Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35395208

ABSTRACT

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Subject(s)
F-Box-WD Repeat-Containing Protein 7 , Neurodevelopmental Disorders , Ubiquitination , F-Box-WD Repeat-Containing Protein 7/chemistry , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Germ Cells , Germ-Line Mutation , Humans , Neurodevelopmental Disorders/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
J Med Genet ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937076

ABSTRACT

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.

3.
EMBO J ; 39(13): e104163, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32484994

ABSTRACT

The relationships between impaired cortical development and consequent malformations in neurodevelopmental disorders, as well as the genes implicated in these processes, are not fully elucidated to date. In this study, we report six novel cases of patients affected by BBSOAS (Boonstra-Bosch-Schaff optic atrophy syndrome), a newly emerging rare neurodevelopmental disorder, caused by loss-of-function mutations of the transcriptional regulator NR2F1. Young patients with NR2F1 haploinsufficiency display mild to moderate intellectual disability and show reproducible polymicrogyria-like brain malformations in the parietal and occipital cortex. Using a recently established BBSOAS mouse model, we found that Nr2f1 regionally controls long-term self-renewal of neural progenitor cells via modulation of cell cycle genes and key cortical development master genes, such as Pax6. In the human fetal cortex, distinct NR2F1 expression levels encompass gyri and sulci and correlate with local degrees of neurogenic activity. In addition, reduced NR2F1 levels in cerebral organoids affect neurogenesis and PAX6 expression. We propose NR2F1 as an area-specific regulator of mouse and human brain morphology and a novel causative gene of abnormal gyrification.


Subject(s)
COUP Transcription Factor I/metabolism , Neocortex/embryology , Neural Stem Cells/metabolism , Occipital Lobe/embryology , Optic Atrophies, Hereditary/embryology , Parietal Lobe/embryology , Animals , COUP Transcription Factor I/genetics , Disease Models, Animal , Humans , Mice , Neocortex/pathology , Neural Stem Cells/pathology , Occipital Lobe/pathology , Optic Atrophies, Hereditary/genetics , Optic Atrophies, Hereditary/pathology , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism , Parietal Lobe/pathology
4.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38787418

ABSTRACT

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Subject(s)
DNA Methylation , Intellectual Disability , Humans , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Male , Female , Haploinsufficiency/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Child
5.
Am J Med Genet A ; 194(1): 9-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740550

ABSTRACT

DYRK1A Syndrome (OMIM #614104) is caused by pathogenic variations in the DYRK1A gene located on 21q22. Haploinsufficiency of DYRK1A causes a syndrome with global psychomotor delay and intellectual disability. Low birth weight, growth restriction with feeding difficulties, stature insufficiency, and microcephaly are frequently reported. This study aims to create specific growth charts for individuals with DYRK1A Syndrome and identify parameters for size prognosis. Growth parameters were obtained for 92 individuals with DYRK1A Syndrome (49 males vs. 43 females). The data were obtained from pediatric records, parent reporting, and scientific literature. Growth charts for height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were generated using generalized additive models through R package gamlss. The growth curves include height, weight, and OFC measurements for patients aged 0-5 years. In accordance with the literature, the charts show that individuals are more likely to present intrauterine growth restriction with low birth weight and microcephaly. The growth is then characterized by severe microcephaly, low weight, and short stature. This study proposes growth charts for widespread use in the management of patients with DYRK1A syndrome.


Subject(s)
Intellectual Disability , Microcephaly , Male , Female , Child , Humans , Microcephaly/diagnosis , Microcephaly/genetics , Growth Charts , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Syndrome , Body Mass Index , Body Height/genetics
6.
Am J Med Genet A ; 194(4): e63476, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37974505

ABSTRACT

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.


Subject(s)
Aneuploidy , Chromosome Disorders , Chromosomes, Human, Pair 22 , Eye Abnormalities , Heart Defects, Congenital , Humans , Retrospective Studies , In Situ Hybridization, Fluorescence , Chromosomes, Human, Pair 22/genetics , Heart Defects, Congenital/genetics
7.
J Inherit Metab Dis ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623626

ABSTRACT

Fabry disease (FD) is an X-linked disease characterized by an accumulation of glycosphingolipids, notably of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3) leading to renal failure, cardiomyopathy, and cerebral strokes. Inflammatory processes are involved in the pathophysiology. We investigated the immunological phenotype of peripheral blood mononuclear cells in Fabry patients depending on the clinical phenotype, treatment, Gb3, and lysoGb3 levels and the presence of anti-drug antibodies (ADA). Leucocytes from 41 male patients and 20 controls were analyzed with mass cytometry using both unsupervised and supervised algorithms. FD patients had an increased expression of CD27 and CD28 in memory CD45- and CD45 + CCR7-CD4 T cells (respectively p < 0.014 and p < 0.02). Percentage of CD45RA-CCR7-CD27 + CD28+ cells in CD4 T cells was correlated with plasma lysoGb3 (r = 0.60; p = 0.0036) and phenotype (p < 0.003). The correlation between Gb3 and CD27 in CD4 T cells almost reached significance (r = 0.33; p = 0.058). There was no immune profile associated with the presence of ADA. Treatment with agalsidase beta was associated with an increased proportion of Natural Killer cells. These findings provide valuable insights for understanding FD, linking Gb3 accumulation to inflammation, and proposing new prognostic biomarkers.

8.
Brain ; 146(5): 1804-1811, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36349561

ABSTRACT

Corpus callosum defects are frequent congenital cerebral disorders caused by mutations in more than 300 genes. These include genes implicated in corpus callosum development or function, as well as genes essential for mitochondrial physiology. However, in utero corpus callosum anomalies rarely raise a suspicion of mitochondrial disease and are characterized by a very large clinical heterogeneity. Here, we report a detailed pathological and neuro-histopathological investigation of nine foetuses from four unrelated families with prenatal onset of corpus callosum anomalies, sometimes associated with other cerebral or extra-cerebral defects. Next generation sequencing allowed the identification of novel pathogenic variants in three different nuclear genes previously reported in mitochondrial diseases: TIMMDC1, encoding a Complex I assembly factor never involved before in corpus callosum defect; MRPS22, a protein of the small mitoribosomal subunit; and EARS2, the mitochondrial tRNA-glutamyl synthetase. The present report describes the antenatal histopathological findings in mitochondrial diseases and expands the genetic spectrum of antenatal corpus callosum anomalies establishing OXPHOS function as an important factor for corpus callosum biogenesis. We propose that, when observed, antenatal corpus callosum anomalies should raise suspicion of mitochondrial disease and prenatal genetic counselling should be considered.


Subject(s)
Corpus Callosum , Mitochondrial Diseases , Humans , Female , Pregnancy , Corpus Callosum/pathology , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/pathology , Mitochondrial Diseases/genetics , Mitochondria/pathology , Mutation , Mitochondrial Precursor Protein Import Complex Proteins
9.
Prenat Diagn ; 44(1): 28-34, 2024 01.
Article in English | MEDLINE | ID: mdl-38054546

ABSTRACT

OBJECTIVE: To evaluate the postnatal outcome of children with antenatal colonic hyperechogenicity, currently considered as a sign of lysinuria-cystinuria, but which may also be a sign of other disorders with a more severe prognosis. METHOD: We carried out a French multi-centric retrospective study via 15 Multidisciplinary Center for Prenatal Diagnosis from January 2011 to January 2021. We included pregnancies for which fetal colonic hyperechogenicity had been demonstrated. We collected the investigations performed during pregnancy and at birth as well as the main clinical features of the mother and the child. We then established the prevalence of pathologies such as lysinuria-cystinuria (LC), hypotonia-cystinuria syndrome (HC), or lysinuric protein intolerance (LPI). RESULTS: Among the 33 cases of colonic hyperechogenicity collected, and after exclusion of those lost to follow-up, we identified 63% of children with lysinuria-cystinuria, 8% with lysinuric rotein intolerance, and 4% with hypotonia-cystinuria syndrome. CONCLUSION: Management of prenatal hyperechoic colon should include a specialized consultation with a clinical geneticist to discuss further investigations, which could include invasive amniotic fluid sampling for molecular diagnosis. A better understanding of diagnoses and prognosis should improve medical counseling and guide parental decision making.


Subject(s)
Chromosome Deletion , Craniofacial Abnormalities , Cystinuria , Intellectual Disability , Mitochondrial Diseases , Muscle Hypotonia , Infant, Newborn , Child , Pregnancy , Humans , Female , Cystinuria/diagnosis , Cystinuria/metabolism , Retrospective Studies , Prenatal Diagnosis , Amniotic Fluid/metabolism , Ultrasonography, Prenatal , Chromosomes, Human, Pair 21
10.
J Med Genet ; 61(1): 36-46, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37586840

ABSTRACT

PURPOSE: Wide access to clinical exome/genome sequencing (ES/GS) enables the identification of multiple molecular diagnoses (MMDs), being a long-standing but underestimated concept, defined by two or more causal loci implicated in the phenotype of an individual with a rare disease. Only few series report MMDs rates (1.8% to 7.1%). This study highlights the increasing role of MMDs in a large cohort of individuals addressed for congenital anomalies/intellectual disability (CA/ID). METHODS: From 2014 to 2021, our diagnostic laboratory rendered 880/2658 positive ES diagnoses for CA/ID aetiology. Exhaustive search on MMDs from ES data was performed prospectively (January 2019 to December 2021) and retrospectively (March 2014 to December 2018). RESULTS: MMDs were identified in 31/880 individuals (3.5%), responsible for distinct (9/31) or overlapping (22/31) phenotypes, and potential MMDs in 39/880 additional individuals (4.4%). CONCLUSION: MMDs are frequent in CA/ID and remain a strong challenge. Reanalysis of positive ES data appears essential when phenotypes are partially explained by the initial diagnosis or atypically enriched overtime. Up-to-date clinical data, clinical expertise from the referring physician, strong interactions between clinicians and biologists, and increasing gene discoveries and improved ES bioinformatics tools appear all the more fundamental to enhance chances of identifying MMDs. It is essential to provide appropriate patient care and genetic counselling.


Subject(s)
Intellectual Disability , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Retrospective Studies , Phenotype , Exome Sequencing , Rare Diseases/genetics
11.
Article in English | MEDLINE | ID: mdl-38595321

ABSTRACT

BACKGROUND: Data on dermatological manifestations of Costello syndrome (CS) remain heterogeneous and lack in validated description. OBJECTIVES: To describe the dermatological manifestations of CS; compare them with the literature findings; assess those discriminating CS from other RASopathies, including cardiofaciocutaneous syndrome (CFCS) and the main types of Noonan syndrome (NS); and test for dermatological phenotype-genotype correlations. METHODS: We performed a 10-year, large, prospective, multicentric, collaborative dermatological and genetic study. RESULTS: Thirty-one patients were enrolled. Hair abnormalities were ubiquitous, including wavy or curly hair and excessive eyebrows, respectively in 68% and 56%. Acral excessive skin (AES), papillomas and keratotic papules (PKP), acanthosis nigricans (AN), palmoplantar hyperkeratosis (PPHK) and 'cobblestone' papillomatous papules of the upper lip (CPPUL), were noted respectively in 84%, 61%, 65%, 55% and 32%. Excessive eyebrows, PKP, AN, CCPUL and AES best differentiated CS from CFCS and NS. Multiple melanocytic naevi (>50) may constitute a new marker of attenuated CS associated with intragenic duplication in HRAS. Oral acitretin may be highly beneficial for therapeutic management of PPHK. No significant dermatological phenotype-genotype correlation was determined between patients with and without HRAS c.34G>A (p.G12S). CONCLUSIONS AND RELEVANCE: This validated phenotypic characterization of a large number of patients with CS will allow future researchers to make a positive diagnosis, and to differentiate CS from CFCS and NS.

12.
Am J Hum Genet ; 107(1): 164-172, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32553196

ABSTRACT

CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.


Subject(s)
Developmental Disabilities/genetics , Gene Expression/genetics , Neurodevelopmental Disorders/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , RNA/genetics , Receptors, CCR4/genetics , Transcription Factors/genetics , Alleles , Female , Genetic Variation/genetics , Haploinsufficiency/genetics , Heterozygote , Humans , Male , Nervous System Malformations/genetics , Phenotype , Protein Stability
13.
J Med Genet ; 59(12): 1234-1240, 2022 12.
Article in English | MEDLINE | ID: mdl-36137615

ABSTRACT

BACKGROUND: Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%-20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES. METHODS: This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed. RESULTS: On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. CONCLUSION: Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.


Subject(s)
DNA Copy Number Variations , Exome , Humans , DNA Copy Number Variations/genetics , Exome/genetics , Retrospective Studies , High-Throughput Nucleotide Sequencing/methods , Prospective Studies
14.
J Med Genet ; 59(7): 697-705, 2022 07.
Article in English | MEDLINE | ID: mdl-34321323

ABSTRACT

BACKGROUND: O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS: Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS: We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION: Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Autism Spectrum Disorder/genetics , Child , Humans , Intellectual Disability/diagnosis , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Seizures/epidemiology , Seizures/genetics , Syndrome , Exome Sequencing
15.
Genet Med ; 24(8): 1708-1721, 2022 08.
Article in English | MEDLINE | ID: mdl-35583550

ABSTRACT

PURPOSE: LEF1 encodes a transcription factor acting downstream of the WNT-ß-catenin signaling pathway. It was recently suspected as a candidate for ectodermal dysplasia in 2 individuals carrying 4q35 microdeletions. We report on 12 individuals harboring LEF1 variants. METHODS: High-throughput sequencing was employed to delineate the genetic underpinnings of the disease. Cellular consequences were characterized by immunofluorescence, immunoblotting, pulldown assays, and/or RNA sequencing. RESULTS: Monoallelic variants in LEF1 were detected in 11 affected individuals from 4 unrelated families, and a biallelic variant was detected in an affected individual from a consanguineous family. The phenotypic spectrum includes various limb malformations, such as radial ray defects, polydactyly or split hand/foot, and ectodermal dysplasia. Depending on the type and location of LEF1 variants, the inheritance of this novel Mendelian condition can be either autosomal dominant or recessive. Our functional data indicate that 2 molecular mechanisms are at play: haploinsufficiency or loss of DNA binding are responsible for a mild to moderate phenotype, whereas loss of ß-catenin binding caused by biallelic variants is associated with a severe phenotype. Transcriptomic studies reveal an alteration of WNT signaling. CONCLUSION: Our findings establish mono- and biallelic variants in LEF1 as a cause for a novel syndrome comprising limb malformations and ectodermal dysplasia.


Subject(s)
Ectodermal Dysplasia , Lymphoid Enhancer-Binding Factor 1/genetics , Wnt Signaling Pathway , Consanguinity , Ectodermal Dysplasia/genetics , Humans , Limb Deformities, Congenital , Lymphoid Enhancer-Binding Factor 1/metabolism , Syndrome , beta Catenin/genetics , beta Catenin/metabolism
16.
Genet Med ; 24(12): 2501-2515, 2022 12.
Article in English | MEDLINE | ID: mdl-36178483

ABSTRACT

PURPOSE: The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS: A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS: Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION: This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.


Subject(s)
Hypogonadism , Zebrafish , Animals , Humans , Zebrafish/genetics , Hypogonadism/genetics , Gonadotropin-Releasing Hormone/genetics , Repressor Proteins , Guanine Nucleotide Exchange Factors , GTPase-Activating Proteins/genetics
17.
Genet Med ; 24(5): 1096-1107, 2022 05.
Article in English | MEDLINE | ID: mdl-35063350

ABSTRACT

PURPOSE: Rare genetic variants in CDK13 are responsible for CDK13-related disorder (CDK13-RD), with main clinical features being developmental delay or intellectual disability, facial features, behavioral problems, congenital heart defect, and seizures. In this paper, we report 18 novel individuals with CDK13-RD and provide characterization of genome-wide DNA methylation. METHODS: We obtained clinical phenotype and neuropsychological data for 18 and 10 individuals, respectively, and compared this series with the literature. We also compared peripheral blood DNA methylation profiles in individuals with CDK13-RD, controls, and other neurodevelopmental disorders episignatures. Finally, we developed a support vector machine-based classifier distinguishing CDK13-RD and non-CDK13-RD samples. RESULTS: We reported health and developmental parameters, clinical data, and neuropsychological profile of individuals with CDK13-RD. Genome-wide differential methylation analysis revealed a global hypomethylated profile in individuals with CDK13-RD in a highly sensitive and specific model that could aid in reclassifying variants of uncertain significance. CONCLUSION: We describe the novel features such as anxiety disorder, cryptorchidism, and disrupted sleep in CDK13-RD. We define a CDK13-RD DNA methylation episignature as a diagnostic tool and a defining functional feature of the evolving clinical presentation of this disorder. We also show overlap of the CDK13 DNA methylation profile in an individual with a functionally and clinically related CCNK-related disorder.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , CDC2 Protein Kinase/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Male , Neurodevelopmental Disorders/genetics , Phenotype
18.
Hum Genomics ; 15(1): 44, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34256850

ABSTRACT

BACKGROUND: Previous research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of protein-coding (coding) de novo variants (DNVs) within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2671 families with autism (discovery cohort of 516 families, replication cohort of 2155 families). We focused on DNVs in enhancers with characterized in vivo activity in the brain and identified an excess of DNVs in an enhancer named hs737. RESULTS: We adapted the fitDNM statistical model to work in noncoding regions and tested enhancers for excess of DNVs in families with autism. We found only one enhancer (hs737) with nominal significance in the discovery (p = 0.0172), replication (p = 2.5 × 10-3), and combined dataset (p = 1.1 × 10-4). Each individual with a DNV in hs737 had shared phenotypes including being male, intact cognitive function, and hypotonia or motor delay. Our in vitro assessment of the DNVs showed they all reduce enhancer activity in a neuronal cell line. By epigenomic analyses, we found that hs737 is brain-specific and targets the transcription factor gene EBF3 in human fetal brain. EBF3 is genome-wide significant for coding DNVs in NDDs (missense p = 8.12 × 10-35, loss-of-function p = 2.26 × 10-13) and is widely expressed in the body. Through characterization of promoters bound by EBF3 in neuronal cells, we saw enrichment for binding to NDD genes (p = 7.43 × 10-6, OR = 1.87) involved in gene regulation. Individuals with coding DNVs have greater phenotypic severity (hypotonia, ataxia, and delayed development syndrome [HADDS]) in comparison to individuals with noncoding DNVs that have autism and hypotonia. CONCLUSIONS: In this study, we identify DNVs in the hs737 enhancer in individuals with autism. Through multiple approaches, we find hs737 targets the gene EBF3 that is genome-wide significant in NDDs. By assessment of noncoding variation and the genes they affect, we are beginning to understand their impact on gene regulatory networks in NDDs.


Subject(s)
Autistic Disorder/genetics , Genetic Predisposition to Disease , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Autistic Disorder/epidemiology , Autistic Disorder/pathology , Enhancer Elements, Genetic/genetics , Exome/genetics , Female , Gene Regulatory Networks/genetics , Humans , Male , Muscle Hypotonia/epidemiology , Muscle Hypotonia/pathology , Mutation/genetics , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/pathology , Neurons/metabolism , Neurons/pathology
19.
Am J Med Genet A ; 188(5): 1497-1514, 2022 05.
Article in English | MEDLINE | ID: mdl-35138025

ABSTRACT

Pathogenic variants in heterogeneous nuclear ribonucleoprotein U (HNRNPU) results in a novel neurodevelopmental disorder recently delineated. Here, we report on 17 previously unpublished patients carrying HNRNPU pathogenic variants. All patients were found to harbor de novo loss-of-function variants except for one individual where the inheritance could not be determined, as a parent was unavailable for testing. All patients had seizures which started in early childhood, global developmental delay, intellectual disability, and dysmorphic features. In addition, hypotonia, behavioral abnormalities (such as autistic features, aggression, anxiety, and obsessive-compulsive behaviors), and cardiac (septal defects) and/or brain abnormalities (ventriculomegaly and corpus callosum thinning/agenesis) were frequently observed. We have noted four recurrent variants in the literature (c.1089G>A p.(Trp363*), c.706_707del p.(Glu236Thrfs*6), c.847_857del p.(Phe283Serfs*5), and c.1681dels p.(Gln561Serfs*45)).


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Agenesis of Corpus Callosum/genetics , Child , Child, Preschool , Developmental Disabilities/genetics , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Seizures/genetics
20.
Brain ; 144(12): 3635-3650, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34114611

ABSTRACT

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Subject(s)
Epilepsy/genetics , Nerve Tissue Proteins/genetics , Potassium Channels, Sodium-Activated/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Genotype , Humans , Infant , Male , Mutation , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL