Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
PLoS Pathog ; 20(8): e1012412, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39088549

ABSTRACT

Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amoebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate these agents are potent inhibitors of N. fowleri ENO (NfENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC50 = 0.14 ± 0.04 µM) that was toxic to trophozoites (EC50 = 0.21 ± 0.02 µM) while the reported CC50 was >300 µM. Molecular docking simulation revealed that HEX binds strongly to the active site of NfENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of NfENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the end of the one-week observation, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. However, intranasal HEX delivery was not curative as brains of six of the eight survivors were positive for amoebae. These findings suggest that HEX requires further evaluation to develop as a lead for treatment of PAM.


Subject(s)
Central Nervous System Protozoal Infections , Naegleria fowleri , Phosphopyruvate Hydratase , Animals , Naegleria fowleri/drug effects , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/parasitology , Phosphopyruvate Hydratase/metabolism , Phosphopyruvate Hydratase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Mice , Rats , Humans , Molecular Docking Simulation
2.
J Org Chem ; 89(7): 4990-4999, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38494854

ABSTRACT

Previously, we described the synthesis of stable, bicyclic examples of the rather rare diazacyclobutene (DCB) motif by means of a cycloaddition between triazolinediones and electron-rich thiolated alkynes. Here, we report the investigation of the cycloaddition of triazolinediones with related electron-rich yne-carbamates and carbazole-alkynes. Bicyclic DCBs arising from yne-carbamates were isolated in 8-65% yield, while those arising from carbazole-alkynes were isolated in 28-59% yield. Mechanistic studies and characterization of isolable byproducts shed light on the underlying issues leading to poor to moderate yields.

3.
PLoS Pathog ; 16(5): e1008499, 2020 05.
Article in English | MEDLINE | ID: mdl-32407406

ABSTRACT

Heme, an iron-containing organic ring, is essential for virtually all living organisms by serving as a prosthetic group in proteins that function in diverse cellular activities ranging from diatomic gas transport and sensing, to mitochondrial respiration, to detoxification. Cellular heme levels in microbial pathogens can be a composite of endogenous de novo synthesis or exogenous uptake of heme or heme synthesis intermediates. Intracellular pathogenic microbes switch routes for heme supply when heme availability fluctuates in their replicative environment throughout infection. Here, we show that Toxoplasma gondii, an obligate intracellular human pathogen, encodes a functional heme biosynthesis pathway. A chloroplast-derived organelle, termed apicoplast, is involved in heme production. Genetic and chemical manipulation revealed that de novo heme production is essential for T. gondii intracellular growth and pathogenesis. Surprisingly, the herbicide oxadiazon significantly impaired Toxoplasma growth, consistent with phylogenetic analyses that show T. gondii protoporphyrinogen oxidase is more closely related to plants than mammals. This inhibition can be enhanced by 15- to 25-fold with two oxadiazon derivatives, lending therapeutic proof that Toxoplasma heme biosynthesis is a druggable target. As T. gondii has been used to model other apicomplexan parasites, our study underscores the utility of targeting heme biosynthesis in other pathogenic apicomplexans, such as Plasmodium spp., Cystoisospora, Eimeria, Neospora, and Sarcocystis.


Subject(s)
Heme/genetics , Phylogeny , Protoporphyrinogen Oxidase/genetics , Protozoan Proteins/genetics , Toxoplasma/genetics , Toxoplasmosis/genetics , Heme/biosynthesis , Humans , Plant Proteins/metabolism , Plants/enzymology , Plants/genetics , Protoporphyrinogen Oxidase/metabolism , Protozoan Proteins/metabolism , Toxoplasma/enzymology , Toxoplasmosis/enzymology
4.
J Org Chem ; 87(11): 7494-7500, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35549283

ABSTRACT

Our previous method to access the diazacyclobutene scaffold did not allow for modification of the substituent originating from the 1,2,4-triazoline-3,5-dione component. We have circumvented this challenge and expanded access to additional structural diversity of the scaffold. A telescoped urazole oxidation and Lewis acid-catalyzed cyclization provided R3-substituted diazacyclobutenes. Calcium hypochlorite-mediated oxidation of urazoles followed by MgCl2-catalyzed cyclization of the resulting triazolinediones with thioalkynes promoted the formation of diazacyclobutenes bearing substitution at the R3 position originating from the triazolinedione component.


Subject(s)
Triazoles , Cyclization , Cycloaddition Reaction , Molecular Structure , Triazoles/chemistry
5.
Molecules ; 26(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34576919

ABSTRACT

Ultrasound (US) and X-ray imaging are diagnostic methods that are commonly used to image internal body structures. Several organic and inorganic imaging contrast agents are commercially available. However, their synthesis and purification remain challenging, in addition to posing safety issues. Here, we report on the promise of widespread, safe, and easy-to-produce particulate calcium fluoride (part-CaF2) as a bimodal US and X-ray contrast agent. Pure and highly crystalline part-CaF2 is obtained using a cheap commercial product. Scanning electron microscopy (SEM) depicts the morphology of these particles, while energy-dispersive X-ray spectroscopy (EDS) confirms their chemical composition. Diffuse reflectance ultraviolet-visible spectroscopy highlights their insulating behavior. The X-ray diffraction (XRD) pattern reveals that part-CaF2 crystallizes in the face-centered cubic cell lattice. Further analyses regarding peak broadening are performed using the Scherrer and Williamson-Hall (W-H) methods, which pinpoint the small crystallite size and the presence of lattice strain. X-ray photoelectron spectroscopy (XPS) solely exhibits specific peaks related to CaF2, confirming the absence of any contamination. Additionally, in vitro cytotoxicity and in vivo maximum tolerated dose (MTD) tests prove the biocompatibility of part-CaF2. Finally, the results of the US and X-ray imaging tests strongly signal that part-CaF2 could be exploited in bimodal bioimaging applications. These findings may shed a new light on calcium fluoride and the opportunities it offers in biomedical engineering.


Subject(s)
Biocompatible Materials , Calcium Fluoride , Crystallization
6.
J Am Chem Soc ; 142(15): 7179-7189, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32202109

ABSTRACT

Electrophilic halofunctionalization reactions have undergone a resurgence sparked by recent discoveries in the field of catalytic asymmetric halocyclizations. To build mechanistic understanding of these asymmetric transformations, a toolbox of analytical methods has been deployed, addressing the roles of catalyst, electrophile (halenium donor), and nucleophile in determining rates and stereopreferences. The test reaction, (DHQD)2PHAL-catalyzed chlorocyclization of 4-arylpent-4-enoic acid with 1,3-dichloro-5,5-dimethylhydantoin (DCDMH), is revealed to be first order in catalyst and chlorenium ion donor and zero order in alkenoic acid substrate under synthetically relevant conditions. The simplest interpretation is that rapid substrate-catalyst binding precedes rate-limiting chlorenium attack, controlling the face selectivity of both chlorine attack and lactone closure. ROESY and DFT studies, aided by crystal structures of carboxylic acids bound by the catalyst, point to a plausible resting state of the catalyst-substrate complex predisposed for asymmetric chlorolactonization. As revealed by our earlier labeling studies, these findings suggest modes of binding in the (DHQD)2PHAL chiral pocket that explain the system's remarkable control over rate- and enantioselection-determining events. Though a comprehensive modeling analysis is beyond the scope of the present work, quantum chemical analysis of the fragments' interactions and candidate reaction paths point to a one-step concerted process, with the nucleophile playing a critical role in activating the olefin for concomitant electrophilic attack.


Subject(s)
Lactones/chemistry , Catalysis , Molecular Structure , Stereoisomerism
7.
J Org Chem ; 84(15): 9734-9743, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31295401

ABSTRACT

The α-oxidized thioimidates are useful bidentate ligands and are important motifs in pharmaceuticals, pesticides, and fungicides. Despite their broad utility, a direct route for their synthesis has been elusive. Herein, we describe a one-step synthesis of N,N-dicarbamoyl 2-iminothioimidates from easily accessible thioacetylenes and commercially available azodicarboxylates (20 examples, ≤99% yield). Additionally, the mechanism of the transformation was extensively explored by variable-temperature NMR, in situ IR, and quantum mechanical simulations. These experiments suggest that the reaction commences with a highly asynchronous [2 + 2] cycloaddition, which leads to a four-membered diazacyclobutene intermediate with a barrier consistent with the observed reaction rate. This intermediate was then isolated for subsequent kinetic measurements, which yielded an experimental barrier within 1 kcal/mol of the calculated barrier for a subsequent 4π electrocyclic ring opening leading to the observed iminothioimidate products. This method represents the first direct route to α-oxidized thioimidates from readily accessible starting materials.


Subject(s)
Alkynes/chemistry , Azo Compounds/chemistry , Dicarboxylic Acids/chemistry , Imines/chemical synthesis , Sulfhydryl Compounds/chemical synthesis , Sulfides/chemistry , Cycloaddition Reaction , Imines/chemistry , Molecular Structure , Stereoisomerism , Sulfhydryl Compounds/chemistry
8.
Molecules ; 23(7)2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30021974

ABSTRACT

Environmental remediation relies mainly on using various technologies (e.g., adsorption, absorption, chemical reactions, photocatalysis, and filtration) for the removal of contaminants from different environmental media (e.g., soil, water, and air). The enhanced properties and effectiveness of nanotechnology-based materials makes them particularly suitable for such processes given that they have a high surface area-to-volume ratio, which often results in higher reactivity. This review provides an overview of three main categories of nanomaterials (inorganic, carbon-based, and polymeric-based materials) used for environmental remediation. The use of these nanomaterials for the remediation of different environmental contaminants-such as heavy metals, dyes, chlorinated organic compounds, organophosphorus compounds, volatile organic compounds, and halogenated herbicides-is reviewed. Various recent examples are extensively highlighted focusing on the materials and their applications.


Subject(s)
Environmental Restoration and Remediation/methods , Nanostructures , Nanotechnology/methods
9.
Bioorg Med Chem Lett ; 27(3): 537-541, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28043795

ABSTRACT

Human African trypanosomiasis is a disease of sub-Saharan Africa, where millions are at risk for the illness. The disease, commonly referred to as African sleeping sickness, is caused by an infection by the eukaryotic pathogen, Trypanosoma brucei. Previously, a target-based high throughput screen revealed ebselen (EbSe), and its sulfur analog, EbS, to be potent in vitro inhibitors of the T. brucei hexokinase 1 (TbHK1). These molecules also exhibited potent trypanocidal activity in vivo. In this manuscript, we synthesized a series of sixteen EbSe and EbS derivatives bearing electron-withdrawing carboxylic acid and methyl ester functional groups, and evaluated the influence of these substituents on the biological efficacy of the parent scaffold. With the exception of one methyl ester derivative, these modifications ablated or blunted the potent TbHK1 inhibition of the parent scaffold. Nonetheless, a few of the methyl ester derivatives still exhibited trypanocidal effects with single-digit micromolar or high nanomolar EC50 values.


Subject(s)
Antiprotozoal Agents/pharmacology , Azoles/pharmacology , Organoselenium Compounds/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Azoles/chemical synthesis , Azoles/chemistry , Dose-Response Relationship, Drug , Isoindoles , Molecular Structure , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
10.
Chemistry ; 21(42): 14834-42, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26331393

ABSTRACT

Aldehyde and carboxylic acid volatile organic compounds (VOCs) present significant environmental concern due to their prevalence in the atmosphere. We developed biodegradable functional nanoparticles comprised of poly(d,l-lactic acid)-poly(ethylene glycol)-poly(ethyleneimine) (PDLLA-PEG-PEI) block co-polymers that capture these VOCs by chemical reaction. Polymeric nanoparticles (NPs) preparation involved nanoprecipitation and surface functionalization with branched PEI. The PDLLA-PEG-PEI NPs were characterized by using TGA, IR, (1) H NMR, elemental analysis, and TEM. The materials feature 1°, 2°, and 3° amines on their surface, capable of capturing aldehydes and carboxylic acids from gaseous mixtures. Aldehydes were captured by a condensation reaction forming imines, whereas carboxylic acids were captured by acid/base reaction. These materials reacted selectively with target contaminants obviating off-target binding when challenged by other VOCs with orthogonal reactivity. The NPs outperformed conventional activated carbon sorbents.


Subject(s)
Aldehydes/chemistry , Biocompatible Materials/chemistry , Carbon/chemistry , Carboxylic Acids/chemistry , Environmental Pollutants/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Polyethyleneimine/chemistry , Polymers/chemistry , Environmental Exposure , Polyesters
11.
J Org Chem ; 80(24): 12234-43, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26599392

ABSTRACT

A series of rate studies were conducted to evaluate the steric and electronic properties that govern the reactivity of iodoarene amide catalysts in the α-oxytosylation of propiophenone. A meta-substituted benzamide catalyst emerged as the most reactive. This catalyst was employed in the α-oxytosylation of a series of substituted propiophenones, returning the α-tosyloxy ketone products in excellent isolated yield.

12.
Chem Biol Drug Des ; 103(1): e14377, 2024 01.
Article in English | MEDLINE | ID: mdl-37864277

ABSTRACT

Pathogenic free-living amoebae (pFLA) are single-celled eukaryotes responsible for causing intractable infections with high morbidity and mortality in humans and animals. Current therapeutic approaches include cocktails of antibiotic, antifungal, and antimicrobial compounds. Unfortunately, the efficacy of these can be limited, driving the need for the discovery of new treatments. Pan anti-amebic agents would be ideal; however, identifying these agents has been a challenge, likely due to the limited evolutionary relatedness of the different pFLA. Here, we discuss the potential of targeting amoebae glucose metabolic pathways as the differences between pFLA and humans suggest specific inhibitors could be developed as leads for new therapeutics.


Subject(s)
Amoeba , Animals , Humans , Antifungal Agents
13.
bioRxiv ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39257794

ABSTRACT

Current clinical small molecule x-ray CT agents are effective but pose risks such as nephrotoxicity, short blood circulation time, limiting scan durations, potential thyroid impact, and immune responses. These challenges drive the development of kidney-safe x-ray nanoparticle (NP)-based contrast agents (CAs), though translation to clinical practice is hindered by chemical complexities and potential toxicity. We have engineered an intravenous, injectable, and safe blood pool NP-based CT CAs at a clinical-equivalent dose of ∼300 mgI/kg (∼2 mL/kg), ideal for vascular and hepatic imaging which are limited by clinical agents. Our iodinated lipid nanodroplet emulsions (ILNEs) contrast agent offers high x-ray attenuation thus improved contrast enhancement, extended stability, and exceptional batch-to-batch consistency. It also boasts a straightforward and scalable manufacturing process with minimal protein interaction, prolonged blood residency (∼4h), and hepatic clearance within 3 days, avoiding nephrotoxicity. Studies in vitro, in mice, and 16.6kg porcine animal model studies confirm its safety, cytocompatibility, and absence of tissue damage. Blood, and thyroid-stimulating hormone (TSH) analyses, and kidney and liver function tests, also support further toxicity evaluations for clinical translation.

14.
Biomater Sci ; 12(3): 725-737, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38099834

ABSTRACT

Drug delivery systems based on amphiphilic supramolecular macrocycles have garnered increased attention over the past two decades due to their ability to successfully formulate nanoparticles. Macrocyclic (MC) materials can self-assemble at lower concentrations without the need for surfactants and polymers, but surfactants are required to form and stabilize nanoparticles at higher concentrations. Using MCs to deliver both hydrophilic and hydrophobic guest molecules is advantageous. We developed two novel types of amphiphilic macrocycle nanoparticles (MC NPs) capable of delivering either Nile Red (NR) (a hydrophobic model) or Rhodamine B (RhB) (a hydrophilic model) fluorescent dyes. We extensively characterized the materials using various techniques to determine size, morphology, stability, hemolysis, fluorescence, loading efficiency (LE), and loading capacity (LC). We then loaded the CDK4/6 inhibitor Palbociclib (Palb) into both MC NPs using a solvent diffusion method. This yielded Palb-MC NPs in the size range of 65-90 nm. They exhibited high stability over time and in fetal bovine serum with negligible toxicity against erythrocytes. Cytotoxicity was minimal when tested against RAW macrophages, human fibroblast HDFn, and adipose stromal cells (ASCs) at higher concentrations of MC NPs. Cell viability studies were conducted with different concentrations of MC NPs, Palb-MC NPs, and free Palb against RAW macrophages, human U-87 GBM, and human M14 melanoma cell lines in vitro. Flow cytometry experiments revealed that blank MC NPs and Palb-MC NPs were selectively targeted to melanoma cells, resulting in cell death compared to the other two cell lines. Future work will focus on studying the biological effect of MC NPs including their binding affinity with molecules/receptors expressed on the M14 and other melanoma cell surfaces by molecular docking simulations. Subsequently, we will evaluate the MCs as a component of combination therapy in a murine melanoma model.


Subject(s)
Melanoma , Nanoparticles , Piperazines , Pyridines , Mice , Humans , Animals , Melanoma/drug therapy , Molecular Docking Simulation , Drug Delivery Systems , Nanoparticles/chemistry , Surface-Active Agents , Drug Carriers/chemistry , Cyclin-Dependent Kinase 4
15.
bioRxiv ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38293107

ABSTRACT

Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate that these agents are potent inhibitors of N. fowleri ENO ( Nf ENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC 50 value of 0.14 ± 0.04 µM) that was toxic to trophozoites (EC 50 value of 0.21 ± 0.02 µM) while the reported CC 50 was >300 µM. Molecular docking simulation revealed that HEX binds strongly to the active site of Nf ENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of Nf ENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the conclusion of the experiment, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. Brains of six of the eight survivors were positive for amoebae, suggesting the agent at the tested dose suppressed, but did not eliminate, infection. These findings suggest that HEX is a promising lead for the treatment of PAM.

16.
J Am Chem Soc ; 135(39): 14524-7, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-24025085

ABSTRACT

We report absolute and relative stereochemistry of addition in enantioselective chlorolactonizations of 4-phenyl-4-pentenoic acid and its related t-butyl ester, catalyzed by (DHQD)2PHAL. Predominant syn addition of the chlorenium and the nucleophile across the olefin is observed. As shown by isotopic labeling, NMR spectroscopy, and derivative studies, the two new stereocenters formed by addition across the double bond are set independently and influenced by different factors. These findings suggest a stepwise process via an intermediate capable of lactone closure with either stereochemistry, in contradistinction to the more familiar scenario in which anti addition is dictated by a bridging chloronium ion intermediate.

17.
Chemistry ; 19(27): 9015-21, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23671005

ABSTRACT

A remarkable solvent-controlled enantiodivergence is seen in the hydroquinidine 1,4-phthalazinediyl diether ((DHQD)2PHAL)-catalyzed chlorocyclization of unsaturated carbamates. Eyring plot analyses of this previously unreported reaction are used to probe and compare the R- and S-selective pathways. In the CHCl3/hexanes solvent system, the pro-R process shows a surprising increase in selectivity with increasing temperature. These studies point to a strongly solvent-dependent entropy-enthalpy balance between the pro-R and pro-S pathways.

18.
J Agric Food Chem ; 71(42): 15644-15655, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37796649

ABSTRACT

Lipid oxidation is a major issue affecting products containing unsaturated fatty acids as ingredients or components, leading to the formation of low molecular weight species with diverse functional groups that impart off-odors and off-flavors. Aiming to control this process, antioxidants are commonly added to these products, often deployed as combinations of two or more compounds, a strategy that allows for lowering the amount used while boosting the total antioxidant capacity of the formulation. While this approach allows for minimizing the potential organoleptic and toxic effects of these compounds, predicting how these mixtures of antioxidants will behave has traditionally been one of the most challenging tasks, often leading to simple additive, antagonistic, or synergistic effects. Approaches to understanding these interactions have been predominantly empirically driven but thus far, inefficient and unable to account for the complexity and multifaceted nature of antioxidant responses. To address this current gap in knowledge, we describe the use of an artificial intelligence model based on deep learning architecture to predict the type of interaction (synergistic, additive, and antagonistic) of antioxidant combinations. Here, each mixture was associated with a combination index value (CI) and used as input for our model, which was challenged against a test (n = 140) data set. Despite the encouraging preliminary results, this algorithm failed to provide accurate predictions of oxidation experiments performed in-house using binary mixtures of phenolic antioxidants and a lard sample. To overcome this problem, the AI algorithm was then enhanced with various amounts of experimental data (antioxidant power data assessed by the TBARS assay), demonstrating the importance of having chemically relevant experimental data to enhance the model's performance and provide suitable predictions with statistical relevance. We believe the proposed method could be used as an auxiliary tool in benchmark analysis routines, offering a novel strategy to enable broader and more rational predictions related to the behavior of antioxidant mixtures.


Subject(s)
Antioxidants , Artificial Intelligence , Antioxidants/chemistry , Drug Interactions , Phenols/chemistry , Oxidation-Reduction
19.
RSC Sustain ; 1(5): 1184-1191, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-38013677

ABSTRACT

Meatpacking and poultry operations produce an enormous amount of co-products including offal, fat, blood, feathers etc. that are collected and processed by the rendering industry into value-added materials such as various protein meals and rendered fat products. Rendered fats (mainly composed of triglycerides from the adipose tissue of animals or used cooking oil from the restaurant industry) are sold for a variety of applications including animal feed formulations. Nonetheless, in the current context of energy scarcity, their use as feedstocks for the generation of renewable fuels including biodiesel and renewable diesel represents a growing market. The diverse composition of the source material can impose significant challenges in terms of compliance, requiring the control (and reduction) of the concentration of elements such as phosphorus, sulfur, calcium, magnesium, sodium, potassium, and other undesirable metals that can otherwise interfere with critical aspects of the refining process or contaminate the renewable fuel products. To address this critical need, we describe the application of poly(ethylenimine)-modified cellulose nanocrystals as a low-cost material for the removal of unwanted metal/inorganic cations from rendered fat. A total of 28 real samples including poultry, white pork grease, and beef tallow were analyzed. Test results showed that the approach can effectively decrease the concentration of the target elements by 95 ± 2%, suggesting that this treatment protocol could dramatically improve the application of rendered fat products for renewable fuel refining.

20.
RSC Sustain ; 1(6): 1565, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-38013943

ABSTRACT

[This corrects the article DOI: 10.1039/D3SU00116D.].

SELECTION OF CITATIONS
SEARCH DETAIL