Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Mol Sci ; 24(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686007

ABSTRACT

The calcium-binding protein S100A9 is recognized as an important component of the brain neuroinflammatory response to the onset and development of neurodegenerative disease. S100A9 is intrinsically amyloidogenic and in vivo co-aggregates with amyloid-ß peptide and α-synuclein in Alzheimer's and Parkinson's diseases, respectively. It is widely accepted that calcium dyshomeostasis plays an important role in the onset and development of these diseases, and studies have shown that elevated levels of calcium limit the potential for S100A9 to adopt a fibrillar structure. The exact mechanism by which calcium exerts its influence on the aggregation process remains unclear. Here we demonstrate that despite S100A9 exhibiting α-helical secondary structure in the absence of calcium, the protein exhibits significant plasticity with interconversion between different conformational states occurring on the micro- to milli-second timescale. This plasticity allows the population of conformational states that favour the onset of fibril formation. Magic-angle spinning solid-state NMR studies of the resulting S100A9 fibrils reveal that the S100A9 adopts a single structurally well-defined rigid fibrillar core surrounded by a shell of approximately 15-20 mobile residues, a structure that persists even when fibrils are produced in the presence of calcium ions. These studies highlight how the dysregulation of metal ion concentrations can influence the conformational equilibria of this important neuroinflammatory protein to influence the rate and nature of the amyloid deposits formed.


Subject(s)
Calcium , Neurodegenerative Diseases , Humans , Amyloid , Nuclear Magnetic Resonance, Biomolecular , Calcium, Dietary , Calgranulin B
2.
Angew Chem Int Ed Engl ; 62(21): e202301077, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36932824

ABSTRACT

Bioactive compounds generally need to cross membranes to arrive at their site of action. The octanol-water partition coefficient (lipophilicity, logPOW ) has proven to be an excellent proxy for membrane permeability. In modern drug discovery, logPOW and bioactivity are optimized simultaneously, for which fluorination is one of the relevant strategies. The question arises as to which extent the often subtle logP modifications resulting from different aliphatic fluorine-motif introductions also lead to concomitant membrane permeability changes, given the difference in molecular environment between octanol and (anisotropic) membranes. It was found that for a given compound class, there is excellent correlation between logPOW values with the corresponding membrane molar partitioning coefficients (logKp ); a study enabled by novel solid-state 19 F NMR MAS methodology using lipid vesicles. Our results show that the factors that cause modulation of octanol-water partition coefficients similarly affect membrane permeability.


Subject(s)
Halogenation , Water , Octanols/chemistry , Water/chemistry
3.
Chemistry ; 26(68): 15852-15854, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-32827182

ABSTRACT

Combining dynamic nuclear polarization with proton detection significantly enhances the sensitivity of magic-angle spinning NMR spectroscopy. Herein, the feasibility of proton-detected experiments with slow (10 kHz) magic angle spinning was demonstrated. The improvement in sensitivity permits the acquisition of indirectly detected 14 N NMR spectra allowing biomolecular structures to be characterized without recourse to isotope labelling. This provides a new tool for the structural characterization of environmental and medical samples, in which isotope labelling is frequently intractable.

4.
Phys Chem Chem Phys ; 21(11): 5941-5949, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30809601

ABSTRACT

Magic-angle spinning solid-state NMR is increasingly utilized to study the naturally abundant, spin-1 nucleus 14N, providing insights into the structure and dynamics of biological and organic molecules. In particular, the characterisation of 14N sites using indirect detection has proven useful for complex molecules, where the 'spy' nucleus provides enhanced sensitivity and resolution. Here we exploit the sensitivity of proton detection, to indirectly characterise 14N sites using a moderate rf field to generate coherence between the 1H and 14N at moderate and fast-magic-angle spinning frequencies. Efficient numerical simulations have been developed that have allowed us to quantitatively analyse the resulting 14N lineshapes to determine both the size and asymmetry of the quadrupolar interaction. Exploiting only naturally occurring abundant isotopes will aid the analysis of materials with the need to resort to isotope labelling, whilst providing additional insights into the structure and dynamics that the characterisation of the quadrupolar interaction affords.

5.
Anal Chem ; 89(17): 8822-8829, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28750163

ABSTRACT

In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA-DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3'-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1-100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins.


Subject(s)
Electrochemical Techniques , MicroRNAs/analysis , Nanopores , Potassium Chloride/chemistry , DNA Probes/chemistry , DNA Probes/metabolism , Electrodes , Electrolytes/chemistry , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism , Limit of Detection , MicroRNAs/metabolism , Sodium Chloride/chemistry
6.
Eur Biophys J ; 46(6): 549-559, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28314880

ABSTRACT

The hERG channel is a voltage-gated potassium channel found in cardiomyocytes that contributes to the repolarization of the cell membrane following the cardiac action potential, an important step in the regulation of the cardiac cycle. The lipids surrounding K+ channels have been shown to play a key role in their regulation, with anionic lipids shown to alter gating properties. In this study, we investigate how anionic lipids interact with the pore helix of hERG and compare the results with those from Kv1.5, which possesses a pore helix more typical of K+ channels. Circular dichroism studies of the pore helix secondary structure reveal that the presence of the anionic lipid DMPS within the bilayer results in a slight unfolding of the pore helices from both hERG and Kv1.5, albeit to a lesser extent for Kv1.5. In the presence of anionic lipids, the two pore helices exhibit significantly different interactions with the lipid bilayer. We demonstrate that the pore helix from hERG causes significant perturbation to the order in lipid bicelles, which contrasts with only small changes observed for Kv1.5. These observations suggest that the atypical sequence of the pore helix of hERG may play a key role in determining how anionic lipids influence its gating.


Subject(s)
Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Kv1.5 Potassium Channel/chemistry , Kv1.5 Potassium Channel/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Amino Acid Sequence , Humans , Ion Channel Gating , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Structure, Secondary
7.
Curr Top Membr ; 80: 3-23, 2017.
Article in English | MEDLINE | ID: mdl-28863821

ABSTRACT

Cholesterol is a ubiquitous neutral lipid, which finely tunes the activity of a wide range of membrane proteins, including neurotransmitter and hormone receptors and ion channels. Given the scarcity of available X-ray crystallographic structures and the even fewer in which cholesterol sites have been directly visualized, application of in silico computational methods remains a valid alternative for the detection and thermodynamic characterization of cholesterol-specific sites in functionally important membrane proteins. The membrane-embedded segments of the paradigm neurotransmitter receptor for acetylcholine display a series of cholesterol consensus domains (which we have coined "CARC"). The CARC motif exhibits a preference for the outer membrane leaflet and its mirror motif, CRAC, for the inner one. Some membrane proteins possess the double CARC-CRAC sequences within the same transmembrane domain. In addition to in silico molecular modeling, the affinity, concentration dependence, and specificity of the cholesterol-recognition motif-protein interaction have recently found experimental validation in other biophysical approaches like monolayer techniques and nuclear magnetic resonance spectroscopy. From the combined studies, it becomes apparent that the CARC motif is now more firmly established as a high-affinity cholesterol-binding domain for membrane-bound receptors and remarkably conserved along phylogenetic evolution.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Amino Acid Motifs , Humans , Protein Domains
8.
Biochim Biophys Acta ; 1848(8): 1671-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25944559

ABSTRACT

The non-structural protein 4B (NS4B) from Hepatitis C virus (HCV) plays a pivotal role in the remodelling of the host cell's membranes, required for the formation of the viral replication complex where genome synthesis occurs. NS4B is an integral membrane protein that possesses a number of domains vital for viral replication. Structural and biophysical studies have revealed that one of these, the second amphipathic N-terminal helix (AH2), plays a key role in these remodelling events. However, there is still limited understanding of the mechanism through which AH2 promotes these changes. Here we report on solid-state NMR and molecular dynamics studies that demonstrate that AH2 promotes the clustering of negatively charged lipids within the bilayer, a process that reduces the strain within the bilayer facilitating the remodelling of the lipid bilayer. Furthermore, the presence of negatively charged lipids within the bilayer appears to promote the disassociation of AH2 oligomers, highlighting a potential role for lipid recruitment in regulating NS protein interactions.


Subject(s)
Cell Membrane/metabolism , Hepacivirus/metabolism , Membrane Lipids/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , Hepacivirus/growth & development , Lipid Bilayers , Membrane Lipids/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Multimerization , Structure-Activity Relationship , Surface Properties , Viral Nonstructural Proteins/chemistry
9.
Langmuir ; 32(49): 13244-13251, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27951690

ABSTRACT

Bicelles (bilayered micelles) are model membranes used in the study of peptide structure and membrane interactions. They are traditionally made of long- and short-chain phospholipids, usually dimyristoylphosphatidylcholine (D14PC) and dihexanoyl-PC (D6PC). They are attractive membrane mimetics because their composition and planar surface are similar to the native membrane environment. In this work, to improve the solubilization of membrane proteins and allow their study in bicellar systems, D6PC was replaced by detergents from the monoalkylphosphocholine (MAPCHO) family, of which dodecylphosphocholine (12PC) is known for its ability to solubilize membrane proteins. More specifically 12PC, tetradecyl- (14PC), and hexadecyl-PC (16PC) have been employed. To verify the possibility of making bicelles with different hydrophobic thicknesses to better accommodate membrane proteins, D14PC was also replaced by phospholipids with different alkyl chain lengths: dilauroyl-PC (D12PC), dipalmitoyl-PC (D16PC), distearoyl-PC (D18PC), and diarachidoyl-PC (D20PC). Results obtained by 31P solid-state nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) at several lipid-to-detergent molar ratios (q) and temperatures indicate that these new MAPCHO bicelles can be formed under a variety of conditions. The quality of their alignment is similar to that of classical bicelles, and the low critical micelle concentration (CMC) of the surfactants and their miscibility with phospholipids are likely to be advantageous for the reconstitution of membrane proteins.

10.
Phys Chem Chem Phys ; 17(37): 23748-53, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26299667

ABSTRACT

Solid-state NMR transitions involving outer energy levels of the spin-1 (14)N nucleus are immune, to first order in perturbation theory, to the broadening caused by the nuclear quadrupole interaction. The corresponding overtone spectra, when acquired in conjunction with magic-angle sample spinning, result in lines, which are just a few kHz wide, permitting the direct detection of nitrogen compounds without the need for labeling. Despite the success of this technique, "overtone" resonances are still broadened due to indirect, second order effects arising from the large quadrupolar interaction. Here we demonstrate that another order of magnitude in spectral resolution may be gained by using double rotation. This brings the width of the (14)N solid-state NMR lines much closer to the region commonly associated with high-resolution solid-state NMR spectroscopy of (15)N and demonstrates the improvements in resolution that may be possible through the development of pulsed methodologies to suppress these second order effects.


Subject(s)
Nitrogen/chemistry , Rotation , Magnetic Resonance Spectroscopy
11.
Phys Chem Chem Phys ; 17(9): 6577-87, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25662410

ABSTRACT

Overtone (14)N NMR spectroscopy is a promising route for the direct detection of (14)N signals with good spectral resolution. Its application is currently limited, however, by the absence of efficient polarization techniques for overtone signal enhancement and the lack of efficient numerical simulation techniques to aid in both the development of new methods and the analysis and interpretation of experimental data. In this paper we report a novel method for the transfer of polarization from (1)H to the (14)N overtone using symmetry-based R-sequences that overcome many of the limitations of adiabatic approaches that have worked successfully on static samples. Refinement of these sequences and the analysis of the resulting spectra have been facilitated through the development of an efficient simulation strategy for (14)N overtone NMR spectroscopy of spinning samples, using effective Hamiltonians on top of Floquet and Fokker-Planck equations.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Nitrogen/chemistry
12.
Langmuir ; 30(21): 6162-70, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24797658

ABSTRACT

Bicelles are model membranes generally made of long-chain dimyristoylphosphatidylcholine (DMPC) and short-chain dihexanoyl-PC (DHPC). They are extensively used in the study of membrane interactions and structure determination of membrane-associated peptides, since their composition and morphology mimic the widespread PC-rich natural eukaryotic membranes. At low DMPC/DHPC (q) molar ratios, fast-tumbling bicelles are formed in which the DMPC bilayer is stabilized by DHPC molecules in the high-curvature rim region. Experimental constraints imposed by techniques such as circular dichroism, dynamic light scattering, or microscopy may require the use of bicelles at high dilutions. Studies have shown that such conditions induce the formation of small aggregates and alter the lipid-to-detergent ratio of the bicelle assemblies. The objectives of this work were to determine the exact composition of those DMPC/DHPC isotropic bicelles and study the lipid miscibility. This was done using (31)P nuclear magnetic resonance (NMR) and exploring a wide range of lipid concentrations (2-400 mM) and q ratios (0.15-2). Our data demonstrate how dilution modifies the actual DMPC/DHPC molar ratio in the bicelles. Care must be taken for samples with a total lipid concentration ≤250 mM and especially at q ∼ 1.5-2, since moderate dilutions could lead to the formation of large and slow-tumbling lipid structures that could hinder the use of solution NMR methods, circular dichroism or dynamic light scattering studies. Our results, supported by infrared spectroscopy and molecular dynamics simulations, also show that phospholipids in bicelles are largely segregated only when q > 1. Boundaries are presented within which control of the bicelles' q ratio is possible. This work, thus, intends to guide the choice of q ratio and total phospholipid concentration when using isotropic bicelles.


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Micelles , Phospholipid Ethers/chemistry , Phospholipids/chemistry , Circular Dichroism , Detergents/chemistry , Light , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Materials Testing , Molecular Dynamics Simulation , Scattering, Radiation , Solutions , Spectroscopy, Fourier Transform Infrared , Temperature
13.
Biochim Biophys Acta ; 1818(1): 90-6, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21963409

ABSTRACT

The activity of the potassium channel KcsA is tightly regulated through the interactions of anionic lipids with high-affinity non-annular lipid binding sites located at the interface between the channel's subunits. Here we present solid-state phosphorous NMR studies that resolve the negatively charged lipid phosphatidylglycerol within the non-annular lipid-binding site. Perturbations in chemical shift observed upon the binding of phosphatidylglycerol are indicative of the interaction of positively charged sidechains within the non-annular binding site and the negatively charged lipid headgroup. Site directed mutagenesis studies have attributed these charge interactions to R64 and R89. Functionally the removal of the positive charges from R64 and R89 appears to act synergistically to reduce the probability of channel opening.


Subject(s)
Bacterial Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Phosphatidylglycerols/metabolism , Potassium Channels/chemistry , Recombinant Proteins/chemistry , Arginine/genetics , Arginine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Electrophysiology , Escherichia coli , Ion Channel Gating , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Potentials/physiology , Models, Molecular , Mutagenesis, Site-Directed , Phosphatidylglycerols/chemistry , Plasmids , Potassium/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity
14.
Analyst ; 138(24): 7294-8, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24162163

ABSTRACT

Single-channel electrophysiology with lipid bilayer systems requires ion channel expression, purification from cell culture, and reconstitution in proteoliposomes for delivery to a planar bilayer. Here we demonstrate that single-channel current measurements of the potassium channels KcsA and hERGS5-S6 can be obtained by direct insertion in interdroplet lipid bilayers from microliters of a cell-free expression medium.


Subject(s)
Ion Channels/physiology , Lipid Bilayers , Cell-Free System , Proteolipids
15.
Phys Chem Chem Phys ; 15(20): 7613-20, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23589073

ABSTRACT

Nitrogen is one of the most abundant elements and plays a key role in the chemistry of biological systems. Despite its widespread distribution, the study of the naturally occurring isotope of nitrogen, (14)N (99.6%), has been relatively limited as it is a spin-1 nucleus that typically exhibits a large quadrupolar interaction. Accordingly, most studies of nitrogen sites in biomolecules have been performed on samples enriched with (15)N, limiting the application of NMR to samples which can be isotopically enriched. This precludes the analysis of naturally occurring samples and results in the loss of the wealth of structural and dynamic information that the quadrupolar interaction can provide. Recently, several experimental approaches have been developed to characterize (14)N sites through their interaction with neighboring 'spy' nuclei. Here we describe a novel version of these experiments whereby coherence between the (14)N site and the spy nucleus is mediated by the application of a moderate rf field to the (14)N. The resulting (13)C/(14)N spectra show good sensitivity on natural abundance and labeled materials; whilst the (14)N lineshapes permit the quantitative analysis of the quadrupolar interaction.


Subject(s)
Nitrogen/chemistry , Biological Products/chemistry , Biopolymers/chemistry , Carbon Isotopes , Glycine/chemistry , Magnetic Resonance Spectroscopy
16.
J Mol Biol ; 435(11): 167953, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37330283

ABSTRACT

Membranes form the first line of defence of bacteria against potentially harmful molecules in the surrounding environment. Understanding the protective properties of these membranes represents an important step towards development of targeted anti-bacterial agents such as sanitizers. Use of propanol, isopropanol and chlorhexidine can significantly decrease the threat imposed by bacteria in the face of growing anti-bacterial resistance via mechanisms that include membrane disruption. Here we have employed molecular dynamics simulations and nuclear magnetic resonance to explore the impact of chlorhexidine and alcohol on the S. aureus cell membrane, as well as the E. coli inner and outer membranes. We identify how sanitizer components partition into these bacterial membranes, and show that chlorhexidine is instrumental in this process.


Subject(s)
1-Propanol , 2-Propanol , Anti-Bacterial Agents , Chlorhexidine , Escherichia coli , Hand Sanitizers , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Chlorhexidine/pharmacology , Escherichia coli/drug effects , Magnetic Resonance Spectroscopy , Staphylococcus aureus/drug effects , Cell Membrane/drug effects , 1-Propanol/pharmacology , 2-Propanol/pharmacology , Hand Sanitizers/pharmacology
17.
BMC Complement Med Ther ; 23(1): 408, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957642

ABSTRACT

BACKGROUND: Limonium Sinense (Girard) Kuntze (L. sinense) has been widely used for the treatment of anaemia, bleeding, cancer, and other disorders in Chinese folk medicine. The aim of this study is to predict the therapeutic effects of L. sinense and investigate the potential mechanisms using integrated network pharmacology methods and in vitro cellular experiments. METHODS: The active ingredients of L. sinense were collected from published literature, and the potential targets related to L. sinense were obtained from public databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and DisGeNET enrichment analyses were performed to explore the underlying mechanisms. Molecular docking, cellular experiments, RNA-sequencing (RNA-seq) and Gene Expression Omnibus (GEO) datasets were employed to further evaluate the findings. RESULTS: A total of 15 active ingredients of L. sinense and their corresponding 389 targets were obtained. KEGG enrichment analysis revealed that the biological effects of L. sinense were primarily associated with "Pathways in cancer". DisGeNET enrichment analysis highlighted the potential role of L. sinense in the treatment of breast cancer. Apigenin within L. sinense showed promising potential against cancer. Cellular experiments demonstrated that the L. sinense ethanol extract (LSE) exhibited a significant growth inhibitory effect on multiple breast cancer cell lines in both 2D and 3D cultures. RNA-seq analysis revealed a potential impact of LSE on breast cancer. Additionally, analysis of GEO datasets verified the significant enrichment of breast cancer and several cancer-related pathways upon treatment with Apigenin in human breast cancer cells. CONCLUSION: This study predicts the biological activities of L. sinense and demonstrates the inhibitory effect of LSE on breast cancer cells, highlighting the potential application of L. sinense in cancer treatment.


Subject(s)
Neoplasms , Plumbaginaceae , Humans , Apigenin , Molecular Docking Simulation , Network Pharmacology , Research Design
18.
Front Plant Sci ; 13: 994036, 2022.
Article in English | MEDLINE | ID: mdl-36388517

ABSTRACT

Limonium Sinense (Girard) Kuntze is a traditional Chinese medicinal herb, showing blood replenishment, anti-tumour, anti-hepatitis, and immunomodulation activities amongst others. However, the mechanism of its pharmacological activities remains largely unknown. Here, we investigated the effects of bioactive ingredients from Limonium Sinense using an integrated approach. Water extracts from Limonium Sinense (LSW) showed a strong growth inhibitory effect on multiple cells in both 2D and 3D cultures. Global transcriptomic profiling and further connectivity map (CMap) analysis identified several similarly acting therapeutic candidates, including Tubulin inhibitors and hypoxia-inducible factor (HIF) modulators. The effect of LSW on the cell cycle was verified with flow cytometry showing a G2/M phase arrest. Integrated analysis suggested a role for gallic acid in mediating HIF activation. Taken together, this study provides novel insights into the bioactive ingredients in Limonium Sinense, highlighting the rich natural resource and therapeutic values of herbal plants.

19.
Chembiochem ; 12(4): 556-8, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-22238149

ABSTRACT

Over expression of proteins in E. coli frequently results in the production of inclusion bodies. Although ß(2) -microglobulin frequently forms fibrillar structures, our studies reveal significant differences between the protein in fibrils and inclusion bodies. This suggests that the formation of fibrils in inclusion bodies is dependent on the propensity of the protein to form fibrillar structures.


Subject(s)
Amyloid/chemistry , Inclusion Bodies/chemistry , beta 2-Microglobulin/chemistry , Humans , Magnetic Resonance Spectroscopy , Protein Folding
20.
Biochemistry ; 49(51): 10796-802, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21105749

ABSTRACT

The N-terminal domain of fukutin-I has been implicated in the localization of the protein in the endoplasmic reticulum and Golgi Apparatus. It has been proposed to mediate this through its interaction with the thinner lipid bilayers found in these compartments. Here we have employed multiscale molecular dynamics simulations and circular dichroism spectroscopy to explore the structure, stability, and orientation of the short 36-residue N-terminus of fukutin-I (FK1TMD) in lipids with differing tail lengths. Our results show that FK1TMD adopts a stable helical conformation in phosphatidylcholine lipids when oriented with its principal axis perpendicular to the bilayer plane. The stability of the helix is largely insensitive to the lipid tail length, preventing hydrophobic mismatch by virtue of its mobility and ability to tilt within the lipid bilayers. This suggests that changes in FK1TMD tilt in response to bilayer properties may be implicated in the regulation of its trafficking. Coarse-grained simulations of the complex Golgi membrane suggest the N-terminal domain may induce the formation of microdomains in the surrounding membrane through its preferential interaction with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol 4,5-bisphosphate lipids.


Subject(s)
Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Amino Acid Sequence , Circular Dichroism , Molecular Dynamics Simulation , Molecular Sequence Data , Phosphatidylcholines/chemistry , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL