Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 174(4): 917-925.e10, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30033364

ABSTRACT

Bacteria utilize CRISPR-Cas adaptive immune systems for protection from bacteriophages (phages), and some phages produce anti-CRISPR (Acr) proteins that inhibit immune function. Despite thorough mechanistic and structural information for some Acr proteins, how they are deployed and utilized by a phage during infection is unknown. Here, we show that Acr production does not guarantee phage replication when faced with CRISPR-Cas immunity, but instead, infections fail when phage population numbers fall below a critical threshold. Infections succeed only if a sufficient Acr dose is contributed to a single cell by multiple phage genomes. The production of Acr proteins by phage genomes that fail to replicate leave the cell immunosuppressed, which predisposes the cell for successful infection by other phages in the population. This altruistic mechanism for CRISPR-Cas inhibition demonstrates inter-virus cooperation that may also manifest in other host-parasite interactions.


Subject(s)
Bacteriophages/immunology , CRISPR-Cas Systems/immunology , Host-Pathogen Interactions/immunology , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/virology , Viral Proteins/immunology , Evolution, Molecular , Pseudomonas aeruginosa/genetics , Viral Proteins/metabolism
2.
Cell ; 168(1-2): 9-11, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28086100

ABSTRACT

RNA-guided Cas9 endonucleases protect bacteria from viral infection and have been creatively repurposed as programmable molecular scalpels for surgical manipulation of DNA. Now, two papers in Cell (Pawluk et al. and Rauch et al.) identify viral proteins that suppress Cas9 and may function like molecular sheaths for the Cas9 scalpel.


Subject(s)
Endonucleases/genetics , RNA , Bacteria/genetics , CRISPR-Cas Systems , DNA/genetics , Genetic Engineering
3.
Cell ; 169(1): 47-57.e11, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340349

ABSTRACT

Genetic conflict between viruses and their hosts drives evolution and genetic innovation. Prokaryotes evolved CRISPR-mediated adaptive immune systems for protection from viral infection, and viruses have evolved diverse anti-CRISPR (Acr) proteins that subvert these immune systems. The adaptive immune system in Pseudomonas aeruginosa (type I-F) relies on a 350 kDa CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease for target degradation. Here, we report the cryo-electron microscopy (cryo-EM) structure of the Csy complex bound to two different Acr proteins, AcrF1 and AcrF2, at an average resolution of 3.4 Å. The structure explains the molecular mechanism for immune system suppression, and structure-guided mutations show that the Acr proteins bind to residues essential for crRNA-mediated detection of DNA. Collectively, these data provide a snapshot of an ongoing molecular arms race between viral suppressors and the immune system they target.


Subject(s)
Bacteriophages/chemistry , CRISPR-Associated Proteins/chemistry , Clustered Regularly Interspaced Short Palindromic Repeats , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/virology , RNA, Bacterial/chemistry , Viral Proteins/chemistry , Bacteriophages/classification , Bacteriophages/genetics , Cryoelectron Microscopy , Crystallography, X-Ray , Immunologic Surveillance , Models, Molecular , Pseudomonas aeruginosa/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/ultrastructure , Viral Proteins/ultrastructure
4.
Cell ; 163(1): 260-260.e1, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26406380

ABSTRACT

Bacteria and archaea have evolved sophisticated adaptive immune systems that reply on CRISPR loci and a diverse cassette of Cas genes that are classified into three main types and at least eleven subtypes. All CRISPR-Cas immune systems operate through three main stages: acquisition, biogenesis, and interference. This SnapShot summarizes our current knowledge of these fascinating immune systems.


Subject(s)
Archaea/immunology , Bacteria/immunology , CRISPR-Cas Systems , RNA, Guide, Kinetoplastida/genetics , Archaea/genetics , Bacteria/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , RNA Interference
5.
Cell ; 163(4): 854-65, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26522594

ABSTRACT

CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease helicase for target degradation. Here, we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways dictated by the presence or absence of a protospacer-adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short single-stranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent on the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes and support a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA.


Subject(s)
Bacteriophage lambda/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA Helicases/metabolism , DNA, Viral/metabolism , Endodeoxyribonucleases/metabolism , Endonucleases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/virology , Escherichia coli/immunology , Escherichia coli/metabolism , Models, Biological , Repetitive Sequences, Nucleic Acid
6.
Annu Rev Biochem ; 82: 237-66, 2013.
Article in English | MEDLINE | ID: mdl-23495939

ABSTRACT

Effective clearance of an infection requires that the immune system rapidly detects and neutralizes invading parasites while strictly avoiding self-antigens that would result in autoimmunity. The cellular machinery and complex signaling pathways that coordinate an effective immune response have generally been considered properties of the eukaryotic immune system. However, a surprisingly sophisticated adaptive immune system that relies on small RNAs for sequence-specific targeting of foreign nucleic acids was recently discovered in bacteria and archaea. Molecular vaccination in prokaryotes is achieved by integrating short fragments of foreign nucleic acids into a repetitive locus in the host chromosome known as a CRISPR (clustered regularly interspaced short palindromic repeat). Here we review the mechanisms of CRISPR-mediated immunity and discuss the ecological and evolutionary implications of these adaptive defense systems.


Subject(s)
Adaptive Immunity/genetics , Archaea/immunology , Bacteria/immunology , Inverted Repeat Sequences/genetics , RNA, Archaeal/genetics , RNA, Bacterial/genetics , Signal Transduction/genetics , Archaea/genetics , Bacteria/genetics , Inverted Repeat Sequences/immunology , RNA, Archaeal/immunology , RNA, Bacterial/immunology , Signal Transduction/immunology
7.
Mol Cell ; 74(1): 132-142.e5, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30872121

ABSTRACT

Bacteria and archaea have evolved sophisticated adaptive immune systems that rely on CRISPR RNA (crRNA)-guided detection and nuclease-mediated elimination of invading nucleic acids. Here, we present the cryo-electron microscopy (cryo-EM) structure of the type I-F crRNA-guided surveillance complex (Csy complex) from Pseudomonas aeruginosa bound to a double-stranded DNA target. Comparison of this structure to previously determined structures of this complex reveals a ∼180-degree rotation of the C-terminal helical bundle on the "large" Cas8f subunit. We show that the double-stranded DNA (dsDNA)-induced conformational change in Cas8f exposes a Cas2/3 "nuclease recruitment helix" that is structurally homologous to a virally encoded anti-CRISPR protein (AcrIF3). Structural homology between Cas8f and AcrIF3 suggests that AcrIF3 is a mimic of the Cas8f nuclease recruitment helix.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA, Bacterial/metabolism , Molecular Mimicry , Pseudomonas aeruginosa/enzymology , RNA, Bacterial/metabolism , RNA, Guide, Kinetoplastida/metabolism , Viral Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/immunology , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/immunology , Cryoelectron Microscopy , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Models, Molecular , Nucleic Acid Conformation , Protein Conformation , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/immunology , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology
8.
RNA ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942480

ABSTRACT

SARS-CoV-2, the causative virus of the COVID-19 pandemic, follows SARS and MERS as recent zoonotic coronaviruses causing severe respiratory illness and death in humans. The recurrent impact of zoonotic coronaviruses demands a better understanding of their fundamental molecular biochemistry. Nucleoside modifications, which modulate many steps of the RNA lifecycle, have been found in SARS-CoV-2 RNA, although whether they confer a pro- or anti-viral effect is unknown. Regardless, the viral RNA-dependent RNA polymerase will encounter these modifications as it transcribes through the viral genomic RNA. We investigated the functional consequences of nucleoside modification on the pre-steady state kinetics of SARS-CoV-2 RNA-dependent RNA transcription using an in vitro reconstituted transcription system with modified RNA templates. Our findings show that N6-methyladenosine and 2'O-methyladenosine modifications slow the rate of viral transcription at magnitudes specific to each modification, which has the potential to impact SARS-CoV-2 genome maintenance.

9.
Nucleic Acids Res ; 52(D1): D590-D596, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37889041

ABSTRACT

CRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities. We present CasPEDIA (http://caspedia.org), the Cas Protein Effector Database of Information and Assessment, a curated encyclopedia that integrates enzymatic classification for hundreds of different Cas enzymes across 27 phylogenetic groups spanning the Cas9, Cas12 and Cas13 families, as well as evolutionarily related IscB and TnpB proteins. All enzymes in CasPEDIA were annotated with a standard workflow based on their primary nuclease activity, target requirements and guide-RNA design constraints. Our functional classification scheme, CasID, is described alongside current phylogenetic classification, allowing users to search related orthologs by enzymatic function and sequence similarity. CasPEDIA is a comprehensive data portal that summarizes and contextualizes enzymatic properties of widely used Cas enzymes, equipping users with valuable resources to foster biotechnological development. CasPEDIA complements phylogenetic Cas nomenclature and enables researchers to leverage the multi-faceted nucleic-acid targeting rules of diverse Class 2 Cas enzymes.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Databases, Genetic , Endodeoxyribonucleases , CRISPR-Cas Systems/genetics , Phylogeny , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/classification , Endodeoxyribonucleases/genetics , Encyclopedias as Topic
10.
Proc Natl Acad Sci U S A ; 120(9): e2216430120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36802441

ABSTRACT

Monitoring the extracellular environment for danger signals is a critical aspect of cellular survival. However, the danger signals released by dying bacteria and the mechanisms bacteria use for threat assessment remain largely unexplored. Here, we show that lysis of Pseudomonas aeruginosa cells releases polyamines that are subsequently taken up by surviving cells via a mechanism that relies on Gac/Rsm signaling. While intracellular polyamines spike in surviving cells, the duration of this spike varies according to the infection status of the cell. In bacteriophage-infected cells, intracellular polyamines are maintained at high levels, which inhibits replication of the bacteriophage genome. Many bacteriophages package linear DNA genomes and linear DNA is sufficient to trigger intracellular polyamine accumulation, suggesting that linear DNA is sensed as a second danger signal. Collectively, these results demonstrate how polyamines released by dying cells together with linear DNA allow P. aeruginosa to make threat assessments of cellular injury.


Subject(s)
Bacteriophages , Polyamines , Bacteriophages/genetics , Bacteria , Pseudomonas aeruginosa , DNA
11.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507667

ABSTRACT

Selfish genetic elements comprise significant fractions of mammalian genomes. In rare instances, host genomes domesticate segments of these elements for function. Using a complete human genome assembly and 25 additional vertebrate genomes, we re-analyzed the evolutionary trajectories and functional potential of capsid (CA) genes domesticated from Metaviridae, a lineage of retrovirus-like retrotransposons. Our study expands on previous analyses to unearth several new insights about the evolutionary histories of these ancient genes. We find that at least five independent domestication events occurred from diverse Metaviridae, giving rise to three universally retained single-copy genes evolving under purifying selection and two gene families unique to placental mammals, with multiple members showing evidence of rapid evolution. In the SIRH/RTL family, we find diverse amino-terminal domains, widespread loss of protein-coding capacity in RTL10 despite its retention in several mammalian lineages, and differential utilization of an ancient programmed ribosomal frameshift in RTL3 between the domesticated CA and protease domains. Our analyses also reveal that most members of the PNMA family in mammalian genomes encode a conserved putative amino-terminal RNA-binding domain (RBD) both adjoining and independent from domesticated CA domains. Our analyses lead to a significant correction of previous annotations of the essential CCDC8 gene. We show that this putative RBD is also present in several extant Metaviridae, revealing a novel protein domain configuration in retrotransposons. Collectively, our study reveals the divergent outcomes of multiple domestication events from diverse Metaviridae in the common ancestor of placental mammals.


Subject(s)
Capsid , Retroelements , Pregnancy , Animals , Female , Humans , Evolution, Molecular , Placenta , Mammals/genetics , Capsid Proteins/genetics , Eutheria/genetics , Phylogeny
12.
Annu Rev Microbiol ; 74: 21-37, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32503371

ABSTRACT

More than 50 protein families have been identified that inhibit CRISPR (clustered regularly interspaced short palindromic repeats)-Cas-mediated adaptive immune systems. Here, we analyze the available anti-CRISPR (Acr) structures and describe common themes and unique mechanisms of stoichiometric and enzymatic suppressors of CRISPR-Cas. Stoichiometric inhibitors often function as molecular decoys of protein-binding partners or nucleic acid targets, while enzymatic suppressors covalently modify Cas ribonucleoprotein complexes or degrade immune signaling molecules. We review mechanistic insights that have been revealed by structures of Acrs, discuss some of the trade-offs associated with each of these strategies, and highlight how Acrs are regulated and deployed in the race to overcome adaptive immunity.


Subject(s)
Bacteriophages/genetics , CRISPR-Associated Protein 9/immunology , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , Viral Proteins/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/physiology , Evolution, Molecular , Protein Binding , Viral Proteins/immunology
13.
Nucleic Acids Res ; 50(19): 11243-11254, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36215034

ABSTRACT

CRISPR RNA-guided detection and degradation of foreign DNA is a dynamic process. Viruses can interfere with this cellular defense by expressing small proteins called anti-CRISPRs. While structural models of anti-CRISPRs bound to their target complex provide static snapshots that inform mechanism, the dynamics and thermodynamics of these interactions are often overlooked. Here, we use hydrogen deuterium exchange-mass spectrometry (HDX-MS) and differential scanning fluorimetry (DSF) experiments to determine how anti-CRISPR binding impacts the conformational landscape of the type IF CRISPR RNA guided surveillance complex (Csy) upon binding of two different anti-CRISPR proteins (AcrIF9 and AcrIF2). The results demonstrate that AcrIF2 binding relies on enthalpic stabilization, whereas AcrIF9 uses an entropy driven reaction to bind the CRISPR RNA-guided surveillance complex. Collectively, this work reveals the thermodynamic basis and mechanistic versatility of anti-CRISPR-mediated immune suppression. More broadly, this work presents a striking example of how allosteric effectors are employed to regulate nucleoprotein complexes.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Associated Proteins/metabolism , Allosteric Regulation , Models, Molecular , Proteins/genetics , Thermodynamics , RNA , CRISPR-Cas Systems
14.
Methods ; 205: 1-10, 2022 09.
Article in English | MEDLINE | ID: mdl-35690249

ABSTRACT

Polymerase Chain Reaction (PCR) is the reigning gold standard for molecular diagnostics. However, the SARS-CoV-2 pandemic reveals an urgent need for new diagnostics that provide users with immediate results without complex procedures or sophisticated equipment. These new demands have stimulated a tsunami of innovations that improve turnaround times without compromising the specificity and sensitivity that has established PCR as the paragon of diagnostics. Here we briefly introduce the origins of PCR and isothermal amplification, before turning to the emergence of CRISPR-Cas and Argonaute proteins, which are being coupled to fluorimeters, spectrometers, microfluidic devices, field-effect transistors, and amperometric biosensors, for a new generation of nucleic acid-based diagnostics.


Subject(s)
Argonaute Proteins , CRISPR-Cas Systems , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Argonaute Proteins/genetics , CRISPR-Cas Systems/genetics , Humans , Nucleic Acid Amplification Techniques/methods
15.
Mol Cell ; 58(5): 722-8, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26028539

ABSTRACT

Bacteria and archaea rely on CRISPR (clustered regularly interspaced short palindromic repeats) RNA-guided adaptive immune systems for targeted elimination of foreign nucleic acids. These immune systems have been divided into three main types, and the first atomic-resolution structure of a type III RNA-guided immune complex provides new insights into the mechanisms of nucleic acid degradation. Here we compare the crystal structure of a type III complex to recently determined structures of DNA-targeting type I CRISPR complexes. Structural comparisons support previous assertions that type I and type III systems share a common ancestor and reveal how a conserved structural chassis is used to support RNA-, DNA-, or both RNA- and DNA-targeting mechanisms.


Subject(s)
Archaea/virology , Bacteria/virology , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Associated Proteins/chemistry , Models, Molecular , Phylogeny , Protein Binding , Protein Conformation , RNA, Archaeal/chemistry , RNA, Archaeal/physiology , RNA, Bacterial/chemistry , RNA, Bacterial/physiology
16.
Nature ; 530(7591): 499-503, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26863189

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPRs) and the cas (CRISPR-associated) operon form an RNA-based adaptive immune system against foreign genetic elements in prokaryotes. Type I accounts for 95% of CRISPR systems, and has been used to control gene expression and cell fate. During CRISPR RNA (crRNA)-guided interference, Cascade (CRISPR-associated complex for antiviral defence) facilitates the crRNA-guided invasion of double-stranded DNA for complementary base-pairing with the target DNA strand while displacing the non-target strand, forming an R-loop. Cas3, which has nuclease and helicase activities, is subsequently recruited to degrade two DNA strands. A protospacer adjacent motif (PAM) sequence flanking target DNA is crucial for self versus foreign discrimination. Here we present the 2.45 Å crystal structure of Escherichia coli Cascade bound to a foreign double-stranded DNA target. The 5'-ATG PAM is recognized in duplex form, from the minor groove side, by three structural features in the Cascade Cse1 subunit. The promiscuity inherent to minor groove DNA recognition rationalizes the observation that a single Cascade complex can respond to several distinct PAM sequences. Optimal PAM recognition coincides with wedge insertion, initiating directional target DNA strand unwinding to allow segmented base-pairing with crRNA. The non-target strand is guided along a parallel path 25 Å apart, and the R-loop structure is further stabilized by locking this strand behind the Cse2 dimer. These observations provide the structural basis for understanding the PAM-dependent directional R-loop formation process.


Subject(s)
CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA/chemistry , DNA/metabolism , Escherichia coli/chemistry , RNA, Bacterial/chemistry , Base Pairing , Base Sequence , Crystallography, X-Ray , DNA Helicases/chemistry , DNA Helicases/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nucleotide Motifs , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism
17.
Nature ; 526(7571): 136-9, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26416740

ABSTRACT

The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function.


Subject(s)
Bacteria/metabolism , Bacteria/virology , Bacteriophages/metabolism , CRISPR-Associated Proteins/antagonists & inhibitors , CRISPR-Cas Systems/physiology , Evolution, Molecular , Viral Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA Helicases/antagonists & inhibitors , DNA Helicases/metabolism , DNA, Viral/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Endonucleases/antagonists & inhibitors , Endonucleases/metabolism , Protein Binding , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Substrate Specificity
18.
Mol Cell ; 46(5): 606-15, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22521690

ABSTRACT

In bacterial and archaeal CRISPR immune pathways, DNA sequences from invading bacteriophage or plasmids are integrated into CRISPR loci within the host genome, conferring immunity against subsequent infections. The ribonucleoprotein complex Cascade utilizes RNAs generated from these loci to target complementary "nonself" DNA sequences for destruction, while avoiding binding to "self" sequences within the CRISPR locus. Here we show that CasA, the largest protein subunit of Cascade, is required for nonself target recognition and binding. Combining a 2.3 Å crystal structure of CasA with cryo-EM structures of Cascade, we have identified a loop that is required for viral defense. This loop contacts a conserved three base pair motif that is required for nonself target selection. Our data suggest a model in which the CasA loop scans DNA for this short motif prior to target destabilization and binding, maximizing the efficiency of DNA surveillance by Cascade.


Subject(s)
Escherichia coli Proteins/physiology , Escherichia coli/immunology , Protein Subunits/physiology , Binding Sites , DNA/chemistry , Escherichia coli/genetics , Escherichia coli/virology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/immunology , Models, Immunological , Models, Molecular , Nucleic Acid Conformation , Protein Subunits/metabolism , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Bacterial/physiology , Ribonucleoproteins/chemistry , Ribonucleoproteins/immunology , Ribonucleoproteins/physiology
19.
Proc Natl Acad Sci U S A ; 114(26): E5113-E5121, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28438998

ABSTRACT

The type I-F CRISPR adaptive immune system in Pseudomonas aeruginosa (PA14) consists of two CRISPR loci and six CRISPR-associated (cas) genes. Type I-F systems rely on a CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease (i.e., Cas2/3) for target degradation. In most type I systems, Cas2 and Cas3 are separate proteins involved in adaptation and interference, respectively. However, in I-F systems, these proteins are fused into a single polypeptide. Here we use biochemical and structural methods to show that two molecules of Cas2/3 assemble with four molecules of Cas1 (Cas2/32:Cas14) into a four-lobed propeller-shaped structure, where the two Cas2 domains form a central hub (twofold axis of symmetry) flanked by two Cas1 lobes and two Cas3 lobes. We show that the Cas1 subunits repress Cas2/3 nuclease activity and that foreign DNA recognition by the Csy complex activates Cas2/3, resulting in bidirectional degradation of DNA targets. Collectively, this work provides a structure of the Cas1-2/3 complex and explains how Cas1 and the target-bound Csy complex play opposing roles in the regulation of Cas2/3 nuclease activity.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Cas Systems/physiology , Deoxyribonucleases/metabolism , Multienzyme Complexes/metabolism , Pseudomonas aeruginosa/enzymology , Bacterial Proteins/genetics , Deoxyribonucleases/genetics , Multienzyme Complexes/genetics , Pseudomonas aeruginosa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL