Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Proc Natl Acad Sci U S A ; 119(12): e2109717119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35298337

ABSTRACT

SignificanceTo move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes' optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes' whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies' depth-perception dynamics, limits, and visual behaviors.


Subject(s)
Depth Perception , Drosophila , Animals , Eye , Vision Disparity , Vision, Ocular
2.
J Synchrotron Radiat ; 31(Pt 3): 527-539, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38597746

ABSTRACT

A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10-3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.

3.
J Synchrotron Radiat ; 31(Pt 3): 557-565, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38656773

ABSTRACT

Synchrotron-radiation-based techniques are a powerful tool for the investigation of materials. In particular, the availability of highly brilliant sources has opened the possibility to develop techniques sensitive to dynamics at the atomic scale such as X-ray photon correlation spectroscopy (XPCS). XPCS is particularly relevant in the study of glasses, which have been often investigated at the macroscopic scale by, for example, differential scanning calorimetry. Here, we show how to adapt a Flash calorimeter to combine XPCS and calorimetric scans. This setup paves the way to novel experiments requiring dynamical and thermodynamic information, ranging from the study of the crystallization kinetics to the study of the glass transition in systems that can be vitrified thanks to the high cooling rates reachable with an ultrafast calorimeter.

4.
Opt Express ; 31(2): 3315-3324, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785327

ABSTRACT

The ability of pulsed nature of synchrotron radiation opens up the possibility of studying microsecond dynamics in complex materials via speckle-based techniques. Here, we present the study of measuring the dynamics of a colloidal system by combining single and multiple X-ray pulses of a storage ring. In addition, we apply speckle correlation techniques at various pulse patterns to collect correlation functions from nanoseconds to milliseconds. The obtained sample dynamics from all correlation techniques at different pulse patterns are in very good agreement with the expected dynamics of Brownian motions of silica nanoparticles in water. Our study will pave the way for future pulsed X-ray investigations at various synchrotron X-ray sources using individual X-ray pulse patterns.

5.
J Chem Phys ; 158(7): 074903, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36813727

ABSTRACT

We investigate the thermal gelation of egg white proteins at different temperatures with varying salt concentrations using x-ray photon correlation spectroscopy in the geometry of ultra-small angle x-ray scattering. Temperature-dependent structural investigation suggests a faster network formation with increasing temperature, and the gel adopts a more compact network, which is inconsistent with the conventional understanding of thermal aggregation. The resulting gel network shows a fractal dimension δ, ranging from 1.5 to 2.2. The values of δ display a non-monotonic behavior with increasing amount of salt. The corresponding dynamics in the q range of 0.002-0.1 nm-1 is observable after major change of the gel structure. The extracted relaxation time exhibits a two-step power law growth in dynamics as a function of waiting time. In the first regime, the dynamics is associated with structural growth, whereas the second regime is associated with the aging of the gel, which is directly linked with its compactness, as quantified by the fractal dimension. The gel dynamics is characterized by a compressed exponential relaxation with a ballistic-type of motion. The addition of salt gradually makes the early stage dynamics faster. Both gelation kinetics and microscopic dynamics show that the activation energy barrier in the system systematically decreases with increasing salt concentration.

6.
Small ; 18(37): e2201324, 2022 09.
Article in English | MEDLINE | ID: mdl-35905490

ABSTRACT

X-ray photon correlation spectroscopy (XPCS), a synchrotron source-based technique to measure sample dynamics, is used to determine hydrodynamic diameters of gold nanoparticles (Au NPs) of different sizes in biological environments. In situ determined hydrodynamic diameters are benchmarked with values obtained by dynamic light scattering. The technique is then applied to analyze the behavior of the Au NPs in a biological environment. First, a concentration-dependent agglomeration in the presence of NaCl is determined. Second, concentration-dependent increase in hydrodynamic diameter of the Au NPs upon the presence of proteins is determined. As X-rays in the used energy range are barely scattered by biological matter, dynamics of the Au NPs can be also detected in situ in complex biological environments, such as blood. These measurements demonstrate the possibility of XPCS for in situ analytics of nanoparticles (NPs) in biological environments where similar detection techniques based on visible light would severely suffer from scattering, absorption, and reflection effects.


Subject(s)
Gold , Metal Nanoparticles , Dynamic Light Scattering , Gold/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis , X-Rays
7.
Opt Lett ; 47(2): 293-296, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35030590

ABSTRACT

Three-dimensional photon correlation spectroscopy (3D PCS) is a well-known technique developed to suppress multiple scattering contributions in correlation functions, which are inevitably involved when an optical laser is employed to investigate dynamics in a turbid system. Here, we demonstrate a proof-of-principle study of 3D PCS in the hard X-ray regime. We employ an X-ray optical cross-correlator to measure the dynamics of silica colloidal nanoparticles dispersed in polypropylene glycol. The obtained cross correlation functions show very good agreement with auto-correlation measurements. This demonstration provides the foundation for X-ray speckle-based studies of very densely packed soft matter systems.

8.
Soft Matter ; 18(8): 1591-1602, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-34994372

ABSTRACT

Depending on the volume fraction and interparticle interactions, colloidal suspensions can form different phases, ranging from fluids, crystals, and glasses to gels. For soft microgels that are made from thermoresponsive polymers, the volume fraction can be tuned by temperature, making them excellent systems to experimentally study phase transitions in dense colloidal suspensions. However, investigations of phase transitions at high particle concentration and across the volume phase transition temperature in particular, are challenging due to the deformability and possibility for interpenetration between microgels. Here, we investigate the dense phases of composite core-shell microgels that have a small gold core and a thermoresponsive microgel shell. Employing Ultra Small-Angle X-ray Scattering, we make use of the strong scattering signal from the gold cores with respect to the almost negligible signal from the shells. By changing the temperature we study the freezing and melting transitions of the system in situ. Using Bragg peak analysis and the Williamson-Hall method, we characterize the phase transitions in detail. We show that the system crystallizes into an rhcp structure with different degrees of in-plane and out-of-plane stacking disorder that increase upon particle swelling. We further find that the melting process is distinctly different, where the system separates into two different crystal phases with different melting temperatures and interparticle interactions.

9.
J Chem Phys ; 157(18): 184901, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36379773

ABSTRACT

The gelation of PEGylated gold nanoparticles dispersed in a glycerol-water mixture is probed in situ by x-ray photon correlation spectroscopy. Following the evolution of structure and dynamics over 104 s, a three-step gelation process is found. First, a simultaneous increase of the Ornstein-Zernike length ξ and slowdown of dynamics is characterized by an anomalous q-dependence of the relaxation times of τ ∝ q-6 and strongly stretched intermediate scattering functions. After the structure of the gel network has been established, evidenced by a constant ξ, the dynamics show aging during the second gelation step accompanied by a change toward ballistic dynamics with τ ∝ q-1 and compressed correlation functions. In the third step, aging continues after the arrest of particle motion. Our observations further suggest that gelation is characterized by stress release as evidenced by anisotropic dynamics once gelation sets in.


Subject(s)
Gold , Metal Nanoparticles , X-Rays , Gold/chemistry , Water/chemistry , Spectrum Analysis
10.
Phys Rev Lett ; 126(13): 138004, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33861109

ABSTRACT

While the interplay between liquid-liquid phase separation (LLPS) and glass formation in biological systems is highly relevant for their structure formation and thus function, the exact underlying mechanisms are not well known. The kinetic arrest originates from the slowdown at the molecular level, but how this propagates to the dynamics of microscopic phase domains is not clear. Since with diffusion, viscoelasticity, and hydrodynamics, distinctly different mechanisms are at play, the dynamics needs to be monitored on the relevant time and length scales and compared to theories of phase separation. Using x-ray photon correlation spectroscopy, we determine the LLPS dynamics of a model protein solution upon low temperature quenches and find distinctly different dynamical regimes. We observe that the early stage LLPS is driven by the curvature of the free energy and speeds up upon increasing quench depth. In contrast, the late stage dynamics slows down with increasing quench depth, fingerprinting a nearby glass transition. The dynamics observed shows a ballistic type of motion, implying that viscoelasticity plays an important role during LLPS. We explore possible explanations based on the Cahn-Hilliard theory with nontrivial mobility parameters and find that these can only partially explain our findings.


Subject(s)
Models, Chemical , gamma-Globulins/chemistry , Phase Transition , Photoelectron Spectroscopy , Polyethylene Glycols/chemistry , Solutions
11.
Phys Rev Lett ; 126(9): 098001, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33750145

ABSTRACT

The kinetics of heat-induced gelation and the microscopic dynamics of a hen egg white gel are probed using x-ray photon correlation spectroscopy along with ultrasmall-angle x-ray scattering. The kinetics of structural growth reveals a reaction-limited aggregation process with a gel fractal dimension of ≈2 and an average network mesh size of ca. 400 nm. The dynamics probed at these length scales reveals an exponential growth of the characteristic relaxation times followed by an intriguing steady state in combination with a compressed exponential correlation function and a temporal heterogeneity. The degree of heterogeneity increases with decreasing length scale. We discuss our results in the broader context of experiments and models describing attractive colloidal gels.


Subject(s)
Egg White/chemistry , Models, Chemical , Gels/chemistry , Kinetics , Scattering, Small Angle , X-Rays
12.
J Synchrotron Radiat ; 26(Pt 5): 1705-1715, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490162

ABSTRACT

This paper reports on coherent scattering experiments in the low-count regime with less than one photon per pixel per acquisition on average, conducted with two detectors based on the Eiger single-photon-counting chip. The obtained photon-count distributions show systematic deviations from the expected Poisson-gamma distribution, which result in a strong overestimation of the measured speckle contrast. It is shown that these deviations originate from an artificial increase of double-photon events, which is proportional to the detected intensity and inversely proportional to the exposure time. The observed miscounting effect may have important implications for new coherent scattering experiments emerging with the advent of high-brilliance X-ray sources. Different correction schemes are discussed in order to obtain the correct photon distributions from the data. A successful correction is demonstrated with the measurement of Brownian motion from colloidal particles using X-ray speckle visibility spectroscopy.

13.
J Synchrotron Radiat ; 23(Pt 6): 1401-1408, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27787246

ABSTRACT

Combining microfluidics with coherent X-ray illumination offers the possibility to not only measure the structure but also the dynamics of flowing samples in a single-scattering experiment. Here, the power of this combination is demonstrated by studying the advective and Brownian dynamics of colloidal suspensions in microflow of different geometries. Using an experimental setup with a fast two-dimensional detector and performing X-ray correlation spectroscopy by calculating two-dimensional maps of the intensity auto-correlation functions, it was possible to evaluate the sample structure and furthermore to characterize the detailed flow behavior, including flow geometry, main flow directions, advective flow velocities and diffusive dynamics. By scanning a microfocused X-ray beam over a microfluidic device, the anisotropic auto-correlation functions of driven colloidal suspensions in straight, curved and constricted microchannels were mapped with the spatial resolution of the X-ray beam. This method has not only a huge potential for studying flow patterns in complex fluids but also to generally characterize anisotropic dynamics in materials.

14.
Soft Matter ; 12(1): 171-80, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26451659

ABSTRACT

Structural distortion and relaxation are central to any liquid flow. Their full understanding requires simultaneous probing of the mechanical as well as structural and dynamical response. We provide the first full dynamical measurement of the transient structure using combined coherent X-ray scattering and rheology on electrostatically interacting colloidal fluids. We find a stress overshoot during the start-up of shear which is due to the strong anisotropic overstretching and compression of nearest-neighbor distances. The rheological response is reflected in uncorrelated entropy-driven intensity fluctuations. While the structural distortion under steady shear is well described by Smoluchowski theory, we find an increase of the particle dynamics beyond the trivial contribution of flow. After the cessation of shear, the full fluid microstructure and dynamics are restored, both on the structural relaxation timescale. We thus find unique structure-dynamics relations in liquid flow, responsible for the macroscopic rheological behavior of the system.

15.
Soft Matter ; 11(27): 5465-72, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26061482

ABSTRACT

We report on a nano-beam small angle X-ray scattering study on densely-packed, dried binary films made out of spherical silica particles with radii of 11.2 and 19.3 nm. For these three-dimensional thin films prepared by drop casting, only a finite number of colloidal particles contributes to the scattering signal due to the small beam size of 400 × 400 nm(2). By scanning the samples, the structure and composition of the silica particle films are determined spatially resolved revealing spatial heterogeneities in the films. Three different types of domains were identified: regions containing mainly large particles, regions containing mainly small particles, and regions where both particle species are mixed. Using the new angular X-ray cross-correlations analysis (XCCA) approach, spatial maps of the local type and degree of orientational order within the silica particle films are obtained. Whereas the mixed regions have dominant two-fold order, weaker four-fold and marginal six-fold order, regions made out of large particles are characterized by an overall reduced orientational order. Regions of small particles are highly ordered showing actually crystalline order. Distinct differences in the local particle order are observed by analyzing sections through the intensity and XCCA maps. The different degree of order can be understood by the different particle size polydispersities. Moreover, we show that preferential orientations of the particle domains can be studied by cross-correlation analysis yielding information on particle film formation. We find patches of preferential order with an average size of 8-10 µm. Thus, by this combined X-ray cross-correlation microscopy (XCCM) approach the structure and orientational order of films made out of nanometer sized colloids can be determined. This method will allow to reveal the local structure and order of self-assembled structures with different degree of order in general.

16.
Sci Adv ; 10(16): eadm7876, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640237

ABSTRACT

Stimuli-responsive polymers are an important class of materials with many applications in nanotechnology and drug delivery. The most prominent one is poly-N-isopropylacrylamide (PNIPAm). The characterization of the kinetics of its change after a temperature jump is still a lively research topic, especially at nanometer-length scales where it is not possible to rely on conventional microscopic techniques. Here, we measured in real time the collapse of a PNIPAm shell on silica nanoparticles with megahertz x-ray photon correlation spectroscopy at the European XFEL. We characterize the changes of the particles diffusion constant as a function of time and consequently local temperature on sub-microsecond timescales. We developed a phenomenological model to describe the observed data and extract the characteristic times associated to the swelling and collapse processes. Different from previous studies tracking the turbidity of PNIPAm dispersions and using laser heating, we find collapse times below microsecond timescales and two to three orders of magnitude slower swelling times.

17.
J Phys Chem Lett ; 14(20): 4719-4725, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37171882

ABSTRACT

The dynamics and time scales of higher-order correlations are studied in supercooled colloidal systems. A combination of X-ray photon correlation spectroscopy (XPCS) and X-ray cross-correlation analysis (XCCA) shows the typical slowing of the dynamics of a hard sphere system when approaching the glass transition. The time scales of higher-order correlations are probed using a novel time correlation function gC, tracking the time evolution of cross-correlation function C. With an increasing volume fraction, the ratio of relaxation times of gC to the standard individual particle relaxation time obtained by XPCS increases from ∼0.4 to ∼0.9. While a value of ∼0.5 is expected for free diffusion, the increasing values suggest that the local orders within the sample are becoming more long-lived for larger volume fractions. Furthermore, the dynamics of local order is more heterogeneous than the individual particle dynamics. These results indicate that not only the presence but also the lifetime of locally favored structures increases close to the glass transition.

18.
J Phys Chem Lett ; 14(49): 10999-11007, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38039400

ABSTRACT

Unraveling the mechanism of water's glass transition and the interconnection between amorphous ices and liquid water plays an important role in our overall understanding of water. X-ray photon correlation spectroscopy (XPCS) experiments were conducted to study the dynamics and the complex interplay between the hypothesized glass transition in high-density amorphous ice (HDA) and the subsequent transition to low-density amorphous ice (LDA). Our XPCS experiments demonstrate that a heterodyne signal appears in the correlation function. Such a signal is known to originate from the interplay of a static component and a dynamic component. Quantitative analysis was performed on this heterodyne signal to extract the intrinsic dynamics of amorphous ice during the HDA-LDA transition. An angular dependence indicates non-isotropic, heterogeneous dynamics in the sample. Using the Stokes-Einstein relation to extract diffusion coefficients, the data are consistent with the scenario of static LDA islands floating within a diffusive matrix of high-density liquid water.

19.
Sci Rep ; 13(1): 11048, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422480

ABSTRACT

We use X-ray photon correlation spectroscopy to investigate how structure and dynamics of egg white protein gels are affected by X-ray dose and dose rate. We find that both, changes in structure and beam-induced dynamics, depend on the viscoelastic properties of the gels with soft gels prepared at low temperatures being more sensitive to beam-induced effects. Soft gels can be fluidized by X-ray doses of a few kGy with a crossover from stress relaxation dynamics (Kohlrausch-Williams-Watts exponents [Formula: see text] to 2) to typical dynamical heterogeneous behavior ([Formula: see text]1) while the high temperature egg white gels are radiation-stable up to doses of 15 kGy with [Formula: see text]. For all gel samples we observe a crossover from equilibrium dynamics to beam induced motion upon increasing X-ray fluence and determine the resulting fluence threshold values [Formula: see text]. Surprisingly small threshold values of [Formula: see text] s[Formula: see text] nm[Formula: see text] can drive the dynamics in the soft gels while for stronger gels this threshold is increased to [Formula: see text] s[Formula: see text] nm[Formula: see text]. We explain our observations with the viscoelastic properties of the materials and can connect the threshold dose for structural beam damage with the dynamic properties of beam-induced motion. Our results suggest that soft viscoelastic materials can display pronounced X-ray driven motion even for low X-ray fluences. This induced motion is not detectable by static scattering as it appears at dose values well below the static damage threshold. We show that intrinsic sample dynamics can be separated from X-ray driven motion by measuring the fluence dependence of the dynamical properties.


Subject(s)
X-Rays , Radiography , Gels
20.
Nat Commun ; 14(1): 5580, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37696830

ABSTRACT

The soft-grainy microstructure of cooked egg yolk is the result of a series of out-of-equilibrium processes of its protein-lipid contents; however, it is unclear how egg yolk constituents contribute to these processes to create the desired microstructure. By employing X-ray photon correlation spectroscopy, we investigate the functional contribution of egg yolk constituents: proteins, low-density lipoproteins (LDLs), and yolk-granules to the development of grainy-gel microstructure and microscopic dynamics during cooking. We find that the viscosity of the heated egg yolk is solely determined by the degree of protein gelation, whereas the grainy-gel microstructure is controlled by the extent of LDL aggregation. Overall, protein denaturation-aggregation-gelation and LDL-aggregation follows Arrhenius-type time-temperature superposition (TTS), indicating an identical mechanism with a temperature-dependent reaction rate. However, above 75 °C TTS breaks down and temperature-independent gelation dynamics is observed, demonstrating that the temperature can no longer accelerate certain non-equilibrium processes above a threshold value.


Subject(s)
Egg Yolk , Hot Temperature , X-Rays , Radiography , Temperature , Edible Grain , Lipoproteins, LDL
SELECTION OF CITATIONS
SEARCH DETAIL