Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biochemistry ; 62(19): 2878-2892, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37699554

ABSTRACT

Bacteria can use chemical signals to assess their local population density in a process called quorum sensing (QS). Many of these bacteria are common pathogens, including Gram-positive bacteria that utilize agr QS systems regulated by macrocyclic autoinducing peptide (AIP) signals. Listeria monocytogenes, an important foodborne pathogen, uses an agr system to regulate a variety of virulence factors and biofilm formation, yet little is known about the specific roles of agr in Listeria infection and its persistence in various environments. Herein, we report synthetic peptide tools that will enable the study of QS in Listeria. We identified a 6-mer AIP signal in L. monocytogenes supernatants and selected it as a scaffold around which a collection of non-native AIP mimics was designed and synthesized. These peptides were evaluated in cell-based agr reporter assays to generate structure-activity relationships for AIP-based agonism and antagonism in L. monocytogenes. We discovered synthetic agonists with increased potency relative to native AIP and a synthetic antagonist capable of reducing agr activity to basal levels. Notably, the latter peptide was able to reduce biofilm formation by over 90%, a first for a synthetic QS modulator in wild-type L. monocytogenes. The lead agr agonist and antagonist in L. monocytogenes were also capable of antagonizing agr signaling in the related pathogen Staphylococcus aureus, further extending their utility and suggesting different mechanisms of agr activation in these two pathogens. This study represents an important first step in the application of chemical methods to modulate QS and concomitant virulence outcomes in L. monocytogenes.


Subject(s)
Listeria monocytogenes , Quorum Sensing , Peptides/pharmacology , Peptides/chemistry , Staphylococcus aureus/chemistry , Biofilms , Bacterial Proteins/chemistry
2.
Isr J Chem ; 63(5-6)2023 Jun.
Article in English | MEDLINE | ID: mdl-38765792

ABSTRACT

Staphylococcus aureus is a ubiquitous bacterium that has become a major threat to human health due to its extensive toxin production and tremendous capacity for antibiotic resistance (e.g., MRSA "superbug" infections). Amid a worsening antibiotic resistance crisis, new strategies to combat this deadly microbe that remove the selective pressure of traditional approaches are in high demand. S. aureus utilizes an accessory gene regulator (agr) quorum sensing network to monitor its local cellular population and trigger a devastating communal attack, like an invading horde, once a threshold cell density has been reached. The role of the agr system in a range of disease types is still being unraveled. Herein, we discuss the present-day biochemical understanding of agr along with unresolved details, describe its connection to the progression of infection, and review how chemical strategies have been implemented to study and intercept this signaling pathway. This research is illuminating the potential of agr as an anti-virulence target in S. aureus and should inform the study of similar, yet less studied, agr systems in related bacterial pathogens.

3.
Angew Chem Int Ed Engl ; : e202201798, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35334139

ABSTRACT

A synthetic peptide was found to block cell-to-cell signalling, or quorum sensing, in bacteria and be highly bioavailable in mouse tissue. The controlled release of this agent from degradable polymeric microparticles strongly inhibited skin infection in a wound model at levels that far surpassed the potency of the peptide when delivered conventionally.

4.
J Am Chem Soc ; 142(2): 750-761, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31859506

ABSTRACT

We report the solution-phase structures of native signal peptides and related analogs capable of either strongly agonizing or antagonizing the AgrC quorum sensing (QS) receptor in the emerging pathogen Staphylococcus epidermidis. Chronic S. epidermidis infections are often recalcitrant to traditional therapies due to antibiotic resistance and formation of robust biofilms. The accessory gene regulator (agr) QS system plays an important role in biofilm formation in this opportunistic pathogen, and the binding of an autoinducing peptide (AIP) signal to its cognate transmembrane receptor (AgrC) is responsible for controlling agr. Small molecules or peptides capable of modulating this binding event are of significant interest as probes to investigate both the agr system and QS as a potential antivirulence target. We used NMR spectroscopy to characterize the structures of the three native S. epidermidis AIP signals and five non-native analogs with distinct activity profiles in the AgrC-I receptor from S. epidermidis. These studies revealed a suite of structural motifs critical for ligand activity. Interestingly, a unique ß-turn was present in the macrocycles of the two most potent AgrC-I modulators, in both an agonist and an antagonist, which was distinct from the macrocycle conformation in the less-potent AgrC-I modulators and in the native AIP-I itself. This previously unknown ß-turn provides a structural rationale for these ligands' respective biological activity profiles. Development of analogs to reinforce the ß-turn resulted in our first antagonist with subnanomolar potency in AgrC-I, while analogs designed to contain a disrupted ß-turn were dramatically less potent relative to their parent compounds. Collectively, these studies provide new insights into the AIP:AgrC interactions crucial for QS activation in S. epidermidis and advance the understanding of QS at the molecular level.


Subject(s)
Protein Sorting Signals/physiology , Quorum Sensing , Staphylococcus epidermidis/physiology
5.
Planta Med ; 82(9-10): 754-60, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27191583

ABSTRACT

Secondary metabolites from marine organisms are structurally diverse small molecules with high levels of bioactivity, and represent an underutilized resource for modern drug discovery. To facilitate the identification of drug-like marine metabolites, the significant potential of in vivo models of human disease - in particular those suitable for medium-throughput screening and bioassay-guided fractionation - should be explored in future marine biodiscovery efforts. Here, we explore the advantages of Caenorhabditis elegans, Drosophila, and zebrafish bioassays for marine biodiscovery, and review recent progress in using these in vivo models to identify bioactive marine metabolites.


Subject(s)
Aquatic Organisms , Biological Products , Drug Discovery , Animals , Biological Assay/methods , Caenorhabditis elegans , Drosophila , Drug Discovery/methods , Humans , Models, Biological , Zebrafish
6.
Sci Rep ; 13(1): 5192, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997569

ABSTRACT

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by core impairments in social communication as well as restricted, repetitive patterns of behavior and/or interests. Individuals with ASD, which includes about 2% of the US population, have challenges with activities of daily living and suffer from comorbid medical and mental health concerns. There are no drugs indicated for the core impairments of ASD. As such, there is a significant need for the development of new medication strategies for individuals with ASD. This first-in-human placebo-controlled, double-blind, crossover study investigated the safety (primary objective) and efficacy of oral SB-121, a combination of L. reuteri, Sephadex® (dextran microparticles), and maltose administered once daily for 28 days in 15 autistic participants. SB-121 was safe and well tolerated. SB-121-associated directional improvements in adaptive behavior measured by Vineland-3 and social preference as measured with eye tracking were noted. These results provide support for further clinical evaluation of SB-121 as a treatment in autistic patients. To evaluate the safety and tolerability of multiple doses of SB-121 in subjects with autism spectrum disorder. Single-center, randomized, placebo-controlled, double-blind, crossover trial. 15 patients with autism spectrum disorder were randomized and analyzed. Daily dosing of SB-121 or placebo for 28 days, followed by approximately a 14 day washout, then 28 days of dosing with other treatment. Incidence and severity of adverse events, presence of Limosilactobacillus reuteri and Sephadex® in stool, and incidence of bacteremia with positive L. reuteri identification. Additional outcomes include changes from baseline on cognitive and behavior tests as well as biomarker levels. Adverse event rates were similar between SB-121 and placebo, with most reported as mild. There were no severe or serious adverse events. No participants had features of suspected bacteremia or notable changes in vital signs, safety laboratory, or ECG parameters from baseline. There was a statistically significant increase from baseline in the Vineland-3 Adaptive Behavior Composite score (p = 0.03) during SB-121 treatment. There was a trend for increased social/geometric viewing ratio following SB-121 treatment compared to placebo. SB-121 was safe and well tolerated. SB-121-associated directional improvements in adaptive behavior measured by Vineland-3 and social preference as measured with eye tracking were noted.Trial registration: clinicaltrials.gov Identifier: NCT04944901.


Subject(s)
Autism Spectrum Disorder , Probiotics , Humans , Activities of Daily Living , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/psychology , Cross-Over Studies , Double-Blind Method , Treatment Outcome
7.
ACS Chem Biol ; 16(6): 1070-1078, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33988969

ABSTRACT

Staphylococcus epidermidis is a leading cause of hospital-acquired infections. Traditional antibiotics have significantly reduced efficacy against this pathogen due to its ability to form biofilms on abiotic surfaces and drug resistance. The accessory gene regulator (agr) quorum sensing system is directly involved in S. epidermidis pathogenesis. Activation of agr is achieved via binding of the autoinducing peptide (AIP) signal to the extracellular sensor domain of its cognate receptor, AgrC. Divergent evolution has given rise to four agr specificity groups in S. epidermidis defined by the unique AIP sequence used by each group (AIPs-I-IV) with observed cross-group activities. As agr agonism has been shown to reduce biofilm growth in S. epidermidis, the development of pan-group activators of the agr system is of interest as a potential antivirulence strategy. To date, no synthetic compounds have been identified that are capable of appreciably activating the agr system of more than one specificity group of S. epidermidis or, to our knowledge, of any of the other Staphylococci. Here, we report the characterization of the structure-activity relationships for agr agonism by S. epidermidis AIP-II and AIP-III and the application of these new SAR data and those previously reported for AIP-I for the design and synthesis of the first multigroup agr agonists. These non-native peptides were capable of inducing the expression of critical biofilm dispersal agents (i.e., phenol-soluble modulins) in cell culture and represent new tools to study the role of quorum sensing in S. epidermidis infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Peptides/pharmacology , Quorum Sensing/drug effects , Staphylococcus epidermidis/drug effects , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Humans , Models, Molecular , Peptides/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/physiology
8.
ACS Infect Dis ; 6(12): 3092-3103, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33124430

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is the causative agent of severe diarrheal disease in humans. Cattle are the natural reservoir of EHEC, and approximately 75% of EHEC infections in humans stem from bovine products. Many common bacterial pathogens, including EHEC, rely on chemical communication systems, such as quorum sensing (QS), to regulate virulence and facilitate host colonization. EHEC uses SdiA from E. coli (SdiAEC), an orphan LuxR-type receptor, to sense N-acyl l-homoserine lactone (AHL) QS signals produced by other members of the bovine enteric microbiome. SdiAEC regulates two phenotypes critical for colonizing cattle: acid resistance and the formation of attaching and effacing lesions. Despite the importance of SdiAEC, there is very little known about its selectivity for different AHL signals, and no chemical inhibitors that act specifically on SdiAEC have been reported. Such compounds would represent valuable tools to study the roles of QS in EHEC virulence. To identify chemical modulators of SdiAEC and delineate the structure-activity relationships (SARs) for AHL activity in this receptor, we report herein the screening of a focused library composed largely of AHLs and AHL analogues in an SdiAEC reporter assay. We describe the identity and SARs of potent modulators of SdiAEC activity, examine the promiscuity of SdiAEC, characterize the mechanism of a covalent inhibitor, and provide phenotypic assay data to support that these compounds can control SdiAEC-dependent acid resistance in E. coli. These SdiAEC modulators could be used to advance the study of LuxR-type receptor/ligand interactions, the biological roles of orphan LuxR-type receptors, and potential QS-based therapeutic approaches.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Quorum Sensing , Acyl-Butyrolactones , Animals , Cattle , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Trans-Activators
9.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 10): 664-668, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30279319

ABSTRACT

The development of antimalarial drugs remains a public health priority, and the orotidine 5'-monophosphate decarboxylase from Plasmodium falciparum (PfOMPDC) has great potential as a drug target. The crystallization of PfOMPDC with substrate bound represents an important advance for structure-based drug-design efforts [Tokuoka et al. (2008), J. Biochem. 143, 69-78]. The complex of the enzyme bound to the substrate OMP (PDB entry 2za1) would be of particular utility in this regard. However, re-refinement of this structure of the Michaelis complex shows that the bound ligand is the product rather than the substrate. Here, the re-refinement of a set of three structures, the apo enzyme and two versions of the product-bound form (PDB entries 2za1, 2za2 and 2za3), is reported. The improved geometry and fit of these structures to the observed electron density will enhance their utility in antimalarial drug design.


Subject(s)
Orotidine-5'-Phosphate Decarboxylase/chemistry , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry , Uridine Monophosphate/analogs & derivatives , Uridine Monophosphate/chemistry , Antimalarials/chemistry , Binding Sites , Ligands , Models, Molecular , Orotidine-5'-Phosphate Decarboxylase/metabolism , Plasmodium falciparum/enzymology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protozoan Proteins/metabolism , Substrate Specificity , Uridine Monophosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL