Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Infect Immun ; 84(2): 524-36, 2016 02.
Article in English | MEDLINE | ID: mdl-26644380

ABSTRACT

Stenotrophomonas maltophilia is a ubiquitous bacterium and an emerging nosocomial pathogen. This bacterium is resistant to many antibiotics, associated with a number of infections, and a significant health risk, especially for immunocompromised patients. Given that Caenorhabditis elegans shares many conserved genetic pathways and pathway components with higher organisms, the study of its interaction with bacterial pathogens has biomedical implications. S. maltophilia has been isolated in association with nematodes from grassland soils, and it is likely that C. elegans encounters this bacterium in nature. We found that a local S. maltophilia isolate, JCMS, is more virulent than the other S. maltophilia isolates (R551-3 and K279a) tested. JCMS virulence correlates with intestinal distension and bacterial accumulation and requires the bacteria to be alive. Many of the conserved innate immune pathways that serve to protect C. elegans from various pathogenic bacteria also play a role in combating S. maltophilia JCMS. However, S. maltophilia JCMS is virulent to normally pathogen-resistant DAF-2/16 insulin-like signaling pathway mutants. Furthermore, several insulin-like signaling effector genes were not significantly differentially expressed between S. maltophilia JCMS and avirulent bacteria (Escherichia coli OP50). Taken together, these findings suggest that S. maltophilia JCMS evades the pathogen resistance conferred by the loss of DAF-2/16 pathway components. In summary, we have discovered a novel host-pathogen interaction between C. elegans and S. maltophilia and established a new animal model with which to study the mode of action of this emerging nosocomial pathogen.


Subject(s)
Caenorhabditis elegans/immunology , Caenorhabditis elegans/microbiology , Host-Pathogen Interactions , Immune Evasion , Stenotrophomonas maltophilia/immunology , Stenotrophomonas maltophilia/pathogenicity , Animals , Bacterial Load , Caenorhabditis elegans Proteins/genetics , Escherichia coli/genetics , Immunity, Innate , Intestines/microbiology , Microbial Viability , Models, Animal , Mutation , Receptor, Insulin/genetics , Signal Transduction/genetics , Stenotrophomonas maltophilia/isolation & purification
3.
PLoS Negl Trop Dis ; 14(3): e0008150, 2020 03.
Article in English | MEDLINE | ID: mdl-32196500

ABSTRACT

Parasitic infections are a major source of human suffering, mortality, and economic loss, but drug development for these diseases has been stymied by the significant expense involved in bringing a drug though clinical trials and to market. Identification of single compounds active against multiple parasitic pathogens could improve the economic incentives for drug development as well as simplifying treatment regimens. We recently performed a screen of repurposed compounds against the protozoan parasite Entamoeba histolytica, causative agent of amebic dysentery, and identified four compounds (anisomycin, prodigiosin, obatoclax and nithiamide) with low micromolar potency and drug-like properties. Here, we extend our investigation of these drugs. We assayed the speed of killing of E. histolytica trophozoites and found that all four have more rapid action than the current drug of choice, metronidazole. We further established a multi-institute collaboration to determine whether these compounds may have efficacy against other parasites and opportunistic pathogens. We found that anisomycin, prodigiosin and obatoclax all have broad-spectrum antiparasitic activity in vitro, including activity against schistosomes, T. brucei, and apicomplexan parasites. In several cases, the drugs were found to have significant improvements over existing drugs. For instance, both obatoclax and prodigiosin were more efficacious at inhibiting the juvenile form of Schistosoma than the current standard of care, praziquantel. Additionally, low micromolar potencies were observed against pathogenic free-living amebae (Naegleria fowleri, Balamuthia mandrillaris and Acanthamoeba castellanii), which cause CNS infection and for which there are currently no reliable treatments. These results, combined with the previous human use of three of these drugs (obatoclax, anisomycin and nithiamide), support the idea that these compounds could serve as the basis for the development of broad-spectrum anti-parasitic drugs.


Subject(s)
Anisomycin/pharmacology , Antiparasitic Agents/pharmacology , Drug Repositioning , Parasites/drug effects , Prodigiosin/pharmacology , Pyrroles/pharmacology , Animals , Anisomycin/adverse effects , Anisomycin/pharmacokinetics , Antiparasitic Agents/adverse effects , Antiparasitic Agents/pharmacokinetics , Cell Line , Cell Survival , Fibroblasts/drug effects , Humans , Indoles , Mice , Parasitic Sensitivity Tests , Prodigiosin/adverse effects , Prodigiosin/pharmacokinetics , Pyrroles/adverse effects , Pyrroles/pharmacokinetics , Rats
4.
Article in English | MEDLINE | ID: mdl-30177956

ABSTRACT

The bacterivorous nematode Caenorhabditis elegans is an excellent model for the study of innate immune responses to a variety of bacterial pathogens, including the emerging nosocomial bacterial pathogen Stenotrophomonas maltophilia. The study of this interaction has ecological and medical relevance as S. maltophilia is found in association with C. elegans and other nematodes in the wild and is an emerging opportunistic bacterial pathogen. We identified 393 genes that were differentially expressed when exposed to virulent and avirulent strains of S. maltophilia and an avirulent strain of E. coli. We then used a probabilistic functional gene network model (WormNet) to determine that 118 of the 393 differentially expressed genes formed an interacting network and identified a set of highly connected genes with eight or more predicted interactions. We hypothesized that these highly connected genes might play an important role in the defense against S. maltophila and found that mutations of six of seven highly connected genes have a significant effect on nematode survival in response to these bacteria. Of these genes, C48B4.1, mpk-2, cpr-4, clec-67, and lys-6 are needed for combating the virulent S. maltophilia JCMS strain, while dod-22 was solely involved in response to the avirulent S. maltophilia K279a strain. We further found that dod-22 and clec-67 were up regulated in response to JCMS vs. K279a, while C48B4.1, mpk-2, cpr-4, and lys-6 were down regulated. Only dod-22 had a documented role in innate immunity, which demonstrates the merit of our approach in the identification of novel genes that are involved in combating S. maltophilia infection.


Subject(s)
Caenorhabditis elegans/microbiology , Gene Expression Profiling , Gene Regulatory Networks , Gram-Negative Bacterial Infections/immunology , Host-Pathogen Interactions , Immunity, Innate , Stenotrophomonas maltophilia/growth & development , Animals , Disease Models, Animal , Escherichia coli/growth & development
5.
mBio ; 9(5)2018 10 30.
Article in English | MEDLINE | ID: mdl-30377287

ABSTRACT

Balamuthia mandrillaris is a pathogenic free-living amoeba that causes a rare but almost always fatal infection of the central nervous system called granulomatous amoebic encephalitis (GAE). Two distinct forms of B. mandrillaris-a proliferative trophozoite form and a nonproliferative cyst form, which is highly resistant to harsh physical and chemical conditions-have been isolated from environmental samples worldwide and are both observed in infected tissue. Patients suffering from GAE are typically treated with aggressive and prolonged multidrug regimens that often include the antimicrobial agents miltefosine and pentamidine isethionate. However, survival rates remain low, and studies evaluating the susceptibility of B. mandrillaris to these compounds and other potential therapeutics are limited. To address the need for more-effective treatments, we screened 2,177 clinically approved compounds for in vitro activity against B. mandrillaris The quinoline antibiotic nitroxoline (8-hydroxy-5-nitroquinoline), which has safely been used in humans to treat urinary tract infections, was identified as a lead compound. We show that nitroxoline inhibits both trophozoites and cysts at low micromolar concentrations, which are within a pharmacologically relevant range. We compared the in vitro efficacy of nitroxoline to that of drugs currently used in the standard of care for GAE and found that nitroxoline is the most potent and selective inhibitor of B. mandrillaris tested. Furthermore, we demonstrate that nitroxoline prevents B. mandrillaris-mediated destruction of host cells in cultured fibroblast and primary brain explant models also at pharmacologically relevant concentrations. Taken together, our findings indicate that nitroxoline is a promising candidate for repurposing as a novel treatment of B. mandrillaris infections.IMPORTANCEBalamuthia mandrillaris is responsible for hundreds of reported cases of amoebic encephalitis, the majority of which have been fatal. Despite being an exceptionally deadly pathogen, B. mandrillaris is understudied, leaving many open questions regarding epidemiology, diagnosis, and treatment. Due to the lack of effective drugs to fight B. mandrillaris infections, mortality rates remain high even for patients receiving intensive care. This report addresses the need for new treatment options through a drug repurposing screen to identify novel B. mandrillaris inhibitors. The most promising candidate identified was the quinoline antibiotic nitroxoline, which has a long history of safe use in humans. We show that nitroxoline kills B. mandrillaris at pharmacologically relevant concentrations and exhibits greater potency and selectivity than drugs commonly used in the current standard of care. The findings that we present demonstrate the potential of nitroxoline to be an important new tool in the treatment of life-threatening B. mandrillaris infections.


Subject(s)
Amebicides/pharmacology , Balamuthia mandrillaris/drug effects , Nitroquinolines/pharmacology , Amebiasis/drug therapy , Amebiasis/parasitology , Amebiasis/pathology , Balamuthia mandrillaris/growth & development , Brain/parasitology , Brain/pathology , Cell Line , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Fibroblasts/parasitology , Fibroblasts/pathology , Humans , Models, Biological , Parasitic Sensitivity Tests
6.
Genome Announc ; 5(48)2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29192071

ABSTRACT

Here, we report the genome sequence of a divergent human rhinovirus C isolate identified from an infant with a severe community-acquired respiratory infection. RNA sequencing performed on an Illumina platform identified reads aligning to human rhinovirus species, which were de novo assembled to produce a coding-complete genome sequence.

7.
Electrophoresis ; 29(23): 4669-76, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19053064

ABSTRACT

By using a microfluidic electrophoresis platform to perform DNA sequencing, genomic information can be obtained more quickly and affordably than the currently employed capillary array electrophoresis instruments. Previous research in our group has shown that physically cross-linked, hydrophobically modified polyacrylamide matrices separate dsDNA more effectively than linear polyacrylamide (LPA) solutions. Expanding upon this work, we have synthesized a series of LPA-co-dihexylacrylamide block copolymers specifically designed to electrophoretically sequence ssDNA quickly and efficiently on a microfluidic device. By incorporating very small amounts of N,N-dihexylacrylamide, a hydrophobic monomer, these copolymer solutions achieved up to approximately 10% increases in average DNA sequencing read length over LPA homopolymer solutions of matched molar mass. Additionally, the inclusion of the small amount of hydrophobe does not significantly increase the polymer solution viscosities, relative to LPA solutions, so that channel loading times between the copolymers and the homopolymers are similar. The resulting polymer solutions are capable of providing enhanced sequencing separations in a short period of time without compromising the ability to rapidly load and unload the matrix from a microfluidic device.


Subject(s)
Electrophoresis, Microchip/methods , Sequence Analysis, DNA/methods , Acrylic Resins/chemical synthesis , Acrylic Resins/chemistry , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Fluorescence , Rheology , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL