ABSTRACT
OBJECTIVE: To investigate the relationship between neurocognitive deficits and structural changes on brain magnetic resonance imaging in people living with HIV (PLWH) with good virological control on combination antiretroviral therapy, compared with socioeconomically matched control participants recruited from the same communities. METHODS: Brain magnetic resonance imaging scans, and clinical and neuropsychological data were obtained from virologically controlled PLWH (viral load of <50 c/mL and at least 1 year of combination antiretroviral therapy) and socioeconomically matched control participants. Magnetic resonance imaging was carried out on 3 T scanner with 8-channel head coils and segmented using Classification using Derivative-based Features. Multiple regression analysis was performed to examine the association between brain volume and various clinical and neuropsychiatric parameters adjusting for age, race, and sex. To evaluate longitudinal changes in brain volumes, a random coefficient model was used to evaluate the changes over time (age) adjusting for sex and race. RESULTS: The cross-sectional study included 164 PLWH and 51 controls, and the longitudinal study included 68 PLWH and 20 controls with 2 or more visits (mean 2.2 years, range 0.8-5.1 years). Gray matter (GM) atrophy rate was significantly higher in PLWH compared with control participants, and importantly, the GM and global atrophy was associated with the various neuropsychological domain scores. Higher volume of white matter hyperintensities were associated with increased atherosclerotic cardiovascular disease risk score, and decreased executive functioning and memory domain scores in PLWH. INTERPRETATION: These findings suggest ongoing neurological damage even in virologically controlled participants, with significant implications for clinical management of PLWH. ANN NEUROL 2024;95:941-950.
Subject(s)
Gray Matter , HIV Infections , Neurocognitive Disorders , White Matter , Humans , Cross-Sectional Studies , HIV Infections/complications , HIV Infections/diagnostic imaging , HIV Infections/pathology , HIV Infections/therapy , Neurocognitive Disorders/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Adult , Middle Aged , Male , Female , Cerebrum/diagnostic imaging , Cerebrum/pathology , Longitudinal StudiesABSTRACT
OBJECTIVES: After acute coronavirus disease-2019 (COVID-19), people often experience fatigue, "brain fog," or other central neurologic symptoms (neuro-post-acute SARS-CoV2, or "Neuro-PASC"). In this observational study we evaluated whether abnormalities noted on initial evaluation persist after at least another year. METHODS: Neuro-PASC research participants who had undergone comprehensive inpatient testing at the NIH Clinical Center returned after at least 1 year for follow-up assessments including symptoms rating scales, MRI, lumbar puncture for tests of the CSF, physiologic recordings during the Valsalva maneuver and head-up tilting (with serial plasma catechols and cardiac Doppler ultrasound during the tilting), blood volume measurement, skin biopsies to examine sympathetic innervation, and blood sampling for neuroendocrine and immunologic measures. RESULTS: 7 patients with Neuro-PASC (6 women, age range 42-63 years) underwent follow-up testing. 71% of initially abnormal test results remained abnormal at follow-up, including the pattern of CSF and serum oligoclonal bands, CSF indices of central catecholamine deficiency, baroreflex-cardiovagal dysfunction, the occurrence of tilt-evoked sudden hypotension, white matter hyperintensities on MRI, and adaptive responses in CSF. DISCUSSION: In Neuro-PASC most of the autonomic and immunologic abnormalities found initially are still present after more than a year.
Subject(s)
Autonomic Nervous System Diseases , COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/complications , COVID-19/immunology , Female , Middle Aged , Male , Adult , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/immunology , SARS-CoV-2 , Follow-Up StudiesABSTRACT
Background and Objectives: Various peripheral neuropathies, particularly those with sensory and autonomic dysfunction may occur during or shortly after acute COVID-19 illnesses. These appear most likely to reflect immune dysregulation. If similar manifestations can occur with the vaccination remains unknown. Results: In an observational study, we studied 23 patients (92% female; median age 40years) reporting new neuropathic symptoms beginning within 1 month after SARS-CoV-2 vaccination. 100% reported sensory symptoms comprising severe face and/or limb paresthesias, and 61% had orthostasis, heat intolerance and palpitations. Autonomic testing in 12 identified seven with reduced distal sweat production and six with positional orthostatic tachycardia syndrome. Among 16 with lower-leg skin biopsies, 31% had diagnostic/subthreshold epidermal neurite densities (≤5%), 13% were borderline (5.01-10%) and 19% showed abnormal axonal swelling. Biopsies from randomly selected five patients that were evaluated for immune complexes showed deposition of complement C4d in endothelial cells. Electrodiagnostic test results were normal in 94% (16/17). Together, 52% (12/23) of patients had objective evidence of small-fiber peripheral neuropathy. 58% patients (7/12) treated with oral corticosteroids had complete or near-complete improvement after two weeks as compared to 9% (1/11) of patients who did not receive immunotherapy having full recovery at 12 weeks. At 5-9 months post-symptom onset, 3 non-recovering patients received intravenous immunoglobulin with symptom resolution within two weeks. Conclusions: This observational study suggests that a variety of neuropathic symptoms may manifest after SARS-CoV-2 vaccinations and in some patients might be an immune-mediated process.