Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Proc Natl Acad Sci U S A ; 119(42): e2213744119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215509

ABSTRACT

Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.


Subject(s)
Nitrosamines , Pancreatitis , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Acute Disease , Animals , Carcinogens , Ceruletide/toxicity , Cytokines , Disintegrins , Endopeptidases , Fibrosis , Interleukin-6/genetics , Interleukin-6/metabolism , Ketones , Mice , Nicotine , Pancreatitis/drug therapy , Pancreatitis/genetics , Peptide Hydrolases , Tumor Necrosis Factor-alpha/metabolism
2.
Proc Natl Acad Sci U S A ; 119(36): e2201494119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037355

ABSTRACT

Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1ß but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1ß and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.


Subject(s)
DNA-Binding Proteins , Immunity, Innate , Interleukin-1beta , Interleukin-6 , Pulmonary Emphysema , Animals , Apoptosis , Caspase 1/metabolism , Cytokine Receptor gp130/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Pulmonary Emphysema/immunology
3.
J Infect Dis ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060822

ABSTRACT

BACKGROUND: Excessive pulmonary inflammation and damage are characteristic features of severe influenza virus infections. LAT8881 is a synthetic, 16 amino acid cyclic peptide form of a naturally occurring C-terminal fragment of human growth hormone with therapeutic efficacy against influenza. Shorter, linear peptides are typically easier to manufacture and formulate for delivery than larger cyclic peptides. A 6 amino acid linear peptide fragment of LAT8881, LAT9997, was investigated as a potential influenza therapy. METHODS: LAT9997 was evaluated for its potential to limit disease in a preclinical mouse model of severe influenza infection. RESULTS: Intranasal treatment of mice with either LAT8881 or LAT9997 from day 1 following influenza infection significantly improved survival outcomes. Initiating LAT9997 treatment at the onset of severe disease, also significantly improved disease severity. Greater disease resistance in LAT9997-treated mice correlated with reduced lung immunopathology, damage markers, vascular leak, and epithelial cell death. Treatment reduced viral loads, cytokines, and neutrophil infiltration in the airways, yet maintained protective alveolar macrophages in a dose-dependent manner. Sequential trimming of N- and C-terminal amino acids from LAT9997 revealed a structure-activity relationship. CONCLUSIONS: These findings provide preclinical evidence that therapeutic LAT9997 treatment limits viral burden and characteristic features of severe influenza, including hyperinflammation and lung damage.

4.
Immunol Cell Biol ; 101(5): 444-457, 2023 05.
Article in English | MEDLINE | ID: mdl-36967659

ABSTRACT

Helicobacter pylori (H. pylori) infection can trigger chronic gastric inflammation perpetuated by overactivation of the innate immune system, leading to a cascade of precancerous lesions culminating in gastric cancer. However, key regulators of innate immunity that promote H. pylori-induced gastric pathology remain ill-defined. The innate immune cytosolic DNA sensor absent in melanoma 2 (AIM2) contributes to the pathogenesis of numerous autoimmune and chronic inflammatory diseases, as well as cancers including gastric cancer. We therefore investigated whether AIM2 contributed to the pathogenesis of Helicobacter-induced gastric disease. Here, we reveal that AIM2 messenger RNA and protein expression levels are elevated in H. pylori-positive versus H. pylori-negative human gastric biopsies. Similarly, chronic Helicobacter felis infection in wild-type mice augmented Aim2 gene expression levels compared with uninfected controls. Notably, gastric inflammation and hyperplasia were less severe in H. felis-infected Aim2-/- versus wild-type mice, evidenced by reductions in gastric immune cell infiltrates, mucosal thickness and proinflammatory cytokine and chemokine release. In addition, H. felis-driven proliferation and apoptosis in both gastric epithelial and immune cells were largely attenuated in Aim2-/- stomachs. These observations in Aim2-/- mouse stomachs correlated with decreased levels of inflammasome activity (caspase-1 cleavage) and the mature inflammasome effector cytokine, interleukin-1ß. Taken together, this work uncovers a pathogenic role for the AIM2 inflammasome in Helicobacter-induced gastric disease, and furthers our understanding of the host immune response to a common pathogen and the complex and varying roles of AIM2 at different stages of cancerous and precancerous gastric disease.


Subject(s)
Felis , Helicobacter , Precancerous Conditions , Stomach Neoplasms , Animals , Humans , Mice , Cytokines/metabolism , DNA-Binding Proteins/metabolism , Felis/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Helicobacter/metabolism , Inflammasomes/metabolism , Inflammation/pathology , Precancerous Conditions/pathology
5.
Gut ; 71(8): 1515-1531, 2022 08.
Article in English | MEDLINE | ID: mdl-34489308

ABSTRACT

OBJECTIVE: The absent in melanoma 2 (AIM2) cytosolic pattern recognition receptor and DNA sensor promotes the pathogenesis of autoimmune and chronic inflammatory diseases via caspase-1-containing inflammasome complexes. However, the role of AIM2 in cancer is ill-defined. DESIGN: The expression of AIM2 and its clinical significance was assessed in human gastric cancer (GC) patient cohorts. Genetic or therapeutic manipulation of AIM2 expression and activity was performed in the genetically engineered gp130 F/F spontaneous GC mouse model, as well as human GC cell line xenografts. The biological role and mechanism of action of AIM2 in gastric tumourigenesis, including its involvement in inflammasome activity and functional interaction with microtubule-associated end-binding protein 1 (EB1), was determined in vitro and in vivo. RESULTS: AIM2 expression is upregulated by interleukin-11 cytokine-mediated activation of the oncogenic latent transcription factor STAT3 in the tumour epithelium of GC mouse models and patients with GC. Genetic and therapeutic targeting of AIM2 in gp130 F/F mice suppressed tumourigenesis. Conversely, AIM2 overexpression augmented the tumour load of human GC cell line xenografts. The protumourigenic function of AIM2 was independent of inflammasome activity and inflammation. Rather, in vivo and in vitro AIM2 physically interacted with EB1 to promote epithelial cell migration and tumourigenesis. Furthermore, upregulated expression of AIM2 and EB1 in the tumour epithelium of patients with GC was independently associated with poor patient survival. CONCLUSION: AIM2 can play a driver role in epithelial carcinogenesis by linking cytokine-STAT3 signalling, innate immunity and epithelial cell migration, independent of inflammasome activation.


Subject(s)
Melanoma , Stomach Neoplasms , Animals , Carcinogenesis/genetics , Cell Movement/genetics , Cytokine Receptor gp130/metabolism , DNA , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Immunity, Innate/genetics , Inflammasomes/genetics , Inflammasomes/metabolism , Mice , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/pathology , Up-Regulation
6.
Am J Pathol ; 190(6): 1256-1270, 2020 06.
Article in English | MEDLINE | ID: mdl-32201262

ABSTRACT

Gastric cancer is associated with chronic inflammation (gastritis) triggered by persistent Helicobacter pylori (H. pylori) infection. Elevated tyrosine phosphorylation of the latent transcription factor STAT3 is a feature of gastric cancer, including H. pylori-infected tissues, and aligns with nuclear transcriptional activity. However, the transcriptional role of STAT3 serine phosphorylation, which promotes STAT3-driven mitochondrial activities, is unclear. Here, by coupling serine-phosphorylated (pS)-STAT3-deficient Stat3SA/SA mice with chronic H. felis infection, which mimics human H. pylori infection in mice, we reveal a key role for pS-STAT3 in promoting Helicobacter-induced gastric pathology. Immunohistochemical staining for infiltrating immune cells and expression analyses of inflammatory genes revealed that gastritis was markedly suppressed in infected Stat3SA/SA mice compared with wild-type mice. Stomach weight and gastric mucosal thickness were also reduced in infected Stat3SA/SA mice, which was associated with reduced proliferative potential of infected Stat3SA/SA gastric mucosa. The suppressed H. felis-induced gastric phenotype of Stat3SA/SA mice was phenocopied upon genetic ablation of signaling by the cytokine IL-11, which promotes gastric tumorigenesis via STAT3. pS-STAT3 dependency by Helicobacter coincided with transcriptional activity on STAT3-regulated genes, rather than mitochondrial and metabolic genes. In the gastric mucosa of mice and patients with gastritis, pS-STAT3 was constitutively expressed irrespective of Helicobacter infection. Collectively, these findings suggest an obligate requirement for IL-11 signaling via constitutive pS-STAT3 in Helicobacter-induced gastric carcinogenesis.


Subject(s)
Gastric Mucosa/metabolism , Gastritis/metabolism , Helicobacter Infections/metabolism , STAT3 Transcription Factor/metabolism , Animals , Gastric Mucosa/pathology , Gastritis/pathology , Helicobacter , Helicobacter Infections/pathology , Humans , Mice , Mitochondria/metabolism , Phosphorylation , Signal Transduction
7.
Int J Cancer ; 144(12): 3056-3069, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30536754

ABSTRACT

Toll-like receptors (TLRs) play critical roles in host defense after recognition of conserved microbial- and host-derived components, and their dysregulation is a common feature of various inflammation-associated cancers, including gastric cancer (GC). Despite the recent recognition that metabolic reprogramming is a hallmark of cancer, the molecular effectors of altered metabolism during tumorigenesis remain unclear. Here, using bioenergetics function assays on human GC cells, we reveal that ligand-induced activation of TLR2, predominantly through TLR1/2 heterodimer, augments both oxidative phosphorylation (OXPHOS) and glycolysis, with a bias toward glycolytic activity. Notably, DNA microarray-based expression profiling of human cancer cells stimulated with TLR2 ligands demonstrated significant enrichment of gene-sets for oncogenic pathways previously implicated in metabolic regulation, including reactive oxygen species (ROS), p53 and Myc. Moreover, the redox gene encoding the manganese-dependent mitochondrial enzyme, superoxide dismutase (SOD)2, was strongly induced at the mRNA and protein levels by multiple signaling pathways downstream of TLR2, namely JAK-STAT3, JNK MAPK and NF-κB. Furthermore, siRNA-mediated suppression of SOD2 ameliorated the TLR2-induced metabolic shift in human GC cancer cells. Importantly, patient-derived tissue microarrays and bioinformatics interrogation of clinical datasets indicated that upregulated expression of TLR2 and SOD2 were significantly correlated in human GC, and the TLR2-SOD2 axis was associated with multiple clinical parameters of advanced stage disease, including distant metastasis, microvascular invasion and stage, as well as poor survival. Collectively, our findings reveal a novel TLR2-SOD2 axis as a potential biomarker for therapy and prognosis in cancer.


Subject(s)
Stomach Neoplasms/metabolism , Superoxide Dismutase/metabolism , Toll-Like Receptor 2/metabolism , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cellular Reprogramming/physiology , Energy Metabolism , Enzyme Induction , Glycolysis , Humans , Immunohistochemistry , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism , Signal Transduction , Stomach Neoplasms/pathology , Tissue Array Analysis , Up-Regulation
8.
Int J Cancer ; 143(1): 167-178, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29417587

ABSTRACT

Tertiary lymphoid structures (TLSs) display phenotypic and functional characteristics of secondary lymphoid organs, and often develop in tissues affected by chronic inflammation, as well as in certain inflammation-associated cancers where they are prognostic of improved patient survival. However, the mechanisms that govern the development of tumour-associated TLSs remain ill-defined. Here, we observed tumour-associated TLSs in a preclinical mouse model (gp130F/F ) of gastric cancer, where tumourigenesis is dependent on hyperactive STAT3 signalling through the common IL-6 family signalling receptor, gp130. Gastric tumourigenesis was associated with the development of B and T cell-rich submucosal lymphoid aggregates, containing CD21+ cellular networks and high endothelial venules. Temporally, TLS formation coincided with the development of gastric adenomas and induction of homeostatic chemokines including Cxcl13, Ccl19 and Ccl21. Reflecting the requirement of gp130-driven STAT3 signalling for gastric tumourigenesis, submucosal TLS development was also STAT3-dependent, but independent of the cytokine IL-17 which has been linked with lymphoid neogenesis in chronic inflammation and autoimmunity. Interestingly, upregulated lymphoid chemokine expression and TLS formation were also observed in a chronic gastritis model induced by Helicobacter felis infection. Tumour-associated TLSs were also observed in patients with intestinal-type gastric cancer, and a gene signature linked with TLS development in gp130F/F mice was associated with advanced clinical disease, but was not prognostic of patient survival. Collectively, our in vivo data reveal that hyperactive gp130-STAT3 signalling closely links gastric tumourigenesis with lymphoid neogenesis, and while a TLS gene signature was associated with advanced gastric cancer in patients, it did not indicate a favourable prognosis.


Subject(s)
Cytokine Receptor gp130/metabolism , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/metabolism , Tertiary Lymphoid Structures/metabolism , Animals , Chemokines/genetics , Cytokine Receptor gp130/genetics , Disease Models, Animal , Helicobacter Infections/genetics , Helicobacter Infections/immunology , Helicobacter Infections/metabolism , Humans , Mice , Prognosis , STAT3 Transcription Factor/genetics , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Survival Analysis , Tertiary Lymphoid Structures/genetics , Tertiary Lymphoid Structures/immunology
9.
J Cell Biochem ; 117(1): 49-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26060100

ABSTRACT

Activation of cytokine signaling via the leukemia inhibitory factor receptor (LIFR) plays an integral role in hematopoiesis, osteogenesis, and placental development, along with mediating neurotrophic mechanisms. However, the regulatory control of the LIFR gene has remained largely unexplored. Here, we characterize the LIFR gene as a novel target of the RUNX1 transcription factor. The RUNX1 transcription factor is an essential regulator of hematopoiesis and is a frequent target of point mutations and chromosomal alterations in leukemia. RUNX1 regulates hematopoiesis through its control of genes important for hematopoietic cell growth, proliferation, and differentiation, including a number of cytokines and cytokine receptors. LIFR is regulated by two alternate promoters: a placental-specific and a ubiquitously active general promoter. We show that both of these promoters are regulated by RUNX1. However, in myeloid cells LIFR expression is driven solely by the general LIFR promoter with our data indicating that the placental promoter is epigenetically silenced in these cells. While RUNX1 activates the LIFR general promoter, the oncogenic RUNX1-ETO fusion protein generated by the t(8;21) translocation commonly associated with acute myeloid leukemia represses promoter activity. The data presented here establish LIFR as a transcriptional target of RUNX1 and suggest that disruption of RUNX1 activity in myeloid cells may result in altered LIFR signaling in these cells.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Receptors, OSM-LIF/metabolism , Blotting, Western , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Chromatin Immunoprecipitation , Chromosome Aberrations , Core Binding Factor Alpha 2 Subunit/genetics , Humans , Myeloid Cells/metabolism , Point Mutation/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Protein Binding/physiology , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Receptors, OSM-LIF/genetics
10.
Prostate ; 75(7): 723-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25662931

ABSTRACT

BACKGROUND: Integrin alpha2 beta1 (α2 ß1 ) plays an integral role in tumour cell invasion, metastasis and angiogenesis, and altered expression of the receptor has been linked to tumour prognosis in several solid tumours. However, the relationship is complex, with both increased and decreased expression associated with different stages of tumour metastases in several tumour types. The ITGA2 gene, which codes for the α2 subunit, was examined to investigate whether a large CpG island associated with its promoter region is involved in the differential expression of ITGA2 observed in prostate cancer. METHODS: Bisulphite sequencing of the ITGA2 promoter was used to assess methylation in formalin-fixed paraffin-embedded (FFPE) prostate tumour specimens and prostate cancer cell lines, PC3, 22Rv1 and LNCaP. Changes in ITGA2 mRNA expression were measured using quantitative PCR. ITGA2 functionality was interrogated using cell migration scratch assays and siRNA knockdown experiments. RESULTS: Bisulphite sequencing revealed strikingly decreased methylation at key CpG sites within the promoter of tumour samples, when compared with normal prostate tissue. Altered methylation of this CpG island is also associated with differences in expression in the non-invasive LNCaP, and the highly metastatic PC3 and 22Rv1 prostate cancer cell lines. Further bisulphite sequencing confirmed that selected CpGs were highly methylated in LNCaP cells, whilst only low levels of methylation were observed in PC3 and 22Rv1 cells, correlating with ITGA2 transcript levels. Examination of the increased expression of ITGA2 was shown to influence migratory potential via scratch assay in PC3, 22Rv1 and LNCaP cells, and was confirmed by siRNA knockdown experiments. CONCLUSIONS: Taken together, our data supports the assertion that epigenetic modification of the ITGA2 promoter is a mechanism by which ITGA2 expression is regulated.


Subject(s)
Integrin alpha5beta1/genetics , Prostatic Neoplasms/genetics , Aged , Aged, 80 and over , Cell Line, Tumor , Cell Movement/genetics , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Integrin alpha5beta1/biosynthesis , Male , Middle Aged , Promoter Regions, Genetic , Prostatic Neoplasms/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
11.
Blood ; 120(15): 3019-29, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22932803

ABSTRACT

Immunomodulators are effective in controlling hematologic malignancy by initiating or reactivating host antitumor immunity to otherwise poorly immunogenic and immune suppressive cancers. We aimed to boost antitumor immunity in B-cell lymphoma by developing a tumor cell vaccine incorporating α-galactosylceramide (α-GalCer) that targets the immune adjuvant properties of NKT cells. In the Eµ-myc transgenic mouse model, single therapeutic vaccination of irradiated, α-GalCer-loaded autologous tumor cells was sufficient to significantly inhibit growth of established tumors and prolong survival. Vaccine-induced antilymphoma immunity required NKT cells, NK cells, and CD8 T cells, and early IL-12-dependent production of IFN-γ. CD4 T cells, gamma/delta T cells, and IL-18 were not critical. Vaccine treatment induced a large systemic spike of IFN-γ and transient peripheral expansion of both NKT cells and NK cells, the major sources of IFN-γ. Furthermore, this vaccine approach was assessed in several other hematopoietic tumor models and was also therapeutically effective against AML-ETO9a acute myeloid leukemia. Replacing α-GalCer with ß-mannosylceramide resulted in prolonged protection against Eµ-myc lymphoma. Overall, our results demonstrate a potent immune adjuvant effect of NKT cell ligands in therapeutic anticancer vaccination against oncogene-driven lymphomas, and this work supports clinical investigation of NKT cell-based immunotherapy in patients with hematologic malignancies.


Subject(s)
Cancer Vaccines/therapeutic use , Galactosylceramides/administration & dosage , Genes, myc/genetics , Immunotherapy , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/prevention & control , Natural Killer T-Cells/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Cytotoxicity, Immunologic/immunology , Female , Flow Cytometry , Genes, T-Cell Receptor delta/physiology , Humans , Interferon-gamma/metabolism , Interleukin-12/physiology , Interleukin-18/physiology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Lymphoma, B-Cell/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Natural Killer T-Cells/metabolism , Natural Killer T-Cells/pathology , Vaccination
12.
Proc Natl Acad Sci U S A ; 108(10): 4141-6, 2011 Mar 08.
Article in English | MEDLINE | ID: mdl-21368108

ABSTRACT

Histone deacetylase inhibitors (HDACi) have been successfully used as monotherapies for the treatment of hematological malignancies; however, the single agent effects of HDACi against solid tumors are less robust. Using preclinical models of lymphoma, we have recently demonstrated that HDACi induce tumor cell-specific apoptosis and that this is essential for the therapeutic effects of these agents. Herein, we demonstrate that HDACi can be combined with immune-activating antibodies designed to promote the function of antigen-presenting cells (APCs) and enhance proliferation and survival of cytotoxic T cells (CTL) to stimulate a host antitumor immune response resulting in eradication of established solid tumors. This unique combination therapy was dependent on tumor cell apoptosis mediated by HDACi that stimulated the uptake of dead tumor cells by APCs. Tumor eradication was mediated by CD8(+) CTL that used perforin as the key immune effector molecule. This combination therapy was well tolerated and induced long-term immunological antitumor memory capable of mediating spontaneous tumor eradication upon rechallenge. These studies indicate that the ability of HDACi to mediate subtherapeutic levels of tumor cell apoptosis can be exploited by combining with antibodies that augment host antitumor immune responses to mediate robust and prolonged eradication of solid tumors.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Neoplasms, Experimental/therapy , Animals , Antigen-Presenting Cells/immunology , Combined Modality Therapy , Mice , Neoplasms, Experimental/drug therapy , T-Lymphocytes, Cytotoxic/immunology , Vorinostat
13.
Clin Transl Immunology ; 12(3): e1443, 2023.
Article in English | MEDLINE | ID: mdl-36969366

ABSTRACT

Objectives: Novel host-targeted therapeutics could treat severe influenza A virus (IAV) infections, with reduced risk of drug resistance. LAT8881 is a synthetic form of the naturally occurring C-terminal fragment of human growth hormone. Acting independently of the growth hormone receptor, it can reduce inflammation-induced damage and promote tissue repair in an animal model of osteoarthritis. LAT8881 has been assessed in clinical trials for the treatment of obesity and neuropathy and has an excellent safety profile. We investigated the potential for LAT8881, its metabolite LAT9991F and LAT7771 derived from prolactin, a growth hormone structural homologue, to treat severe IAV infection. Methods: LAT8881, LAT9991F and LAT7771 were evaluated for their effects on cell viability and IAV replication in vitro, as well as their potential to limit disease in a preclinical mouse model of severe IAV infection. Results: In vitro LAT8881 treatment enhanced cell viability, particularly in the presence of cytotoxic stress, which was countered by siRNA inhibition of host lanthionine synthetase C-like proteins. Daily intranasal treatment of mice with LAT8881 or LAT9991F, but not LAT7771, from day 1 postinfection significantly improved influenza disease resistance, which was associated with reduced infectious viral loads, reduced pro-inflammatory cytokines and increased abundance of protective alveolar macrophages. LAT8881 treatment in combination with the antiviral oseltamivir phosphate led to more pronounced reduction in markers of disease severity than treatment with either compound alone. Conclusion: These studies provide the first evidence identifying LAT8881 and LAT9991F as novel host-protective therapies that improve survival, limit viral replication, reduce local inflammation and curtail tissue damage during severe IAV infection. Evaluation of LAT8881 and LAT9991F in other infectious and inflammatory conditions of the airways is warranted.

14.
Cell Death Dis ; 14(11): 727, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945599

ABSTRACT

Excessive inflammation and tissue damage during severe influenza A virus (IAV) infection can lead to the development of fatal pulmonary disease. Pyroptosis is a lytic and pro-inflammatory form of cell death executed by the pore-forming protein gasdermin D (GSDMD). In this study, we investigated a potential role for GSDMD in promoting the development of severe IAV disease. IAV infection resulted in cleavage of GSDMD in vivo and in vitro in lung epithelial cells. Mice genetically deficient in GSDMD (Gsdmd-/-) developed less severe IAV disease than wildtype mice and displayed improved survival outcomes. GSDMD deficiency significantly reduced neutrophil infiltration into the airways as well as the levels of pro-inflammatory cytokines TNF, IL-6, MCP-1, and IL-1α and neutrophil-attracting chemokines CXCL1 and CXCL2. In contrast, IL-1ß and IL-18 responses were not largely impacted by GSDMD deficiency. In addition, Gsdmd-/- mice displayed significantly improved influenza disease resistance with reduced viral burden and less severe pulmonary pathology, including decreased epithelial damage and cell death. These findings indicate a major role for GSDMD in promoting damaging inflammation and the development of severe IAV disease.


Subject(s)
Influenza, Human , Intracellular Signaling Peptides and Proteins , Animals , Humans , Mice , Gasdermins , Inflammation , Influenza, Human/genetics , Intracellular Signaling Peptides and Proteins/genetics , Pyroptosis/physiology
15.
Trans R Soc Trop Med Hyg ; 117(6): 403-406, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36625250

ABSTRACT

Chronic hepatitis B (CHB) most commonly occurs following infection in early childhood. Prevalence varies markedly around the globe. Country of birth is therefore a strong predictor of CHB risk in adults. We used country of birth census data to predict CHB risk and carry out geographically targeted screening in East Yorkshire, UK. Despite engaging individuals born in high-prevalence countries with testing, we observed lower than expected prevalence in targeted highest-risk areas, which may indicate barriers to testing for people with undiagnosed CHB. Improved strategies for engagement with high-risk groups will be key for viral hepatitis elimination.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Adult , Humans , Child, Preschool , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/epidemiology , Pilot Projects , Persistent Infection , Prevalence , United Kingdom/epidemiology
16.
Front Oncol ; 12: 830350, 2022.
Article in English | MEDLINE | ID: mdl-35299732

ABSTRACT

Inflammasomes are important multiprotein regulatory complexes of innate immunity and have recently emerged as playing divergent roles in numerous inflammation-associated cancers. Among these include gastric cancer (GC), the third leading cause of cancer-associated death worldwide, and we have previously discovered a pro-tumorigenic role for the key inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC) in the spontaneous genetic gp130 F/F mouse model for GC. However, the identity of the specific pattern recognition receptors (PRRs) that activate tumor-promoting inflammasomes during GC is unknown. Here, we investigated the role of the best-characterized inflammasome-associated PRR, nucleotide-binding domain, and leucine-rich repeat containing receptor, pyrin domain-containing (NLRP) 3, in GC. In gastric tumors of gp130 F/F mice, although NLRP3 expression was elevated at the mRNA (qPCR) and protein (immunohistochemistry) levels, genetic ablation of NLRP3 in gp130 F/F:Nlrp3 -/- mice did not alleviate the development of gastric tumors. Similarly, cellular processes associated with tumorigenesis in the gastric mucosa, namely, proliferation, apoptosis, and inflammation, were comparable between gp130 F/F and gp130 F/F:Nlrp3 -/- mice. Furthermore, inflammasome activation levels, determined by immunoblotting and immunohistochemistry for cleaved Caspase-1, which along with ASC is another integral component of inflammasome complexes, were unchanged in gp130 F/F and gp130 F/F:Nlrp3 -/- gastric tumors. We also observed variable NLRP3 expression levels (mRNA and protein) among independent GC patient cohorts, and NLRP3 was not prognostic for survival outcomes. Taken together, these data suggest that NLRP3 does not play a major role in promoting inflammasome-driven gastric tumorigenesis, and thus pave the way for further investigations to uncover the key inflammasome-associated PRR implicated in GC.

17.
Cell Mol Gastroenterol Hepatol ; 14(3): 567-586, 2022.
Article in English | MEDLINE | ID: mdl-35716851

ABSTRACT

BACKGROUND & AIMS: Gastric cancer (GC) is strongly linked with chronic gastritis after Helicobacter pylori infection. Toll-like receptors (TLRs) are key innate immune pathogenic sensors that mediate chronic inflammatory and oncogenic responses. Here, we investigated the role of TLR9 in the pathogenesis of GC, including Helicobacter infection. METHODS: TLR9 gene expression was profiled in gastric tissues from GC and gastritis patients and from the spontaneous gp130F/F GC mouse model and chronic H felis-infected wild-type (WT) mice. Gastric pathology was compared in gp130F/F and H felis infection models with or without genetic ablation of Tlr9. The impact of Tlr9 targeting on signaling cascades implicated in inflammation and tumorigenesis (eg, nuclear factor kappa B, extracellular signal-related kinase, and mitogen-activated protein kinase) was assessed in vivo. A direct growth-potentiating effect of TLR9 ligand stimulation on human GC cell lines and gp130F/F primary gastric epithelial cells was also evaluated. RESULTS: TLR9 expression was up-regulated in Helicobacter-infected gastric tissues from GC and gastritis patients and gp130F/F and H felis-infected WT mice. Tlr9 ablation suppressed initiation of tumorigenesis in gp130F/F:Tlr9-/- mice by abrogating gastric inflammation and cellular proliferation. Tlr9-/- mice were also protected against H felis-induced gastric inflammation and hyperplasia. The suppressed gastric pathology upon Tlr9 ablation in both mouse models associated with attenuated nuclear factor kappa B and, to a lesser extent, extracellular signal-related kinase, mitogen-activated protein kinase signaling. TLR9 ligand stimulation of human GC cells and gp130F/F GECs augmented their proliferation and viability. CONCLUSIONS: Our data reveal that TLR9 promotes the initiating stages of GC and facilitates Helicobacter-induced gastric inflammation and hyperplasia, thus providing in vivo evidence for TLR9 as a candidate therapeutic target in GC.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Animals , Carcinogenesis/pathology , Cell Proliferation , Cytokine Receptor gp130/metabolism , Gastric Mucosa/pathology , Gastritis/pathology , Helicobacter Infections/metabolism , Helicobacter pylori/metabolism , Humans , Hyperplasia/pathology , Inflammation/pathology , Ligands , Mice , NF-kappa B/metabolism , Stomach Neoplasms/pathology , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
18.
Oncogene ; 41(6): 809-823, 2022 02.
Article in English | MEDLINE | ID: mdl-34857889

ABSTRACT

The oncogenic potential of the latent transcription factor signal transducer and activator of transcription (STAT)3 in many human cancers, including lung cancer, has been largely attributed to its nuclear activity as a tyrosine-phosphorylated (pY705 site) transcription factor. By contrast, an alternate mitochondrial pool of serine phosphorylated (pS727 site) STAT3 has been shown to promote tumourigenesis by regulating metabolic processes, although this has been reported in only a restricted number of mutant RAS-addicted neoplasms. Therefore, the involvement of STAT3 serine phosphorylation in the pathogenesis of most cancer types, including mutant KRAS lung adenocarcinoma (LAC), is unknown. Here, we demonstrate that LAC is suppressed in oncogenic KrasG12D-driven mouse models engineered for pS727-STAT3 deficiency. The proliferative potential of the transformed KrasG12D lung epithelium, and mutant KRAS human LAC cells, was significantly reduced upon pS727-STAT3 deficiency. Notably, we uncover the multifaceted capacity of constitutive pS727-STAT3 to metabolically reprogramme LAC cells towards a hyper-proliferative state by regulating nuclear and mitochondrial (mt) gene transcription, the latter via the mtDNA transcription factor, TFAM. Collectively, our findings reveal an obligate requirement for the transcriptional activity of pS727-STAT3 in mutant KRAS-driven LAC with potential to guide future therapeutic targeting approaches.


Subject(s)
Serine
19.
Oncogene ; 40(41): 6007-6022, 2021 10.
Article in English | MEDLINE | ID: mdl-34400766

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, and is plagued by a paucity of targeted treatment options and tumour resistance to chemotherapeutics. The causal link between chronic inflammation and PDAC suggests that molecular regulators of the immune system promote disease pathogenesis and/or therapeutic resistance, yet their identity is unclear. Here, we couple endoscopic ultrasound-guided fine-needle aspiration, which captures tumour biopsies from all stages, with whole transcriptome profiling of PDAC patient primary tumours to reveal enrichment of the innate immune Toll-like receptor 2 (TLR2) molecular pathway. Augmented TLR2 expression associated with a 4-gene "TLR2 activation" signature, and was prognostic for survival and predictive for gemcitabine-based chemoresistance. Furthermore, antibody-mediated anti-TLR2 therapy suppressed the growth of human PDAC tumour xenografts, independent of a functional immune system. Our results support TLR2-based therapeutic targeting for precision medicine in PDAC, with further clinical utility that TLR2 activation is prognostic and predictive for chemoresponsiveness.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Toll-Like Receptor 2/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Growth Processes/drug effects , Cell Growth Processes/physiology , Cell Line, Tumor , Deoxycytidine/pharmacology , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Molecular Targeted Therapy , Pancreatic Neoplasms/pathology , Prognosis , Survival Analysis , Toll-Like Receptor 2/antagonists & inhibitors , Xenograft Model Antitumor Assays , Gemcitabine
20.
Cancer Res ; 79(20): 5272-5287, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31481496

ABSTRACT

Deregulated activation of the latent oncogenic transcription factor STAT3 in many human epithelial malignancies, including gastric cancer, has invariably been associated with its canonical tyrosine phosphorylation and enhanced transcriptional activity. By contrast, serine phosphorylation (pS) of STAT3 can augment its nuclear transcriptional activity and promote essential mitochondrial functions, yet the role of pS-STAT3 among epithelial cancers is ill-defined. Here, we reveal that genetic ablation of pS-STAT3 in the gp130 F/F spontaneous gastric cancer mouse model and human gastric cancer cell line xenografts abrogated tumor growth that coincided with reduced proliferative potential of the tumor epithelium. Microarray gene expression profiling demonstrated that the suppressed gastric tumorigenesis in pS-STAT3-deficient gp130 F/F mice associated with reduced transcriptional activity of STAT3-regulated gene networks implicated in cell proliferation and migration, inflammation, and angiogenesis, but not mitochondrial function or metabolism. Notably, the protumorigenic activity of pS-STAT3 aligned with its capacity to primarily augment RNA polymerase II-mediated transcriptional elongation, but not initiation, of STAT3 target genes. Furthermore, by using a combinatorial in vitro and in vivo proteomics approach based on the rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) assay, we identified RuvB-like AAA ATPase 1 (RUVBL1/Pontin) and enhancer of rudimentary homolog (ERH) as interacting partners of pS-STAT3 that are pivotal for its transcriptional activity on STAT3 target genes. Collectively, these findings uncover a hitherto unknown transcriptional role and obligate requirement for pS-STAT3 in gastric cancer that could be extrapolated to other STAT3-driven cancers. SIGNIFICANCE: These findings reveal a new transcriptional role and mandatory requirement for constitutive STAT3 serine phosphorylation in gastric cancer.


Subject(s)
Neoplasm Proteins/physiology , RNA Polymerase II/metabolism , STAT3 Transcription Factor/physiology , Stomach Neoplasms/genetics , Transcription, Genetic , Animals , Carcinogenesis , Cell Cycle Proteins/physiology , Cell Line, Tumor , Cells, Cultured , Cytokine Receptor gp130/deficiency , DNA Helicases/physiology , Epithelial Cells , Gastric Mucosa/cytology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Heterografts , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Neoplasm Transplantation , Phosphorylation , Phosphoserine/chemistry , Protein Processing, Post-Translational , Radiation Chimera , Specific Pathogen-Free Organisms , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Transcription Factors/physiology , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL