Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Chem Eng Data ; 68(12)2023.
Article in English | MEDLINE | ID: mdl-38312736

ABSTRACT

Vapor pressure (psat) data are needed to assess the potential use of terpenes as breath markers of recent cannabis use. Herein, a recently introduced gas-saturation method for psat measurements, known as dynamic vapor microextraction (DVME), was used to measure psat for the terpene (±)-3,7-dimethylocta-1,6-dien-3-ol, commonly known as linalool. The DVME apparatus utilizes inexpensive and commercially available components, a low internal volume, and helium carrier gas to minimize nonideal mixture behavior. In the temperature range from 314 K to 354 K, DVME-based measurements of the psat of linalool ranged from 81 Pa to 1250 Pa. With a measurement period of 30 min, the combined standard uncertainty of these measurements ranged from 0.0358·psat to 0.0584·psat, depending on temperature. The DVME-based measurements agree with a Wagner correlation of available literature data. We demonstrate that DVME produces accurate results for values of psat that are 200 times higher than in the DVME validation study with n-eicosane (C20H42). The oxidative stability of linalool was improved by the addition of 0.2 mass % of the antioxidant tert-butylhydroquinone.

2.
Anal Chem ; 93(51): 16977-16980, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34898163

ABSTRACT

Atmospheric moisture can contaminate calibrants for quantitative nuclear magnetic resonance (qNMR) spectroscopy and cause systematic errors in qNMR measurements. Therefore, coulometric Karl Fischer (CKF) titration was used to evaluate the hygroscopic tendencies of several organic compounds that are commonly used as calibrants for qNMR spectroscopy: benzoic acid, dimethyl sulfone, 1,3,5-trimethoxybenzene, acetanilide, dimethyl terephthalate, and 1,2,4,5-tetramethylbenzene. Samples were placed in a sealed humidity chamber at 100% relative humidity (RH) and a temperature of 295.4 ± 0.9 K. Over the course of months, portions of each sample were analyzed by CKF titration. All the compounds except dimethyl sulfone were resistant to changes in water content and thus are good choices for qNMR experiments. In contrast, dimethyl sulfone absorbed about 25 mass % of water over 5 weeks at 100% RH; such behavior could compromise qNMR experiments under certain conditions.


Subject(s)
Benzoic Acid , Water , Humidity , Magnetic Resonance Spectroscopy , Wettability
3.
Anal Chem ; 92(24): 16253-16259, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33231433

ABSTRACT

Dynamic vapor microextraction (DVME) is a new method that enables rapid vapor pressure measurements on large molecules with state-of-the-art measurement uncertainty for vapor pressures near 1 Pa. Four key features of DVME that allow for the rapid collection of vapor samples under thermodynamic conditions are (1) the use of a miniature vapor-equilibration vessel (the "saturator") to minimize the temperature gradients and internal volume, (2) the use of a capillary vapor trap to minimize the internal volume, (3) the use of helium carrier gas to minimize nonideal mixture behavior, and (4) the direct measurement of pressure inside the saturator to accurately account for overpressure caused by viscous flow. The performance of DVME was validated with vapor pressure measurements of n-eicosane (C20H42) at temperatures from 344 to 374 K. A thorough uncertainty analysis indicated a relative standard uncertainty of 2.03-2.82% for measurements in this temperature range. The measurements were compared to a reference correlation for the vapor pressures of n-alkanes; the deviation of the measurements from the correlation was ≤2.85%. The enthalpy of vaporization of n-eicosane at 359.0 K was calculated to be ΔvapH = 91.27 ± 0.28 kJ/mol compared to ΔvapH(corr) = 91.44 kJ/mol for the reference correlation. Total measurement periods as short as 15 min (3 min of thermal equilibration plus 12 min of carrier gas flow) were shown to be sufficient for high-quality vapor pressure measurements at 364 K.

4.
Anal Chem ; 91(7): 4429-4435, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30829480

ABSTRACT

1H NMR spectroscopy was used to analyze gas-phase mixtures of methane and propane at pressures near 0.1 MPa. The mixtures were prepared gravimetrically and had low uncertainty in their composition. The primary mixture used for this work had a methane mole fraction of xmethane,grav = (0.506875 ± 0.00019) and a propane mole fraction of xpropane,grav = (0.493125 ± 0.00019). NMR samples were prepared in two types of commercially available sample tubes that seal with a PTFE piston. Sample pressures ranged from 0.02 to 0.5 MPa. An analysis of measurement uncertainty for the NMR method resulted in combined standard uncertainties that decreased from 0.0082 x to 0.0010 x, as the pressure increased from 0.02 to 0.5 MPa. The larger uncertainties at lower pressures were primarily caused by uncertainties associated with phasing and baseline correction. A key difficulty in working with gas-phase samples, especially at lower pressures, is that the spectral peaks are inherently broad. Consequently, peak overlap was problematic, and it was not always possible to integrate a high percentage of a peak's intensity. However, with corrections to the integrated areas, based on the assumption of ideal Lorentzian peak shapes, excellent agreement between the NMR analyses and the gravimetric composition was observed across the entire pressure range. These experiments demonstrate the potential of 1H NMR for quantitative composition determinations of low-pressure gas-phase mixtures.

5.
Nature ; 439(7078): 831-4, 2006 Feb 16.
Article in English | MEDLINE | ID: mdl-16482154

ABSTRACT

It is widely believed that a defining characteristic of ionic liquids (or low-temperature molten salts) is that they exert no measurable vapour pressure, and hence cannot be distilled. Here we demonstrate that this is unfounded, and that many ionic liquids can be distilled at low pressure without decomposition. Ionic liquids represent matter solely composed of ions, and so are perceived as non-volatile substances. During the last decade, interest in the field of ionic liquids has burgeoned, producing a wealth of intellectual and technological challenges and opportunities for the production of new chemical and extractive processes, fuel cells and batteries, and new composite materials. Much of this potential is underpinned by their presumed involatility. This characteristic, however, can severely restrict the attainability of high purity levels for ionic liquids (when they contain poorly volatile components) in recycling schemes, as well as excluding their use in gas-phase processes. We anticipate that our demonstration that some selected families of commonly used aprotic ionic liquids can be distilled at 200-300 degrees C and low pressure, with concomitant recovery of significant amounts of pure substance, will permit these currently excluded applications to be realized.

6.
J Phys Chem B ; 111(30): 8959-64, 2007 Aug 02.
Article in English | MEDLINE | ID: mdl-17616224

ABSTRACT

The relative volatilities of a variety of common ionic liquids have been determined for the first time. Equimolar mixtures of ionic liquids were vacuum-distilled in a glass sublimation apparatus at approximately 473 K. The composition of the initial distillate, determined by NMR spectroscopy, was used to establish the relative volatility of each ionic liquid in the mixture. The effect of alkyl chain length was studied by distilling mixtures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, or mixtures of N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids, with different alkyl chain lengths. For both classes of salts, the volatility is highest when the alkyl side chain is a butyl group. The effect of cation structure on volatility has been determined by distilling mixtures containing different types of cations. Generally speaking, ionic liquids based on imidazolium and pyridinium cations are more volatile than ionic liquids based on ammonium and pyrrolidinium cations, regardless of the types of counterions present. Similarly, ionic liquids based on the anions [(C2F5SO2)2N](-), [(C4F9SO2)(CF3SO2)N](-) , and [(CF3SO2)2N](-) are more volatile than ionic liquids based on [(CF3SO2)3C](-) and [CF3SO3](-), and are much more volatile than ionic liquids based on [PF6](-).

7.
Chem Commun (Camb) ; (12): 1610-2, 2005 Mar 28.
Article in English | MEDLINE | ID: mdl-15770276

ABSTRACT

Data for viscosity vs. water content for three hydrophobic room-temperature ionic liquids show that their viscosities are strongly dependent on the amount of dissolved water.

8.
J Chromatogr A ; 1218(28): 4474-7, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21621781

ABSTRACT

Enthalpies of adsorption, ΔH(a), are reported for several light hydrocarbons on normal construction concrete. ΔH(a), which are a measure of the adhesion strength of a molecule on a surface, were determined by gas-solid chromatography with a packed column containing 60-80 mesh concrete particles. With this approach, the specific retention volume for a compound is measured as a function of temperature, and these data are used to calculate ΔH(a). For the hydrocarbons studied, we found that ΔH(a) was relatively large for unsaturated hydrocarbons. These are the first determinations of ΔH(a) of hydrocarbons on construction concrete, but useful comparisons with other ionic solids such as clays can be made.


Subject(s)
Chromatography, Gas/methods , Construction Materials/analysis , Hydrocarbons/chemistry , Adsorption , Temperature , Thermodynamics
9.
Environ Sci Technol ; 44(1): 388-93, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20000397

ABSTRACT

The atmospheric oxidation of monoterpenes plays a central role in the formation of secondary organic aerosols (SOAs), which have important effects on the weather and climate. However, models of SOA formation have large uncertainties. One reason for this is that SOA formation depends directly on the vapor pressures of the monoterpene oxidation products, but few vapor pressures have been reported for these compounds. As a result, models of SOA formation have had to rely on estimated values of vapor pressure. To alleviate this problem, we have developed the concatenated gas saturation method, which is a simple, reliable, high-throughput method for measuring the vapor pressures of low-volatility compounds. The concatenated gas saturation method represents a significant advance over traditional gas saturation methods. Instead of a single saturator and trap, the concatenated method uses several pairs of saturators and traps linked in series. Consequently, several measurements of vapor pressure can be made simultaneously, which greatly increases the rate of data collection. It also allows for the simultaneous measurement of a control compound, which is important for ensuring data quality. In this paper we demonstrate the use of the concatenated gas saturation method by determination of the vapor pressures of five monoterpene oxidation products and n-tetradecane (the control compound) over the temperature range 283.15-313.15 K. Over this temperature range, the vapor pressures ranged from about 0.5 Pa to about 70 Pa. The standard molar enthalpies of vaporization or sublimation were determined by use of the Clausius-Clapeyron equation.


Subject(s)
Terpenes/chemistry , Gases , Pressure , Volatilization
10.
J Am Chem Soc ; 127(12): 4423-32, 2005 Mar 30.
Article in English | MEDLINE | ID: mdl-15783225

ABSTRACT

Addressed herein is the 20+ year-old question of whether the true benzene and cyclohexene hydrogenation catalysts derived from the organometallic precursor [Rh(eta5-C5Me5)Cl2]2, 1, are homogeneous or heterogeneous. The methodology employed is that developed earlier (Lin, Y.; Finke, R. G. Inorg Chem. 1994, 33, 4891, "A More General Approach to Distinguishing Homogeneous from Heterogeneous Catalysis..."). The kinetic evidence especially, but also the metal product (nanoclusters plus bulk metal), Hg0 poisoning and other experiments, provide compelling evidence that Rh0 nanoclusters are the true benzene hydrogenation heterogeneous catalyst derived from [Rh(eta5-C5Me5)Cl2]2, 1, at the required more vigorous conditions of 50-100 degrees C and 50 atm H2. However, the same methods reveal that the cyclohexene hydrogenation catalyst derived from 1 at the milder conditions of 22 degrees C and 3.7 atm H2 is a nonnanocluster, homogeneous catalyst, most likely the previously identified complex, [Rh(eta5-C5Me5)(H)2(solvent)] (Gill, D. S.; White, C.; Maitlis, P. M J. C. S. Dalton Trans. 1978, 617). In short, the present results solve the two-decade-old problem of identifying the true benzene and cyclohexene hydrogenation catalysts derived from [Rh(eta5-C5Me5)Cl2]2. Perhaps most significant is the demonstration that the methodology employed has the ability to identify both heterogeneous and homogeneous catalysts from the same catalyst precursor.

11.
Inorg Chem ; 41(6): 1558-72, 2002 Mar 25.
Article in English | MEDLINE | ID: mdl-11896725

ABSTRACT

Following a comprehensive look at the arene hydrogenation literature by soluble nanocluster catalysts, six key, unfulfilled goals in nanocluster arene hydrogenation catalysis are identified. To begin to address those six goals, well-characterized polyoxoanion- and tetrabutylammonium-stabilized Rh(0) nanoclusters have been synthesized by the reduction of the precisely defined precatalyst [Bu(4)N](5)Na(3)[(1,5-COD)Rh small middle dotP(2)W(15)Nb(3)O(62)] with H(2) in propylene carbonate solvent. These Rh(0) nanoclusters are characterized by their stoichiometry of formation, transmission electron microscopy, and the two rate constants which characterize their mechanism of formation; previous studies in our laboratories have provided additional characterization of polyoxoanion-stabilized Rh(0) nanoclusters. Propylene carbonate solutions of the Rh(0) nanoclusters catalyze the hydrogenation of anisole (methoxybenzene) under mild conditions (22-78 degrees C, 30-40 psig H(2)). Proton donors such as water or HBF(4) small middle dotEt(2)O are discovered to affect both nanocluster formation and nanocluster arene hydrogenation catalysis. Under identical conditions, the Rh(0) nanoclusters are 10-fold more active than a commercially available, oxide-supported 5% Rh/Al(2)O(3) catalyst of the same average metal-particle size. A series of lifetime experiments shows that the Rh(0) nanoclusters are capable of at least 2600 total turnovers (TTO), a lifetime significantly longer than the approximately 100 TTO often seen for nanocluster arene hydrogenation catalysts, and a lifetime slightly better than the prior record of 2000 TTO for a literature nanocluster system. The present polyoxoanion-stabilized Rh(0) nanoclusters also display a record, albeit modest, 30% selectivity for the partial hydrogenation of anisole to 1-methoxycyclohexene with an overall yield of up to 8% at higher temperatures. In comparison to the 5% Rh/Al(2)O(3) catalyst, the polyoxoanion-stabilized nanoclusters yield a 4.7-fold higher maximum yield of 1-methoxycyclohexene. Finally, the seven main findings of the present work are summarized, including how they address five of the aforementioned six main goals in nanocluster arene hydrogenation.

12.
J Am Chem Soc ; 125(34): 10301-10, 2003 Aug 27.
Article in English | MEDLINE | ID: mdl-12926954

ABSTRACT

A reinvestigation of the true catalyst in a benzene hydrogenation system beginning with Ru(II)(eta(6)-C(6)Me(6))(OAc)(2) as the precatalyst is reported. The key observations leading to the conclusion that the true catalyst is bulk ruthenium metal particles, and not a homogeneous metal complex or a soluble nanocluster, are as follows: (i) the catalytic benzene hydrogenation reaction follows the nucleation (A --> B) and then autocatalytic surface-growth (A + B --> 2B) sigmoidal kinetics and mechanism recently elucidated for metal(0) formation from homogeneous precatalysts; (ii) bulk ruthenium metal forms during the hydrogenation; (iii) the bulk ruthenium metal is shown to have sufficient activity to account for all the observed activity; (iv) the filtrate from the product solution is inactive until further bulk metal is formed; (v) the addition of Hg(0), a known heterogeneous catalyst poison, completely inhibits further catalysis; and (vi) transmission electron microscopy fails to detect nanoclusters under conditions where they are otherwise routinely detected. Overall, the studies presented herein call into question any claim of homogeneous benzene hydrogenation with a Ru(arene) precatalyst. An additional, important finding is that the A --> B, then A + B --> 2B kinetic scheme previously elucidated for soluble nanocluster homogeneous nucleation and autocatalytic surface growth (Widegren, J. A.; Aiken, J. D., III; Ozkar, S.; Finke, R. G. Chem. Mater. 2001, 13, 312-324, and ref 8 therein) also quantitatively accounts for the formation of bulk metal via heterogeneous nucleation then autocatalytic surface growth. This is significant for three reasons: (i) quantitative kinetic studies of metal film formation from soluble precursors or chemical vapor deposition are rare; (ii) a clear demonstration of such A --> B, then A + B --> 2B kinetics, in which both the induction period and the autocatalysis are continuously monitored and then quantitatively accounted for, has not been previously demonstrated for metal thin-film formation; yet (iii) all the mechanistic insights from the soluble nanocluster system (op. cit.) should be applicable to metal thin-film formations which exhibit sigmoidal kinetics and, hence, the A --> B, then A + B --> 2B mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL