time that the treatment with KP1339, a ruthenium-based complex, triggers an ICD signature hallmarked by phosphorylation of PERK and eIF2α, exposure of calreticulin on the cell membrane, release of high mobility group box 1 and secretion of ATP.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Immunogenic Cell Death/drug effects , Organometallic Compounds/pharmacology , Ruthenium/pharmacology , Colorectal Neoplasms/pathology , Endoplasmic Reticulum Chaperone BiP , HCT116 Cells , Humans , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology
9.
Elife ; 82019 03 25.
Article in English | MEDLINE | ID: mdl-30910006

ABSTRACT

Targeted cancer therapy is based on exploiting selective dependencies of tumor cells. By leveraging recent functional screening data of cancer cell lines we identify Werner syndrome helicase (WRN) as a novel specific vulnerability of microsatellite instability-high (MSI-H) cancer cells. MSI, caused by defective mismatch repair (MMR), occurs frequently in colorectal, endometrial and gastric cancers. We demonstrate that WRN inactivation selectively impairs the viability of MSI-H but not microsatellite stable (MSS) colorectal and endometrial cancer cell lines. In MSI-H cells, WRN loss results in severe genome integrity defects. ATP-binding deficient variants of WRN fail to rescue the viability phenotype of WRN-depleted MSI-H cancer cells. Reconstitution and depletion studies indicate that WRN dependence is not attributable to acute loss of MMR gene function but might arise during sustained MMR-deficiency. Our study suggests that pharmacological inhibition of WRN helicase function represents an opportunity to develop a novel targeted therapy for MSI-H cancers.


Subject(s)
Microsatellite Instability , Neoplasms/therapy , Werner Syndrome Helicase/antagonists & inhibitors , Cell Line, Tumor , Cell Survival , DNA Mismatch Repair , Humans , Models, Theoretical , Werner Syndrome Helicase/genetics
10.
Int J Cancer ; 122(9): 2008-16, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18183596

ABSTRACT

Emerging in vitro and in vivo data underline the crucial role of G-protein-coupled receptors (GPCRs) in tumorigenesis. Here, we report the contribution of hGPR87, a predicted member of the P2Y subfamily of GPCRs, to proliferation and survival of human tumor cell lines. hGPR87 mRNA transcript was found to be preferentially overexpressed in squamous cell carcinomas (SCCs) of different locations and in their lymph node metastases. Up-regulation of both, transcript and protein, was detected in samples of SCC of the lung, cervix, skin and head and neck (pharynx, larynx and epiglottis). In addition to the expression of hGPR87 in tumors which originate from stratified epithelia, we identified other hGPR87-positive tumor types including subsets of large cell and adenocarcinomas of the lung and transitional cell carcinomas of the urinary bladder. Loss of function studies using siRNA in human cancer cell lines lead to antiproliferative effects and induction of apoptosis. Like other known P2Y receptors, hGPR87 was found to be mainly located on the cell surface. The overexpression of hGPR87 preferentially in SCCs together with our functional data suggests a common molecular mechanism for SCC tumorigenesis and may provide a novel intervention site for mechanism-based antitumor therapies.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Neoplasms/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Adenocarcinoma/metabolism , Apoptosis , Carcinoma, Large Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Transitional Cell/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/metabolism , Humans , Immunoblotting , Immunohistochemistry , Lung Neoplasms/metabolism , Male , Neoplasms/pathology , Polymerase Chain Reaction , RNA, Small Interfering/metabolism , Skin Neoplasms/metabolism , Transcription, Genetic , Up-Regulation , Urinary Bladder Neoplasms/metabolism , Uterine Cervical Neoplasms/metabolism
11.
FEBS Lett ; 581(8): 1617-24, 2007 Apr 17.
Article in English | MEDLINE | ID: mdl-17391671

ABSTRACT

Plakophilin 3 (PKP3) belongs to the p120ctn family of armadillo-related proteins predominantly functioning in desmosome formation. Here we report that PKP3 is transcriptionally repressed by the E-cadherin repressor ZEB1 in metastatic cancer cells. ZEB1 physically associates with two conserved E-box elements in the PKP3 promoter and partially represses the activity of corresponding human and mouse PKP3 promoter fragments in reporter gene assays. In human tumours ZEB1 is upregulated in invasive cancer cells at the tumour-host interface, which is accompanied by downregulation of PKP3 expression levels. Hence, the transcriptional repression of PKP3 by ZEB1 contributes to ZEB1-mediated disintegration of intercellular adhesion and epithelial to mesenchymal transition.


Subject(s)
Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Neoplasms/pathology , Plakophilins/genetics , Repressor Proteins/metabolism , Transcription Factors/metabolism , Animals , Base Sequence , Cadherins/metabolism , Disease Progression , Homeodomain Proteins/analysis , Homeodomain Proteins/genetics , Humans , Mice , Neoplasm Invasiveness , Neoplasms/chemistry , Neoplasms/genetics , Plakophilins/analysis , Promoter Regions, Genetic , Repressor Proteins/analysis , Repressor Proteins/genetics , Transcription Factors/analysis , Transcription Factors/genetics , Tumor Cells, Cultured , Zinc Finger E-box-Binding Homeobox 1
12.
Mol Cancer Ther ; 16(10): 2223-2233, 2017 10.
Article in English | MEDLINE | ID: mdl-28729397

ABSTRACT

Clinical studies of pharmacologic agents targeting the insulin-like growth factor (IGF) pathway in unselected cancer patients have so far demonstrated modest efficacy outcomes, with objective responses being rare. As such, the identification of selection biomarkers for enrichment of potential responders represents a high priority for future trials of these agents. Several reports have described high IGF2 expression in a subset of colorectal cancers, with focal IGF2 amplification being responsible for some of these cases. We defined a novel cut-off value for IGF2 overexpression based on differential expression between colorectal tumors and normal tissue samples. Analysis of two independent colorectal cancer datasets revealed IGF2 to be overexpressed at a frequency of 13% to 22%. An in vitro screen of 34 colorectal cancer cell lines revealed IGF2 expression to significantly correlate with sensitivity to the IGF1R/INSR inhibitor BI 885578. Furthermore, autocrine IGF2 constitutively activated IGF1R and Akt phosphorylation, which was inhibited by BI 885578 treatment. BI 885578 significantly delayed the growth of IGF2-high colorectal cancer xenograft tumors in mice, while combination with a VEGF-A antibody increased efficacy and induced tumor regression. Besides colorectal cancer, IGF2 overexpression was detected in more than 10% of bladder carcinoma, hepatocellular carcinoma and non-small cell lung cancer patient samples. Meanwhile, IGF2-high non-colorectal cancer cells lines displayed constitutive IGF1R phosphorylation and were sensitive to BI 885578. Our findings suggest that IGF2 may represent an attractive patient selection biomarker for IGF pathway inhibitors and that combination with VEGF-targeting agents may further improve clinical outcomes. Mol Cancer Ther; 16(10); 2223-33. ©2017 AACR.


Subject(s)
Colorectal Neoplasms/drug therapy , Insulin-Like Growth Factor II/antagonists & inhibitors , Receptors, Somatomedin/antagonists & inhibitors , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Insulin-Like Growth Factor II/genetics , Mice , Pyrazoles/administration & dosage , Quinazolines/administration & dosage , Receptor, IGF Type 1 , Receptors, Somatomedin/genetics , Vascular Endothelial Growth Factor A/genetics , Xenograft Model Antitumor Assays
13.
PLoS One ; 10(4): e0124283, 2015.
Article in English | MEDLINE | ID: mdl-25919140

ABSTRACT

We established co-cultures of invasive or non-invasive NSCLC cell lines and various types of fibroblasts (FBs) to more precisely characterize the molecular mechanism of tumor-stroma crosstalk in lung cancer. The HGF-MET-ERK1/2-CREB-axis was shown to contribute to the onset of the invasive phenotype of Calu-1 with HGF being secreted by FBs. Differential expression analysis of the respective mono- and co-cultures revealed an upregulation of NFκB-related genes exclusively in co-cultures with Calu-1. Cytokine Array- and ELISA-based characterization of the "cytokine fingerprints" identified CSF2 (GM-CSF), CXCL1, CXCL6, VEGF, IL6, RANTES and IL8 as being specifically upregulated in various co-cultures. Whilst CXCL6 exhibited a strictly FB-type-specific induction profile regardless of the invasiveness of the tumor cell line, CSF2 was only induced in co-cultures of invasive cell lines regardless of the partnered FB type. These cultures revealed a clear link between the induction of CSF2 and the EMT signature of the cancer cell line. The canonical NFκB signaling in FBs, but not in tumor cells, was shown to be responsible for the induced and constitutive CSF2 expression. In addition to CSF2, cytokine IL6, IL8 and IL1B, and chemokine CXCL1 and CXCL6 transcripts were also shown to be increased in co-cultured FBs. In contrast, their induction was not strictly dependent on the invasiveness of the co-cultured tumor cell. In a multi-reporter assay, additional signaling pathways (AP-1, HIF1-α, KLF4, SP-1 and ELK-1) were found to be induced in FBs co-cultured with Calu-1. Most importantly, no difference was observed in the level of inducibility of these six signaling pathways with regard to the type of FBs used. Finally, upon tumor fibroblast interaction the massive induction of chemokines such as CXCL1 and CXCL6 in FBs might be responsible for increased recruitment of a monocytic cell line (THP-1) in a transwell assay.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Epithelial-Mesenchymal Transition/genetics , Fibroblasts/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Lung Neoplasms/pathology , NF-kappa B/metabolism , Animals , Cadherins/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Cell Communication/drug effects , Cell Line, Tumor , Cytokines/metabolism , Dermis/pathology , Epithelial-Mesenchymal Transition/drug effects , Fibroblasts/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Genes, Reporter , Hepatocyte Growth Factor/pharmacology , Humans , Inflammation/pathology , Kruppel-Like Factor 4 , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplasm Invasiveness , Phenotype , Proto-Oncogene Proteins c-met/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Signal Transduction/drug effects , Signal Transduction/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Stromal Cells/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL