ABSTRACT
SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.
Subject(s)
Host-Pathogen Interactions , RNA, Viral/genetics , SARS-CoV-2/genetics , Animals , COVID-19/virology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Chlorocebus aethiops , Female , Genome, Viral , Humans , Lung/virology , Male , Mass Spectrometry , Mitochondria/metabolism , Mitochondria/ultrastructure , Proteome/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/ultrastructure , Vero CellsABSTRACT
Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.
Subject(s)
Coronavirus Infections/genetics , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus/classification , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Gene Knockout Techniques , Gene Regulatory Networks , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Host-Pathogen Interactions/drug effects , Humans , Vero Cells , Virus InternalizationABSTRACT
Neutralizing antibodies (NAbs) are effective in treating COVID-19, but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment during prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. Real-time imaging revealed that the virus spread sequentially from the nasal cavity to the lungs in mice and thereafter systemically to various organs including the brain, culminating in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct neutralization, depletion studies indicated that Fc effector interactions of NAbs with monocytes, neutrophils, and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.
Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Brain/pathology , COVID-19/immunology , Lung/pathology , SARS-CoV-2/physiology , Testis/pathology , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Brain/virology , COVID-19/therapy , Cells, Cultured , Disease Models, Animal , Humans , Immunoglobulin Fc Fragments/genetics , Luciferases/genetics , Luminescent Measurements , Lung/virology , Male , Mice , Mice, Transgenic , Testis/virologyABSTRACT
Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal ß-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.
Subject(s)
COVID-19 , Phospholipid Transfer Proteins , SARS-CoV-2 , Animals , Humans , Mice , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chiroptera , COVID-19/immunology , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Exome Sequencing , Hepatocytes/immunology , Hepatocytes/metabolism , Interferon-gamma/immunology , Lung/immunology , Lung/metabolism , Membrane Fusion , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/immunology , Phospholipid Transfer Proteins/metabolism , SARS-CoV-2/classification , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus InternalizationABSTRACT
Severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2) is the positive-sense RNA virus that causes coronavirus disease 2019 (COVID-19). The genome of SARS-CoV-2 is unique among viral RNAs in its vast potential to form RNA structures, yet as much as 97% of its 30 kilobases have not been structurally explored. Here, we apply a novel long amplicon strategy to determine the secondary structure of the SARS-CoV-2 RNA genome at single-nucleotide resolution in infected cells. Our in-depth structural analysis reveals networks of well-folded RNA structures throughout Orf1ab and reveals aspects of SARS-CoV-2 genome architecture that distinguish it from other RNA viruses. Evolutionary analysis shows that several features of the SARS-CoV-2 genomic structure are conserved across ß-coronaviruses, and we pinpoint regions of well-folded RNA structure that merit downstream functional analysis. The native, secondary structure of SARS-CoV-2 presented here is a roadmap that will facilitate focused studies on the viral life cycle, facilitate primer design, and guide the identification of RNA drug targets against COVID-19.
Subject(s)
COVID-19 , Genome, Viral , Nucleic Acid Conformation , RNA, Viral , Response Elements , SARS-CoV-2 , COVID-19/genetics , COVID-19/metabolism , Cell Line, Tumor , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolismABSTRACT
Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.
Subject(s)
COVID-19 , Inflammasomes , Macrophages , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , Humans , Inflammasomes/metabolism , Interleukin-1 , Interleukin-18 , Lung/pathology , Lung/virology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/metabolism , Pneumonia/virology , Pyroptosis , Receptors, IgG , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicityABSTRACT
Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.
Subject(s)
Administration, Intranasal , Antiviral Agents , Neomycin , SARS-CoV-2 , Animals , Neomycin/pharmacology , Neomycin/administration & dosage , Mice , Humans , Antiviral Agents/pharmacology , Antiviral Agents/administration & dosage , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , Respiratory Tract Infections/prevention & control , Nasal Mucosa/immunology , Nasal Mucosa/virology , Nasal Mucosa/drug effects , Disease Models, Animal , COVID-19 Drug Treatment , Mesocricetus , Female , Influenza A virus/drug effects , Influenza A virus/immunologyABSTRACT
Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.
Subject(s)
COVID-19 , Virus Internalization , Animals , Humans , Angiotensin-Converting Enzyme 2 , COVID-19/genetics , COVID-19/metabolism , Dipeptidyl Peptidase 4 , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Dyrk KinasesABSTRACT
The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.
Subject(s)
Gene Expression Regulation , Immunity, Innate , Membrane Proteins , NF-kappa B , Oncogene Proteins , RNA-Binding Proteins , Animals , Humans , CRISPR-Cas Systems , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , HEK293 Cells , Immunity, Innate/genetics , Influenza A virus/immunology , Influenza, Human/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , NF-kappa B/genetics , NF-kappa B/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Signal Transduction , Oncogene Proteins/genetics , Oncogene Proteins/immunologyABSTRACT
Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1. Importantly, the TPR domain of KDM6A is required for recruitment of the histone methyltransferase KMT2D and histone deacetylase p300. Together this KDM6A-KMT2D-p300 complex localizes to the proximal and distal enhancers of ACE2 and regulates receptor expression. Notably, small molecule inhibition of p300 catalytic activity abrogates ACE2 and DPP4 expression and confers resistance to all major SARS-CoV-2 variants and MERS-CoV in primary human airway and intestinal epithelial cells. These data highlight the role for KDM6A-KMT2D-p300 complex activities in conferring diverse coronaviruses susceptibility and reveal a potential pan-coronavirus therapeutic target to combat current and emerging coronaviruses. One Sentence Summary: The KDM6A/KMT2D/EP300 axis promotes expression of multiple viral receptors and represents a potential drug target for diverse coronaviruses.
Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Histone Demethylases/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/metabolismABSTRACT
Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.
Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Pulmonary Disease, Chronic Obstructive , Humans , SARS-CoV-2 , Proteomics , Immunotherapy , InflammationABSTRACT
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is mediated by the entry receptor angiotensin-converting enzyme 2 (ACE2). Although attachment factors and coreceptors facilitating entry are extensively studied, cellular entry factors inhibiting viral entry are largely unknown. Using a surfaceome CRISPR activation screen, we identified human LRRC15 as an inhibitory attachment factor for SARS-CoV-2 entry. LRRC15 directly binds to the receptor-binding domain (RBD) of spike protein with a moderate affinity and inhibits spike-mediated entry. Analysis of human lung single-cell RNA sequencing dataset reveals that expression of LRRC15 is primarily detected in fibroblasts and particularly enriched in pathological fibroblasts in COVID-19 patients. ACE2 and LRRC15 are not coexpressed in the same cell types in the lung. Strikingly, expression of LRRC15 in ACE2-negative cells blocks spike-mediated viral entry in ACE2+ cell in trans, suggesting a protective role of LRRC15 in a physiological context. Therefore, LRRC15 represents an inhibitory attachment factor for SARS-CoV-2 that regulates viral entry in trans.
Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/genetics , Protein Binding , Membrane Proteins/genetics , Membrane Proteins/metabolismABSTRACT
Although tuft cells were discovered over 60 years ago, their functions have long been enigmatic, especially in human health. Nonetheless, tuft cells have recently emerged as key orchestrators of the host response to diverse microbial infections in the gut and airway. While tuft cells are epithelial in origin, they exhibit functions akin to immune cells and mediate important interkingdom interactions between the host and helminths, protists, viruses, and bacteria. With broad intra- and intertissue heterogeneity, tuft cells sense and respond to microbes with exquisite specificity. Tuft cells can recognize helminth and protist infection, driving a type 2 immune response to promote parasite expulsion. Tuft cells also serve as the primary physiologic target of persistent murine norovirus (MNV) and promote immune evasion. Recently, tuft cells were also shown to be infected by rotavirus. Other viral infections, such as influenza A virus, can induce tuft cell-dependent tissue repair. In the context of coinfection, tuft cells promote neurotropic flavivirus replication by dampening antiviral adaptive immune responses. Commensal and pathogenic bacteria can regulate tuft cell abundance and function and, in turn, tuft cells are implicated in modulating bacterial infiltration and mucosal barrier integrity. However, the contribution of tuft cells to microbial sensing in humans and their resulting effector responses are poorly characterized. Herein, we aim to provide a comprehensive overview of microbial activation of tuft cells with an emphasis on tuft cell heterogeneity and differences between mouse and human tuft cell biology as it pertains to human health and disease.
Subject(s)
Norovirus , Parasites , Animals , Intestinal Mucosa , MiceABSTRACT
Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-ß-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.
Subject(s)
Reoviridae Infections , Reoviridae , Animals , Cholesterol/metabolism , Endosomes/metabolism , Homeostasis , Humans , Mammals , Niemann-Pick C1 Protein/metabolism , Reoviridae/metabolism , Reoviridae Infections/metabolismABSTRACT
There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway.
Subject(s)
Bronchi/pathology , COVID-19/diagnosis , Gene Expression , SARS-CoV-2/isolation & purification , Single-Cell Analysis/methods , Adult , Bronchi/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Epithelium/pathology , Epithelium/virology , Humans , Immunity, Innate , Longitudinal Studies , SARS-CoV-2/genetics , Transcriptome , Viral TropismABSTRACT
Postviral bacterial infections are a major health care challenge in coronavirus infections, including COVID-19; however, the coronavirus-specific mechanisms of increased host susceptibility to secondary infections remain unknown. In humans, coronaviruses, including SARS-CoV-2, infect lung immune cells, including alveolar macrophages, a phenotype poorly replicated in mouse models of SARS-CoV-2. To overcome this, we used a mouse model of native murine ß-coronavirus that infects both immune and structural cells to investigate coronavirus-enhanced susceptibility to bacterial infections. Our data show that coronavirus infection impairs the host ability to clear invading bacterial pathogens and potentiates lung tissue damage in mice. Mechanistically, coronavirus limits the bacterial killing ability of macrophages by impairing lysosomal acidification and fusion with engulfed bacteria. In addition, coronavirus-induced lysosomal dysfunction promotes pyroptotic cell death and the release of IL-1ß. Inhibition of cathepsin B decreased cell death and IL-1ß release and promoted bacterial clearance in mice with postcoronavirus bacterial infection.
Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Murine hepatitis virus , Animals , Bacteria , Cathepsin B , Humans , Lung , Lysosomes , Mice , SARS-CoV-2ABSTRACT
The ongoing COVID-19 pandemic has caused an unprecedented global health crisis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. Subversion of host protein synthesis is a common strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to shut down host protein synthesis and that SARS-CoV-2 nonstructural protein NSP14 exerts this activity. We show that the translation inhibition activity of NSP14 is conserved in human coronaviruses. NSP14 is required for virus replication through contribution of its exoribonuclease (ExoN) and N7-methyltransferase (N7-MTase) activities. Mutations in the ExoN or N7-MTase active sites of SARS-CoV-2 NSP14 abolish its translation inhibition activity. In addition, we show that the formation of NSP14-NSP10 complex enhances translation inhibition executed by NSP14. Consequently, the translational shutdown by NSP14 abolishes the type I interferon (IFN-I)-dependent induction of interferon-stimulated genes (ISGs). Together, we find that SARS-CoV-2 shuts down host innate immune responses via a translation inhibitor, providing insights into the pathogenesis of SARS-CoV-2.
Subject(s)
COVID-19/immunology , Exoribonucleases/immunology , Immune Evasion , Immunity, Innate , Protein Biosynthesis/immunology , SARS-CoV-2/immunology , Viral Nonstructural Proteins/immunology , Animals , Chlorocebus aethiops , Humans , Vero CellsABSTRACT
Translation of open reading frame 1b (ORF1b) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires a programmed -1 ribosomal frameshift (-1 PRF) promoted by an RNA pseudoknot. The extent to which SARS-CoV-2 replication may be sensitive to changes in -1 PRF efficiency is currently unknown. Through an unbiased, reporter-based high-throughput compound screen, we identified merafloxacin, a fluoroquinolone antibacterial, as a -1 PRF inhibitor for SARS-CoV-2. Frameshift inhibition by merafloxacin is robust to mutations within the pseudoknot region and is similarly effective on -1 PRF of other betacoronaviruses. Consistent with the essential role of -1 PRF in viral gene expression, merafloxacin impedes SARS-CoV-2 replication in Vero E6 cells, thereby providing proof-of-principle for targeting -1 PRF as a plausible and effective antiviral strategy for SARS-CoV-2 and other coronaviruses.
Subject(s)
Antiviral Agents/pharmacology , Frameshifting, Ribosomal/drug effects , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Betacoronavirus , Chlorocebus aethiops , Fluoroquinolones/pharmacology , Frameshifting, Ribosomal/genetics , Mutation , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/physiology , Vero CellsABSTRACT
Macrophages activated with interferon-γ (IFN-γ) in combination with other proinflammatory stimuli, such as lipopolysaccharide or tumor necrosis factor-α (TNF-α), respond with transcriptional and cellular changes that enhance clearance of intracellular pathogens at the risk of damaging tissues. IFN-γ effects must therefore be carefully balanced with inhibitory mechanisms to prevent immunopathology. We performed a genome-wide CRISPR knockout screen in a macrophage cell line to identify negative regulators of IFN-γ responses. We discovered an unexpected role of the ubiquitin-fold modifier (Ufm1) conjugation system (herein UFMylation) in inhibiting responses to IFN-γ and lipopolysaccharide. Enhanced IFN-γ activation in UFMylation-deficient cells resulted in increased transcriptional responses to IFN-γ in a manner dependent on endoplasmic reticulum stress responses involving Ern1 and Xbp1. Furthermore, UFMylation in myeloid cells is required for resistance to influenza infection in mice, indicating that this pathway modulates in vivo responses to infection. These findings provide a genetic roadmap for the regulation of responses to a key mediator of cellular immunity and identify a molecular link between the UFMylation pathway and immune responses.
Subject(s)
Interferon-gamma/metabolism , Macrophage Activation/immunology , Proteins/metabolism , Animals , Autophagy/immunology , Cell Line , Chaperone-Mediated Autophagy , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum Stress/immunology , Female , Interferon-gamma/immunology , Lipopolysaccharides , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Protein Transport , Proteins/physiologyABSTRACT
Recent evidence indicates that viral components of the microbiota can contribute to intestinal homeostasis and protection from local inflammatory or infectious insults. However, host-derived mechanisms that regulate the virome remain largely unknown. In this study, we used colonization with the model commensal murine norovirus (MNV; strain CR6) to interrogate host-directed mechanisms of viral regulation, and we show that STAT1 is a central coordinator of both viral replication and antiviral T cell responses. In addition to restricting CR6 replication to the intestinal tract, we show that STAT1 regulates antiviral CD4+ and CD8+ T cell responses and prevents systemic viral-induced tissue damage and disease. Despite altered T cell responses that resemble those that mediate lethal immunopathology in systemic viral infections in STAT1-deficient mice, depletion of adaptive immune cells and their associated effector functions had no effect on CR6-induced disease. However, therapeutic administration of an antiviral compound limited viral replication, preventing virus-induced tissue damage and death without impacting the generation of inflammatory antiviral T cell responses. Collectively, our data show that STAT1 restricts MNV CR6 replication within the intestinal mucosa and that uncontrolled viral replication mediates disease rather than the concomitant development of dysregulated antiviral T cell responses in STAT1-deficient mice. IMPORTANCE The intestinal microbiota is a collection of bacteria, archaea, fungi, and viruses that colonize the mammalian gut. Coevolution of the host and microbiota has required development of immunological tolerance to prevent ongoing inflammatory responses against intestinal microbes. Breakdown of tolerance to bacterial components of the microbiota can contribute to immune activation and inflammatory disease. However, the mechanisms that are necessary to maintain tolerance to viral components of the microbiome, and the consequences of loss of tolerance, are less well understood. Here, we show that STAT1 is integral for preventing escape of a commensal-like virus, murine norovirus CR6 (MNV CR6), from the gut and that in the absence of STAT1, mice succumb to infection-induced disease. In contrast to the case with other systemic viral infections, mortality of STAT1-deficient mice is not driven by immune-mediated pathology. Our data demonstrate the importance of host-mediated geographical restriction of commensal-like viruses.