Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(24): e2200016119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35666863

ABSTRACT

The polar bear (Ursus maritimus) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears (Ursus arctos). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10× coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear's lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations.


Subject(s)
Biological Evolution , Hybridization, Genetic , Ursidae , Animals , Gene Flow , Genome/genetics , Phylogeny , Ursidae/genetics
2.
Glob Chang Biol ; 28(8): 2657-2677, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35106859

ABSTRACT

Global warming is affecting the population dynamics and trophic interactions across a wide range of ecosystems and habitats. Translating these real-time effects into their long-term consequences remains a challenge. The rapid and extreme warming period that occurred after the Last Glacial Maximum (LGM) during the Pleistocene-Holocene transition (7-12 thousand years ago) provides an opportunity to gain insights into the long-term responses of natural populations to periods with global warming. The effects of this post-LGM warming period have been assessed in many terrestrial taxa, whereas insights into the impacts of rapid global warming on marine taxa remain limited, especially for megafauna. In order to understand how large-scale climate fluctuations during the post-LGM affected baleen whales and their prey, we conducted an extensive, large-scale analysis of the long-term effects of the post-LGM warming on abundance and inter-ocean connectivity in eight baleen whale and seven prey (fish and invertebrates) species across the Southern and the North Atlantic Ocean; two ocean basins that differ in key oceanographic features. The analysis was based upon 7032 mitochondrial DNA sequences as well as genome-wide DNA sequence variation in 100 individuals. The estimated temporal changes in genetic diversity during the last 30,000 years indicated that most baleen whale populations underwent post-LGM expansions in both ocean basins. The increase in baleen whale abundance during the Holocene was associated with simultaneous changes in their prey and climate. Highly correlated, synchronized and exponential increases in abundance in both baleen whales and their prey in the Southern Ocean were indicative of a dramatic increase in ocean productivity. In contrast, the demographic fluctuations observed in baleen whales and their prey in the North Atlantic Ocean were subtle, varying across taxa and time. Perhaps most important was the observation that the ocean-wide expansions and decreases in abundance that were initiated by the post-LGM global warming, continued for millennia after global temperatures stabilized, reflecting persistent, long-lasting impacts of global warming on marine fauna.


Subject(s)
Ecosystem , Global Warming , Animals , Atlantic Ocean , Population Dynamics , Whales/physiology
3.
Proc Biol Sci ; 288(1958): 20211741, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34493082

ABSTRACT

Loss of Arctic sea ice owing to climate change is predicted to reduce both genetic diversity and gene flow in ice-dependent species, with potentially negative consequences for their long-term viability. Here, we tested for the population-genetic impacts of reduced sea ice cover on the polar bear (Ursus maritimus) sampled across two decades (1995-2016) from the Svalbard Archipelago, Norway, an area that is affected by rapid sea ice loss in the Arctic Barents Sea. We analysed genetic variation at 22 microsatellite loci for 626 polar bears from four sampling areas within the archipelago. Our results revealed a 3-10% loss of genetic diversity across the study period, accompanied by a near 200% increase in genetic differentiation across regions. These effects may best be explained by a decrease in gene flow caused by habitat fragmentation owing to the loss of sea ice coverage, resulting in increased inbreeding of local polar bears within the focal sampling areas in the Svalbard Archipelago. This study illustrates the importance of genetic monitoring for developing adaptive management strategies for polar bears and other ice-dependent species.


Subject(s)
Ice Cover , Ursidae , Animals , Arctic Regions , Climate Change , Ecosystem , Ursidae/genetics
4.
PLoS Genet ; 14(11): e1007745, 2018 11.
Article in English | MEDLINE | ID: mdl-30419012

ABSTRACT

North America is currently home to a number of grey wolf (Canis lupus) and wolf-like canid populations, including the coyote (Canis latrans) and the taxonomically controversial red, Eastern timber and Great Lakes wolves. We explored their population structure and regional gene flow using a dataset of 40 full genome sequences that represent the extant diversity of North American wolves and wolf-like canid populations. This included 15 new genomes (13 North American grey wolves, 1 red wolf and 1 Eastern timber/Great Lakes wolf), ranging from 0.4 to 15x coverage. In addition to providing full genome support for the previously proposed coyote-wolf admixture origin for the taxonomically controversial red, Eastern timber and Great Lakes wolves, the discriminatory power offered by our dataset suggests all North American grey wolves, including the Mexican form, are monophyletic, and thus share a common ancestor to the exclusion of all other wolves. Furthermore, we identify three distinct populations in the high arctic, one being a previously unidentified "Polar wolf" population endemic to Ellesmere Island and Greenland. Genetic diversity analyses reveal particularly high inbreeding and low heterozygosity in these Polar wolves, consistent with long-term isolation from the other North American wolves.


Subject(s)
Coyotes/genetics , Genetics, Population , Genome , Genomics , Wolves/genetics , Animals , Genomics/methods , Genotype , North America , Phylogeny
5.
Glob Chang Biol ; 26(11): 6251-6265, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32964662

ABSTRACT

Kane Basin (KB) is one of the world's most northerly polar bear (Ursus maritimus) subpopulations, where bears have historically inhabited a mix of thick multiyear and annual sea ice year-round. Currently, KB is transitioning to a seasonally ice-free region because of climate change. This ecological shift has been hypothesized to benefit polar bears in the near-term due to thinner ice with increased biological production, although this has not been demonstrated empirically. We assess sea-ice changes in KB together with changes in polar bear movements, seasonal ranges, body condition, and reproductive metrics obtained from capture-recapture (physical and genetic) and satellite telemetry studies during two study periods (1993-1997 and 2012-2016). The annual cycle of sea-ice habitat in KB shifted from a year-round ice platform (~50% coverage in summer) in the 1990s to nearly complete melt-out in summer (<5% coverage) in the 2010s. The mean duration between sea-ice retreat and advance increased from 109 to 160 days (p = .004). Between the 1990s and 2010s, adult female (AF) seasonal ranges more than doubled in spring and summer and were significantly larger in all months. Body condition scores improved for all ages and both sexes. Mean litter sizes of cubs-of-the-year (C0s) and yearlings (C1s), and the number of C1s per AF, did not change between decades. The date of spring sea-ice retreat in the previous year was positively correlated with C1 litter size, suggesting smaller litters following years with earlier sea-ice breakup. Our study provides evidence for range expansion, improved body condition, and stable reproductive performance in the KB polar bear subpopulation. These changes, together with a likely increasing subpopulation abundance, may reflect the shift from thick, multiyear ice to thinner, seasonal ice with higher biological productivity. The duration of these benefits is unknown because, under unmitigated climate change, continued sea-ice loss is expected to eventually have negative demographic and ecological effects on all polar bears.


Subject(s)
Ursidae , Animals , Arctic Regions , Climate Change , Ecosystem , Female , Ice Cover , Male
6.
Ecol Appl ; 30(4): e02071, 2020 06.
Article in English | MEDLINE | ID: mdl-31925853

ABSTRACT

Climate change has broad ecological implications for species that rely on sensitive habitats. For some top predators, loss of habitat is expected to lead to cascading behavioral, nutritional, and reproductive changes that ultimately accelerate population declines. In the case of the polar bear (Ursus maritimus), declining Arctic sea ice reduces access to prey and lengthens seasonal fasting periods. We used a novel combination of physical capture, biopsy darting, and visual aerial observation data to project reproductive performance for polar bears by linking sea ice loss to changes in habitat use, body condition (i.e., fatness), and cub production. Satellite telemetry data from 43 (1991-1997) and 38 (2009-2015) adult female polar bears in the Baffin Bay subpopulation showed that bears now spend an additional 30 d on land (90 d in total) in the 2000s compared to the 1990s, a change closely correlated with changes in spring sea ice breakup and fall sea ice formation. Body condition declined for all sex, age, and reproductive classes and was positively correlated with sea ice availability in the current and previous year. Furthermore, cub litter size was positively correlated with maternal condition and spring breakup date (i.e., later breakup leading to larger litters), and negatively correlated with the duration of the ice-free period (i.e., longer ice-free periods leading to smaller litters). Based on these relationships, we projected reproductive performance three polar bear generations into the future (approximately 35 yr). Results indicate that two-cub litters, previously the norm, could largely disappear from Baffin Bay as sea ice loss continues. Our findings demonstrate how concurrent analysis of multiple data types collected over long periods from polar bears can provide a mechanistic understanding of the ecological implications of climate change. This information is needed for long-term conservation planning, which includes quantitative harvest risk assessments that incorporate estimated or assumed trends in future environmental carrying capacity.


Subject(s)
Climate Change , Ursidae , Animals , Arctic Regions , Ecosystem , Female , Ice Cover , Pregnancy
7.
Environ Sci Technol ; 54(12): 7388-7397, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32410455

ABSTRACT

Temporal trends of total mercury (THg) were examined in female polar bear (Ursus maritimus) hair (n = 199) from the Barents Sea in 1995-2016. In addition, hair values of stable isotopes (n = 190-197) of carbon (δ13C), sulfur (δ34S), and nitrogen (δ15N) and information on breeding status, body condition, and age were obtained. Stable isotope values of carbon and sulfur reflect dietary source (e.g., marine vs terrestrial) and the nitrogen trophic level. Values for δ13C and δ34S declined by -1.62 and -1.18‰ over the time of the study period, respectively, while values for δ15N showed no trend. Total Hg concentrations were positively related to both δ13C and δ34S. Yearly median THg concentrations ranged from 1.61 to 2.75 µg/g and increased nonlinearly by 0.86 µg/g in total over the study. Correcting THg concentrations for stable isotope values of carbon and sulfur and additionally breeding status and age slightly accelerated the increase in THg concentrations; however, confidence intervals of the raw THg trend and the corrected THg trend had substantial overlap. The rise in THg concentrations in the polar bear food web was possibly related to climate-related re-emissions of previously stored Hg from thawing sea-ice, glaciers, and permafrost.


Subject(s)
Mercury , Ursidae , Animals , Carbon , Environmental Monitoring , Female , Mercury/analysis , Nitrogen , Sulfur
8.
Proc Biol Sci ; 286(1916): 20191929, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31771471

ABSTRACT

Domestic dogs have been central to life in the North American Arctic for millennia. The ancestors of the Inuit were the first to introduce the widespread usage of dog sledge transportation technology to the Americas, but whether the Inuit adopted local Palaeo-Inuit dogs or introduced a new dog population to the region remains unknown. To test these hypotheses, we generated mitochondrial DNA and geometric morphometric data of skull and dental elements from a total of 922 North American Arctic dogs and wolves spanning over 4500 years. Our analyses revealed that dogs from Inuit sites dating from 2000 BP possess morphological and genetic signatures that distinguish them from earlier Palaeo-Inuit dogs, and identified a novel mitochondrial clade in eastern Siberia and Alaska. The genetic legacy of these Inuit dogs survives today in modern Arctic sledge dogs despite phenotypic differences between archaeological and modern Arctic dogs. Together, our data reveal that Inuit dogs derive from a secondary pre-contact migration of dogs distinct from Palaeo-Inuit dogs, and probably aided the Inuit expansion across the North American Arctic beginning around 1000 BP.


Subject(s)
Animal Distribution , Dogs/anatomy & histology , Dogs/genetics , Genome, Mitochondrial , Phenotype , Alaska , Animals , Archaeology , Arctic Regions , Canada , DNA, Ancient/analysis , DNA, Mitochondrial/analysis , Greenland , Human Migration
9.
Biol Lett ; 15(5): 20190070, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31039729

ABSTRACT

Life-history theory predicts that females' age and size affect the level of maternal investment in current reproduction, balanced against the future reproductive effort, maintenance and survival. Using long-term (30 years) individual data on 193 female polar bears ( Ursus maritimus), we assessed age- and size-specific variation on litter size. Litter size varied with maternal age, younger females had higher chances of losing a cub during their first months of life. Results suggest an improvement in reproductive abilities early in life due to experience with subsequent reproductive senescence. Litter size increased with maternal size, indicating that size may reflect individual quality. We also found an optimum in the probability of having twins, suggesting stabilizing selection on female body size. Heterogeneity was observed among the largest females, suggesting that large size comes at a cost.


Subject(s)
Ursidae , Animals , Body Size , Female , Litter Size , Maternal Age , Pregnancy , Reproduction
10.
Environ Res ; 162: 74-80, 2018 04.
Article in English | MEDLINE | ID: mdl-29287182

ABSTRACT

We investigated skull size (condylobasal length; CBL) and bone mineral density (BMD) in polar bears (Ursus maritimus) from East Greenland (n = 307) and Svalbard (n = 173) sampled during the period 1892-2015 in East Greenland and 1964-2004 at Svalbard. Adult males from East Greenland showed a continuous decrease in BMD from 1892 to 2015 (linear regression: p < 0.01) indicating that adult male skulls collected in the early pre-pollution period had the highest BMD. A similar decrease in BMD over time was not found for the East Greenland adult females. However, there was a non-significant trend that the skull size of adult East Greenland females was negatively correlated with collection year 1892-2015 (linear regression: p = 0.06). No temporal change was found for BMD or skull size in Svalbard polar bears (ANOVA: all p > 0.05) nor was there any significant difference in BMD between Svalbard and East Greenland subpopulations. Skull size was larger in polar bears from Svalbard than from East Greenland (two-way ANOVA: p = 0.003). T-scores reflecting risk of osteoporosis showed that adult males from both East Greenland and Svalbard are at risk of developing osteopenia. Finally, when correcting for age and sex, BMD in East Greenland polar bears increased with increasing concentrations of persistent organic pollutants (POPs) i.e. ΣPCB (polychlorinated biphenyls), ΣHCH (hexachlorohexane), HCB (hexachlorobenzene) and ΣPBDE (polybrominated diphenyl ethers) while skull size increased with ΣHCH concentrations all in the period 1999-2014 (multiple linear regression: all p < 0.05, n = 175). The results suggest that environmental changes over time, including exposure to POPs, may affect bone density and size of polar bears.


Subject(s)
Bone Density , Environmental Pollutants , Skull , Ursidae , Animals , Environmental Monitoring , Environmental Pollutants/toxicity , Female , Greenland , Male , Organic Chemicals/toxicity , Skull/anatomy & histology , Svalbard , Ursidae/anatomy & histology , Ursidae/physiology
11.
Biol Lett ; 12(12)2016 12.
Article in English | MEDLINE | ID: mdl-27928000

ABSTRACT

Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979-2014 (median -1.26 days year-1). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35-41 years) were 0.71 (range 0.20-0.95), 0.07 (range 0-0.35) and less than 0.01 (range 0-0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions.


Subject(s)
Conservation of Natural Resources/trends , Ice Cover , Ursidae , Animals , Arctic Regions , Climate Change , Computer Simulation , Ecosystem , Forecasting , Population Density , Population Dynamics/trends
12.
Conserv Biol ; 29(3): 724-37, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25783745

ABSTRACT

Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979-2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5-10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation.


Subject(s)
Caniformia/physiology , Cetacea/physiology , Climate Change , Conservation of Natural Resources , Animals , Arctic Regions , Ecosystem , Ice Cover , Population Density
13.
Proc Natl Acad Sci U S A ; 109(36): E2382-90, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22826254

ABSTRACT

Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5-10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4-5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.


Subject(s)
Adaptation, Biological/genetics , Climate Change/history , Evolution, Molecular , Genetics, Population , Genome/genetics , Ursidae/genetics , Animals , Arctic Regions , Base Sequence , Genetic Markers/genetics , History, Ancient , Molecular Sequence Data , Population Density , Population Dynamics , Sequence Analysis, DNA , Species Specificity
14.
Proc Biol Sci ; 280(1752): 20122371, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23222446

ABSTRACT

Intraspecific differences in movement behaviour reflect different tactics used by individuals or sexes to favour strategies that maximize fitness. We report movement data collected from n = 23 adult male polar bears with novel ear-attached transmitters in two separate pack ice subpopulations over five breeding seasons. We compared movements with n = 26 concurrently tagged adult females, and analysed velocities, movement tortuosity, range sizes and habitat selection with respect to sex, reproductive status and body mass. There were no differences in 4-day displacements or sea ice habitat selection for sex or population. By contrast, adult females in all years and both populations had significantly more linear movements and significantly larger breeding range sizes than males. We hypothesized that differences were related to encounter rates, and used observed movement metrics to parametrize a simulation model of male-male and male-female encounter. The simulation showed that the more tortuous movement of males leads to significantly longer times to male-male encounter, while having little impact on male-female encounter. By contrast, linear movements of females are consistent with a prioritized search for sparsely distributed prey. These results suggest a possible mechanism for explaining the smaller breeding range sizes of some solitary male carnivores compared to females.


Subject(s)
Ecosystem , Motor Activity , Reproduction , Ursidae/physiology , Animals , Female , Greenland , Ice Cover , Male , Nunavut , Remote Sensing Technology , Seasons , Sex Characteristics
15.
Environ Sci Technol ; 47(9): 4778-86, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23551254

ABSTRACT

We determined the transthyretin (TTR)-binding activity of blood-accumulating contaminants in blood plasma samples of approximately 4-months-old polar bear (Ursus maritimus) cubs from Svalbard sampled in 1998 and 2008. The TTR-binding activity was measured as thyroxine (T4)-like equivalents (T4-EQMeas). Our findings show that the TTR-binding activity related to contaminant levels was significantly lower (45%) in 2008 than in 1998 (mean ± standard error of mean: 1998, 2265 ± 231 nM; 2008, 1258 ± 170 nM). Although we cannot exclude a potential influence of between-year differences in capture location and cub body mass, our findings most likely reflect reductions of TTR-binding contaminants or their precursors in the arctic environment (e.g., polychlorinated biphenyls [PCBs]). The measured TTR-binding activity correlated positively with the cubs' plasma levels of hydroxylated PCBs (OH-PCBs). No such association was found between TTR-binding activity and the plasma levels of perfluoroalkyl substances (PFASs). The OH-PCBs explained 60 ± 7% and 54 ± 4% of the TTR-binding activity in 1998 and 2008, respectively, and PFASs explained ≤1.2% both years. Still, almost half the TTR-binding activity could not be explained by the contaminants we examined. The considerable levels of TTR-binding contaminants warrant further effect directed analysis (EDA) to identify the contaminants responsible for the unexplained part of the observed TTR-binding activity.


Subject(s)
Environmental Pollutants/metabolism , Prealbumin/metabolism , Ursidae/blood , Animals , Binding Sites , Radioligand Assay
16.
Proc Natl Acad Sci U S A ; 107(11): 5053-7, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-20194737

ABSTRACT

The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, high-quality mt genome from a stratigraphically validated 130,000- to 110,000-year-old polar bear jawbone. In addition, six mt genomes were generated of extant polar bears from Alaska and brown bears from the Admiralty and Baranof islands of the Alexander Archipelago of southeastern Alaska and Kodiak Island. We show that the phylogenetic position of the ancient polar bear lies almost directly at the branching point between polar bears and brown bears, elucidating a unique morphologically and molecularly documented fossil link between living mammal species. Molecular dating and stable isotope analyses also show that by very early in their evolutionary history, polar bears were already inhabitants of the Artic sea ice and had adapted very rapidly to their current and unique ecology at the top of the Arctic marine food chain. As such, polar bears provide an excellent example of evolutionary opportunism within a widespread mammalian lineage.


Subject(s)
Biological Evolution , Genome, Mitochondrial/genetics , Jaw/anatomy & histology , Ursidae/anatomy & histology , Ursidae/genetics , Animals , Base Sequence , Genetic Variation , Molecular Sequence Data , Phylogeny , Time Factors
17.
Zootaxa ; 3736: 587-97, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-25112648

ABSTRACT

A catalog of mammalian type specimens in the collections of Natural History Museum, University of Oslo, Norway, is presented. All type specimens in the Museum's mammal collection were revisited and the respective label information was compared with the data provided in the original descriptions. Most taxa were described from type series with no specimen particularly assigned to holotype. The compiled catalog of the type specimens is not intended as a taxonomic revision of the respective taxa, which is why we have not designated lectotypes from the collection's type series. Specimens that were clearly marked as "the type" in the original description were considered holotypes. The catalog consists of 19 taxa, with the year of authority corrected for three taxa.


Subject(s)
Mammals/classification , Animals , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , Museums/history , Natural History , Norway , Universities/history
18.
Ecol Evol ; 13(6): e10150, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37304361

ABSTRACT

Ecological traps occur when species choose to settle in lower-quality habitats, even if this reduces their survival or productivity. This happens in situations of drastic environmental changes, resulting from anthropogenic pressures. In long term, this could mean the extinction of the species. We investigated the dynamics of occurrence and distribution of three canid species (Atelocynus microtis, Cerdocyon thous, and Spheotos venaticus) considering human threats to their habitats in the Amazon Rainforest. We analyzed the environmental thresholds for the occurrence of these species and related to the future projections of climatic niches for each one. All three species will be negatively affected by climate change in the future, with losses of up to 91% of the suitable area of occurrence in the Brazilian Amazon. A. microtis appear to be more forest-dependent and must rely on the goodwill of decision-makers to be maintained in the future. For C. thous and S. venaticus, climatic variables and those associated with anthropogenic disturbances that modulate their niches today may not act the same way in the future. Even though C. thous is least dependent on the Amazon Forest; this species may be affected in the future due to the ecological traps. S. venaticus, can also undergo the same process, but perhaps more drastically due to the lower ecological plasticity of this species compared to C. thous. Our results suggest that the ecological traps may put these two species at risk in the future. Using the canid species as a model, we had the opportunity to investigate these ecological effects that can affect a large part of the Amazonian fauna in the current scenario. Considering the high degree of environmental degradation and deforestation in the Amazon Rainforest, the theory of ecological traps must be discussed at the same level as the habitat loss, considering the strategies for preserving the Amazon biodiversity.

19.
Hereditas ; 149(3): 99-107, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22804342

ABSTRACT

A morphometric study was conducted on four skull traits of 37 male and 18 female adult East Greenland polar bears (Ursus maritimus) collected 1892-1968, and on 54 male and 44 female adult Barents Sea polar bears collected 1950-1969. The aim was to compare differences in size and shape of the bear skulls using a multivariate approach, characterizing the variation between the two populations using morphometric traits as an indicator of environmental and genetic differences. Mixture analysis testing for geographic differentiation within each population revealed three clusters for Barents Sea males and three clusters for Barents Sea females. East Greenland consisted of one female and one male cluster. A principal component analysis (PCA) conducted on the clusters defined by the mixture analysis, showed that East Greenland and Barents Sea polar bear populations overlapped to a large degree, especially with regards to females. Multivariate analyses of variance (MANOVA) showed no significant differences in morphometric means between the two populations, but differences were detected between clusters from each respective geographic locality. To estimate the importance of genetics and environment in the morphometric differences between the bears, a PCA was performed on the covariance matrix derived from the skull measurements. Skull trait size (PC1) explained approx. 80% of the morphometric variation, whereas shape (PC2) defined approx. 15%, indicating some genetic differentiation. Hence, both environmental and genetic factors seem to have contributed to the observed skull differences between the two populations. Overall, results indicate that many Barents Sea polar bears are morphometrically similar to the East Greenland ones, suggesting an exchange of individuals between the two populations. Furthermore, a subpopulation structure in the Barents Sea population was also indicated from the present analyses, which should be considered with regards to future management decisions.


Subject(s)
Adaptation, Physiological , Environment , Skull/anatomy & histology , Ursidae/genetics , Animals , Cluster Analysis , Female , Genetics, Population , Greenland , Male , Multivariate Analysis , Population Density , Principal Component Analysis , Skull/physiology , Ursidae/anatomy & histology , Ursidae/classification , Ursidae/physiology
20.
J Environ Monit ; 14(1): 56-63, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22113146

ABSTRACT

We examined the use of mercury (Hg) and nitrogen and carbon stable isotopes in teeth of polar bear (Ursus maritimus) from Svalbard as biotracers of temporal changes in Hg pollution exposure between 1964 and 2003. Teeth were regarded as a good matrix of the Hg exposure, and in total 87 teeth of polar bears were analysed. Dental Hg levels ranged from 0.6 to 72.3 ng g(-1) dry weight and increased with age during the first 10 years of life. A decreasing time trend in Hg concentrations was observed over the recent four decades while no temporal changes were found in the stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C). This suggests that the decrease of Hg concentrations over time was more likely due to a lower environmental Hg exposure in this region rather than a shift in the feeding habits of Svalbard polar bears.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Environmental Pollution/statistics & numerical data , Mercury/analysis , Tooth/chemistry , Ursidae , Animals , Female , Male , Svalbard
SELECTION OF CITATIONS
SEARCH DETAIL