Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Transl Med ; 20(1): 77, 2022 02 05.
Article in English | MEDLINE | ID: mdl-35123510

ABSTRACT

BACKGROUND: Cardiovascular impairment contributes to increased mortality in preterm infants with chronic lung disease. Macitentan, an endothelin-1 receptor antagonist, has the potential to attenuate pulmonary and cardiovascular remodelling. METHODS: In a prospective randomized placebo-controlled intervention trial, Sprague-Dawley rats were exposed to 0.21 or 1.0 fraction of inspired oxygen (FiO2) for 19 postnatal days. Rats were treated via gavage with placebo or macitentan from days of life 5 to 19. Alveoli, pulmonary vessels, α-smooth muscle actin content in pulmonary arterioles, size of cardiomyocytes, right to left ventricular wall diameter ratio, and endothelin-1 plasma concentrations were assessed. RESULTS: FiO2 1.0 induced typical features of chronic lung disease with significant alveolar enlargement (p = 0.012), alveolar (p = 0.048) and pulmonary vessel rarefaction (p = 0.024), higher α-smooth muscle actin content in pulmonary arterioles (p = 0.009), higher right to left ventricular wall diameter ratio (p = 0.02), and larger cardiomyocyte cross-sectional area (p < 0.001). Macitentan treatment significantly increased pulmonary vessel count (p = 0.004) and decreased right to left ventricular wall diameter ratios (p = 0.002). Endothelin-1 plasma concentrations were higher compared to placebo (p = 0.015). Alveolar number and size, α-smooth muscle actin, and the cardiomyocyte cross-sectional area remained unchanged (all p > 0.05). CONCLUSION: The endothelin-1 receptor antagonist macitentan attenuated cardiovascular remodelling in an infant rat model for preterm chronic lung disease. This study underscores the potential of macitentan to reduce cardiovascular morbidity in preterm infants with chronic lung disease.


Subject(s)
Hypertension, Pulmonary , Animals , Humans , Infant, Newborn , Infant, Premature , Myocytes, Cardiac , Prospective Studies , Pyrimidines , Rats , Rats, Sprague-Dawley , Sulfonamides
2.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L220-L231, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33207919

ABSTRACT

Rats are often used in ventilator-induced lung injury (VILI) models. However, strain-specific susceptibility for VILI has not been elucidated yet. The aim of this study was to demonstrate strain-specific differences in VILI in infant Sprague-Dawley and Wistar rats. VILI was compared in 2-wk-old pups after 8 h of protective or injurious ventilation. Pups were ventilated with tidal volumes (VT) of ∼7 mL/kg and positive end-expiratory pressures (PEEP) of 6 cmH2O (VT7 PEEP6) or with VT of ∼21 mL/kg and PEEP 2 cmH2O (VT21 PEEP2). Interleukin-6, macrophage inflammatory protein-2 (MIP-2), inflammatory cells, and albumin in bronchoalveolar lavage fluid (BALF); histology; and low-frequency forced oscillation technique (LFOT) and pressure-volume (PV) maneuvers were assessed. Alveolar macrophages, neutrophils, and MIP-2 derived from BALF revealed more pronounced VILI after VT21 PEEP2 in both strains. LFOT and PV analyses demonstrated rat strain-specific differences both at baseline and particularly in response to VT21 PEEP2 ventilation. Sprague-Dawley rats showed higher airway and tissue resistance and elastance values with no difference in hysteresivity between ventilation strategies. Wister rats challenged by VT21 PEEP2 experienced significantly more energy dissipation when compared with VT7 PEEP6 ventilation. In conclusion, both rat strains are useful for VILI models. The degree of VILI severity depends on ventilation strategy and selected strain. However, fundamental and time-dependent differences in respiratory system mechanics exist and reflect different lung tissue viscoelasticity. Hence, strain-specific characteristics of the respiratory system need to be considered when planning and interpreting VILI studies with infant rats.


Subject(s)
Bronchoalveolar Lavage Fluid/chemistry , Macrophages, Alveolar/pathology , Respiratory Mechanics , Ventilator-Induced Lung Injury/physiopathology , Animals , Animals, Newborn , Elasticity , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Rats, Wistar , Ventilator-Induced Lung Injury/classification , Viscosity
3.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L562-L575, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32579393

ABSTRACT

The poorly understood tolerance toward high tidal volume (VT) ventilation observed in critically ill children and age-equivalent animal models may be explained by surfactant homeostasis. The aim of our prospective animal study was to test whether high VT with adequate positive end-expiratory pressure (PEEP) is associated with surfactant de novo synthesis and secretion, leading to improved lung function, and whether extreme mechanical ventilation affects intracellular lamellar body formation and exocytosis. Rats (14 days old) were allocated to five groups: nonventilated controls, PEEP 5 cmH2O with VT of 8, 16, and 24 mL/kg, and PEEP 1 cmH2O with VT 24 mL/kg. Following 6 h of ventilation, lung function, surfactant proteins and phospholipids, and lamellar bodies were assessed by forced oscillation technique, quantitative real-time polymerase chain reaction, mass spectrometry, immunohistochemistry, and transmission electron microscopy. High VT (24 mL/kg) with PEEP of 5 cmH2O improved respiratory system mechanics and was not associated with lung injury, elevated surfactant protein expression, or surfactant phospholipid content. Extreme ventilation with VT 24 mL/kg and PEEP 1 cmH2O produced a mild inflammatory response and correlated with higher surfactant phospholipid concentrations in bronchoalveolar lavage fluid without affecting lamellar body count and morphology. Elevated phospholipid concentrations in the potentially most injurious strategy (VT 24 mL/kg, PEEP 1 cmH2O) need further evaluation and might reflect accumulation of biophysically inactive small aggregates. In conclusion, our data confirm the resilience of infant rats toward high VT-induced lung injury and challenge the relevance of surfactant synthesis, storage, and secretion as protective factors.


Subject(s)
Lung Injury/metabolism , Lung Injury/physiopathology , Pulmonary Surfactants/metabolism , Tidal Volume/physiology , Animals , Bronchoalveolar Lavage Fluid/cytology , Lung/metabolism , Lung/physiopathology , Rats , Respiratory Mechanics/physiology , Surface-Active Agents/metabolism
4.
J Transl Med ; 17(1): 91, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30885241

ABSTRACT

BACKGROUND: Hyperoxia-induced bronchopulmonary dysplasia (BPD) models are essential for better understanding and impacting on long-term pulmonary, cardiovascular, and neurological sequelae of this chronic disease. Only few experimental studies have systematically compared structural alterations with lung function measurements. METHODS: In three separate and consecutive series, Sprague-Dawley infant rats were exposed from day of life (DOL) 1 to 19 to either room air (0.21; controls) or to fractions of inspired oxygen (FiO2) of 0.6, 0.8, and 1.0. Our primary outcome parameters were histopathologic analyses of heart, lungs, and respiratory system mechanics, assessed via image analysis tools and the forced oscillation technique, respectively. RESULTS: Exposure to FiO2 of 0.8 and 1.0 resulted in significantly lower body weights and elevated coefficients of lung tissue damping (G) and elastance (H) when compared with controls. Hysteresivity (η) was lower due to a more pronounced increase of H when compared with G. A positive structure-function relation was demonstrated between H and the lung parenchymal content of α-smooth muscle actin (α-SMA) under hyperoxic conditions. Moreover, histology and morphometric analyses revealed alveolar simplification, fewer pulmonary arterioles, increased α-SMA content in pulmonary vessels, and right heart hypertrophy following hyperoxia. Also, in comparison to controls, hyperoxia resulted in significantly lower plasma levels of vascular endothelial growth factor (VEGF). Lastly, rats in hyperoxia showed hyperactive and a more explorative behaviour. CONCLUSIONS: Our in vivo infant rat model mimics clinical key features of BPD. To the best of our knowledge, this is the first BPD rat model demonstrating an association between lung structure and function. Moreover, we provide additional evidence that infant rats subjected to hyperoxia develop rarefaction of pulmonary vessels, augmented vascular α-SMA, and adaptive cardiac hypertrophy. Thus, our model provides a clinically relevant tool to further investigate diseases related to O2 toxicity and to evaluate novel pharmacological treatment strategies.


Subject(s)
Cardiomegaly/etiology , Cardiomegaly/physiopathology , Hyperoxia/complications , Hyperoxia/physiopathology , Lung/pathology , Lung/physiopathology , Microvascular Rarefaction/etiology , Microvascular Rarefaction/physiopathology , Animals , Animals, Newborn , Behavior, Animal , Biomarkers/metabolism , Cardiomegaly/blood , Endothelin-1/blood , Female , Humans , Hyperoxia/blood , Lung/blood supply , Microvascular Rarefaction/blood , Myocardium/pathology , Rats, Sprague-Dawley , Respiratory Mechanics , Social Behavior , Survival Analysis , Vascular Endothelial Growth Factor A/blood , Weight Gain
5.
Am J Transl Res ; 14(1): 343-354, 2022.
Article in English | MEDLINE | ID: mdl-35173852

ABSTRACT

BACKGROUND: Intensive care practice calls for ventilator adjustments due to fast-changing clinical conditions in ventilated critically ill children. These adaptations include positive end-expiratory pressure (PEEP), fraction of inspired oxygen (FiO2), and respiratory rate (RR). It is unclear which alterations in ventilator settings trigger a significant systemic inflammatory response. METHODS: Fourteen-day old Wistar rat pups were randomized to the following groups: (a) "control" with tidal volume ~8 mL/kg, PEEP 5 cmH2O, FiO2 0.4, RR 90 min-1, (b) "PEEP 1", (c) "PEEP 9" (d) "FiO2 0.21", (e) "FiO2 1.0", (f) "hypocapnia" with RR of 180 min-1, and (g) "hypercapnia" with RR of 60 min-1. Following 120 min of mechanical ventilation, plasma for inflammatory biomarker analyses was obtained by direct cardiac puncture at the end of the experiment. RESULTS: Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were driven by FiO2 0.4 and 1.0 (P=0.02, P<0.01, respectively), tissue plasminogen activator inhibitor type-1 (tPAI-1) was increased by high PEEP (9 cmH2O, P<0.05) and hypocapnia (P<0.05), and TNF-α was significantly lower in hypercapnia (P<0.01). Tissue inhibitor of metalloproteinase-1 (TIMP-1), cytokine-induced neutrophil chemoattractant 1 (CINC-1), connective tissue growth factor (CTGF), and monocyte chemoattractant protein-1 (MCP-1) remained unaffected. CONCLUSION: Alterations of PEEP, FiO2, and respiratory frequency induced a significant systemic inflammatory response in plasma of infant rats. These findings underscore the importance of lung-protective ventilation strategies. However, future studies are needed to clarify whether ventilation induced systemic inflammation in animal models is pathophysiologically relevant to human infants.

6.
Physiol Rep ; 6(2)2018 01.
Article in English | MEDLINE | ID: mdl-29380954

ABSTRACT

Mechanical ventilation (MV) is routinely used in pediatric general anesthesia and critical care, but may adversely affect the cardiocirculatory system. Biomarkers are increasingly measured to assess cardiovascular status and improve clinical treatment decision-making. As the impact of mechanical ventilation strategies on cardiovascular biomarkers in ventilated infants is largely unknown, we conducted this retrospective study in a healthy in vivo infant rat ventilation model using 14-days old Wistar rats. We hypothesized that 2 h of mechanical ventilation with high and low positive end-expiratory pressure (PEEP), hyperoxemia, hypoxemia, hypercapnia, and hypocapnia would significantly impact B-type natriuretic peptide (BNP), vascular endothelial growth factor (VEGF), and endothelin-1 (ET-1). We found BNP to be driven by both high (9 cmH2 O) and low (1 cmH2 O) PEEP compared to ventilated control animals (P < 0.05). VEGF concentrations were associated with high PEEP, hyperoxemia, hypoxemia, and hypocapnia (P < 0.05), whereas ET-1 levels were changed only in response to hypoxemia (P < 0.05). In conclusion, the mode of mechanical ventilation alters plasma biomarker concentrations. Moreover, BNP and VEGF might serve as surrogate parameters for ventilation induced cardiovascular compromise and lung tissue damage. Furthermore, our data support the hypothesis, that sudden onset of hyperoxemia may trigger a quick VEGF release as a possible cellular survival reflex.


Subject(s)
Biomarkers/blood , Respiration, Artificial/adverse effects , Animals , Animals, Newborn , Disease Models, Animal , Endothelin-1/blood , Female , Male , Natriuretic Peptide, Brain/blood , Rats , Rats, Wistar , Vascular Endothelial Growth Factor A/blood
7.
Respir Physiol Neurobiol ; 185(2): 222-7, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23123968

ABSTRACT

Copeptin, the C-terminal part of the arginine vasopressin precursor peptide, holds promise as a diagnostic and prognostic plasma biomarker in various acute clinical conditions. Factors influencing copeptin response in the critical care setting are only partially established and have not been investigated systematically. Using an in vivo infant ventilation model (Wistar rats, 14 days old), we studied the influence of commonly occurring stressors in critically ill children. In unstressed ventilated rats basal median copeptin concentration was 22pmol/L. In response to respiratory alkalosis copeptin increased 5-fold, while exposure to hypoxemia, high PEEP, hemorrhage, and psycho-emotional stress produced a more than 10-fold increase. Additionally, we did not find a direct association between copeptin and acidosis, hypercapnia, and hyperthermia. Clinicians working in the acute critical care setting should be aware of factors influencing copeptin plasma concentrations. Moreover, our results do have implications for animal studies in the field of stress research.


Subject(s)
Glycopeptides/blood , Hypoxia/blood , Hypoxia/therapy , Respiration, Artificial/methods , Analysis of Variance , Animals , Animals, Newborn , Blood Gas Analysis , Disease Models, Animal , Heart Rate/physiology , Hemorrhage/blood , Hypoxia/physiopathology , Immunoassay , Positive-Pressure Respiration , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL