Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Biol Chem ; 300(4): 107203, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508311

ABSTRACT

We are entering an exciting time in structural biology where artificial intelligence can be used to predict protein structures with greater accuracy than ever before. Extending this level of accuracy to the predictions of disulfide-rich peptide structures is likely to be more challenging, at least in the short term, given the tight packing of cysteine residues and the numerous ways that the disulfide bonds can potentially be linked. It has been previously shown in many cases that several disulfide bond connectivities can be accommodated by a single set of NMR-derived structural data without significant violations. Disulfide-rich peptides are prevalent throughout nature, and arguably the most well-known are those present in venoms from organisms such as cone snails. Here, we have determined the first three-dimensional structure and disulfide connectivity of a U-superfamily cone snail venom peptide, TxVIIB. TxVIIB has a VI/VII cysteine framework that is generally associated with an inhibitor cystine knot (ICK) fold; however, AlphaFold predicted that the peptide adopts a mini-granulin fold with a granulin disulfide connectivity. Our experimental studies using NMR spectroscopy and orthogonal protection of cysteine residues indicate that TxVIIB indeed adopts a mini-granulin fold but with the ICK disulfide connectivity. Our findings provide structural insight into the underlying features that govern formation of the mini-granulin fold rather than the ICK fold and will provide fundamental information for prediction algorithms, as the subtle complexity of disulfide isomers may be not adequately addressed by the current prediction algorithms.


Subject(s)
Conotoxins , Animals , Amino Acid Sequence , Conotoxins/chemistry , Conus Snail , Cysteine/chemistry , Disulfides/chemistry , Granulins/chemistry , Granulins/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Folding
2.
Proc Natl Acad Sci U S A ; 117(40): 24920-24928, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32958636

ABSTRACT

Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.


Subject(s)
Evolution, Molecular , Neurotoxins/genetics , Polyamines/chemistry , Spiders/genetics , Amino Acid Sequence/genetics , Animals , Australia , Conserved Sequence/genetics , Female , Humans , Male , Mice , Neurotoxins/chemistry , Neurotoxins/metabolism , Peptides/genetics , Phylogeny , Polyamines/metabolism , Sexual Behavior, Animal/physiology , Spider Venoms/genetics , Spiders/pathogenicity , Transcriptome/genetics , Vertebrates/genetics , Vertebrates/physiology
3.
J Nat Prod ; 85(7): 1789-1798, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35829679

ABSTRACT

Scleractinian corals are crucially important to the health of some of the world's most biodiverse, productive, and economically important marine habitats. Despite this importance, analysis of coral peptidomes is still in its infancy. Here we show that the tentacle extract from the stony coral Heliofungia actiniformis is rich in peptides with diverse and novel structures. We have characterized the sequences and three-dimensional structures of four new peptides, three of which have no known homologues. We show that a 2 kDa peptide, Hact-2, promotes significant cell proliferation on human cells and speculate this peptide may be involved in the remarkable regenerative capacity of corals. We found a 3 kDa peptide, Hact-3, encoded within a fascin-like domain, and homologues of Hact-3 are present in the genomes of other coral species. Two additional peptides, Hact-4 and Hact-SCRiP1, with limited sequence similarity, both contain a beta-defensin-like fold and highlight a structural link with the small cysteine-rich proteins (SCRiP) family of proteins found predominantly in corals. Our results provide a first glimpse into the remarkable and unexplored structural diversity of coral peptides, providing insight into their diversity and putative functions and, given the ancient lineage of corals, potential insight into the evolution of structural motifs.


Subject(s)
Anthozoa , Animals , Biodiversity , Ecosystem , Humans , Peptides
4.
Biochem Soc Trans ; 49(3): 1279-1285, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34156400

ABSTRACT

Cyclic peptides are widespread throughout the plant kingdom, and display diverse sequences, structures and bioactivities. The potential applications attributed to these peptides and their unusual biosynthesis has captivated the attention of researchers for many years. Several gene sequences for plant cyclic peptides have been discovered over the last two decades but it is only recently that we are beginning to understand the intricacies associated with their biosynthesis. Recent studies have focussed on three main classes of plant derived cyclic peptides, namely orbitides, SFTI related peptides and cyclotides. In this mini-review, we discuss the expansion of the known sequence and structural diversity in these families, insights into the enzymes involved in the biosynthesis, the exciting applications which includes a cyclotide currently in clinical trials for the treatment of multiple sclerosis, and new production methods that are being developed to realise the potential of plant cyclic peptides as pharmaceutical or agricultural agents.


Subject(s)
Cyclotides/metabolism , Peptides, Cyclic/metabolism , Plant Proteins/metabolism , Plants/metabolism , Animals , Cyclotides/chemistry , Cyclotides/pharmacology , Cysteine Endopeptidases/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Humans , Multiple Sclerosis/drug therapy , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Plant Proteins/chemistry , Plant Proteins/pharmacology , Protein Precursors/chemistry , Protein Precursors/metabolism
5.
Mar Drugs ; 19(6)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073964

ABSTRACT

Stonefish are regarded as one of the most venomous fish in the world. Research on stonefish venom has chiefly focused on the in vitro and in vivo neurological, cardiovascular, cytotoxic and nociceptive effects of the venom. The last literature review on stonefish venom was published over a decade ago, and much has changed in the field since. In this review, we have generated a global map of the current distribution of all stonefish (Synanceia) species, presented a table of clinical case reports and provided up-to-date information about the development of polyspecific stonefish antivenom. We have also presented an overview of recent advancements in the biomolecular composition of stonefish venom, including the analysis of transcriptomic and proteomic data from Synanceia horrida venom gland. Moreover, this review highlights the need for further research on the composition and properties of stonefish venom, which may reveal novel molecules for drug discovery, development or other novel physiological uses.


Subject(s)
Bites and Stings/epidemiology , Bites and Stings/therapy , Fish Venoms/poisoning , Fishes, Poisonous , Animals , Bites and Stings/complications , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/therapy , Fish Venoms/analysis , Fish Venoms/chemistry , Fishes, Poisonous/physiology , Geography , Humans , Indian Ocean/epidemiology , Neuromuscular Diseases/epidemiology , Neuromuscular Diseases/etiology , Neuromuscular Diseases/therapy , Pacific Ocean/epidemiology
6.
Mar Drugs ; 19(3)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801301

ABSTRACT

Cone snails are venomous marine predators that rely on fast-acting venom to subdue their prey and defend against aggressors. The conotoxins produced in the venom gland are small disulfide-rich peptides with high affinity and selectivity for their pharmacological targets. A dominant group comprises α-conotoxins, targeting nicotinic acetylcholine receptors. Here, we report on the synthesis, structure determination and biological activity of a novel α-conotoxin, CIC, found in the predatory venom of the piscivorous species Conus catus and its truncated mutant Δ-CIC. CIC is a 4/7 α-conotoxin with an unusual extended N-terminal tail. High-resolution NMR spectroscopy shows a major influence of the N-terminal tail on the apparent rigidity of the three-dimensional structure of CIC compared to the more flexible Δ-CIC. Surprisingly, this effect on the structure does not alter the biological activity, since both peptides selectively inhibit α3ß2 and α6/α3ß2ß3 nAChRs with almost identical sub- to low micromolar inhibition constants. Our results suggest that the N-terminal part of α-conotoxins can accommodate chemical modifications without affecting their pharmacology.


Subject(s)
Conotoxins/isolation & purification , Conus Snail/metabolism , Mollusk Venoms/chemistry , Nicotinic Antagonists/isolation & purification , Animals , Conotoxins/chemistry , Conotoxins/pharmacology , Magnetic Resonance Spectroscopy , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism
7.
J Nat Prod ; 83(11): 3454-3463, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33166137

ABSTRACT

Marine organisms produce a diverse range of toxins and bioactive peptides to support predation, competition, and defense. The peptide repertoires of stony corals (order Scleractinia) remain relatively understudied despite the presence of tentacles used for predation and defense that are likely to contain a range of bioactive compounds. Here, we show that a tentacle extract from the mushroom coral, Heliofungia actiniformis, contains numerous peptides with a range of molecular weights analogous to venom profiles from species such as cone snails. Using NMR spectroscopy and mass spectrometry we characterized a 12-residue peptide (Hact-1) with a new sequence (GCHYTPFGLICF) and well-defined ß-hairpin structure stabilized by a single disulfide bond. The sequence is encoded within the genome of the coral and expressed in the polyp body tissue. The structure present is common among toxins and venom peptides, but Hact-1 does not show activity against select examples of Gram-positive and Gram-negative bacteria or a range of ion channels, common properties of such peptides. Instead, it appears to have a limited effect on human peripheral blood mononuclear cells, but the ecological function of the peptide remains unknown. The discovery of this peptide from H. actiniformis is likely to be the first of many from this and related species.


Subject(s)
Anthozoa/chemistry , Anti-Bacterial Agents/chemistry , Peptides/chemistry , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Peptides/pharmacology
8.
J Mammal ; 104(4): 892-906, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37545668

ABSTRACT

Photoluminescence in the pelage of mammals, a topic that has gained considerable recent research interest, was first documented in the 1700s and reported sporadically in the literature over the last century. The first detailed species accounts were of rabbits and humans, published 111 years ago in 1911. Recent studies have largely overlooked this earlier research into photoluminescent mammalian taxa and their luminophores. Here we provide a comprehensive update on existing research on photoluminescence in mammal fur, with the intention of drawing attention to earlier pioneering research in this field. We provide an overview on appropriate terminology, explain the physics of photoluminescence, and explore pigmentation and the ubiquitous photoluminescence of animal tissues, before touching on the emerging debate regarding visual function. We then provide a chronological account of research into mammalian fur photoluminescence, from the earliest discoveries and identification of luminophores to the most recent studies. While all mammal fur is likely to have a general low-level photoluminescence due to the presence of the protein keratin, fur glows luminously under ultraviolet light if it contains significant concentrations of tryptophan metabolites or porphyrins. Finally, we briefly discuss issues associated with preserved museum specimens in studies of photoluminescence. The study of mammal fur photoluminescence has a substantial history, which provides a broad foundation on which future studies can be grounded.

9.
Front Pharmacol ; 14: 1277143, 2023.
Article in English | MEDLINE | ID: mdl-38034993

ABSTRACT

The structure-function and optimization studies of NaV-inhibiting spider toxins have focused on developing selective inhibitors for peripheral pain-sensing NaV1.7. With several NaV subtypes emerging as potential therapeutic targets, structure-function analysis of NaV-inhibiting spider toxins at such subtypes is warranted. Using the recently discovered spider toxin Ssp1a, this study extends the structure-function relationships of NaV-inhibiting spider toxins beyond NaV1.7 to include the epilepsy target NaV1.2 and the pain target NaV1.3. Based on these results and docking studies, we designed analogues for improved potency and/or subtype-selectivity, with S7R-E18K-rSsp1a and N14D-P27R-rSsp1a identified as promising leads. S7R-E18K-rSsp1a increased the rSsp1a potency at these three NaV subtypes, especially at NaV1.3 (∼10-fold), while N14D-P27R-rSsp1a enhanced NaV1.2/1.7 selectivity over NaV1.3. This study highlights the challenge of developing subtype-selective spider toxin inhibitors across multiple NaV subtypes that might offer a more effective therapeutic approach. The findings of this study provide a basis for further rational design of Ssp1a and related NaSpTx1 homologs targeting NaV1.2, NaV1.3 and/or NaV1.7 as research tools and therapeutic leads.

10.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37572327

ABSTRACT

Several secreted proteins from helminths (parasitic worms) have been shown to have immunomodulatory activities. Asparaginyl-tRNA synthetases are abundantly secreted in the filarial nematode Brugia malayi (BmAsnRS) and the parasitic flatworm Schistosoma japonicum (SjAsnRS), indicating a possible immune function. The suggestion is supported by BmAsnRS alleviating disease symptoms in a T-cell transfer mouse model of colitis. This immunomodulatory function is potentially related to an N-terminal extension domain present in eukaryotic AsnRS proteins but few structure/function studies have been done on this domain. Here we have determined the three-dimensional solution structure of the N-terminal extension domain of SjAsnRS. A protein containing the 114 N-terminal amino acids of SjAsnRS was recombinantly expressed with isotopic labelling to allow structure determination using 3D NMR spectroscopy, and analysis of dynamics using NMR relaxation experiments. Structural comparisons of the N-terminal extension domain of SjAsnRS with filarial and human homologues highlight a high degree of variability in the ß-hairpin region of these eukaryotic N-AsnRS proteins, but similarities in the disorder of the C-terminal regions. Limitations in PrDOS-based intrinsically disordered region (IDR) model predictions were also evident in this comparison. Empirical structural data such as that presented in our study for N-SjAsnRS will enhance the prediction of sequence-homology based structure modelling and prediction of IDRs in the future.Communicated by Ramaswamy H. Sarma.

11.
FEBS J ; 290(14): 3688-3702, 2023 07.
Article in English | MEDLINE | ID: mdl-36912793

ABSTRACT

Venom-derived peptides targeting ion channels involved in pain are regarded as a promising alternative to current, and often ineffective, chronic pain treatments. Many peptide toxins are known to specifically and potently block established therapeutic targets, among which the voltage-gated sodium and calcium channels are major contributors. Here, we report on the discovery and characterization of a novel spider toxin isolated from the crude venom of Pterinochilus murinus that shows inhibitory activity at both hNaV 1.7 and hCaV 3.2 channels, two therapeutic targets implicated in pain pathways. Bioassay-guided HPLC fractionation revealed a 36-amino acid peptide with three disulfide bridges named µ/ω-theraphotoxin-Pmu1a (Pmu1a). Following isolation and characterization, the toxin was chemically synthesized and its biological activity was further assessed using electrophysiology, revealing Pmu1a to be a toxin that potently blocks both hNaV 1.7 and hCaV 3. Nuclear magnetic resonance structure determination of Pmu1a shows an inhibitor cystine knot fold that is the characteristic of many spider peptides. Combined, these data show the potential of Pmu1a as a basis for the design of compounds with dual activity at the therapeutically relevant hCaV 3.2 and hNaV 1.7 voltage-gated channels.


Subject(s)
Spider Venoms , Spiders , Animals , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/chemistry , Spider Venoms/pharmacology , Spider Venoms/chemistry , Spider Venoms/metabolism , Pain , Peptides/pharmacology , Magnetic Resonance Spectroscopy , Spiders/metabolism
12.
Front Med (Lausanne) ; 9: 934852, 2022.
Article in English | MEDLINE | ID: mdl-36186812

ABSTRACT

A decline in the prevalence of parasites such as hookworms appears to be correlated with the rise in non-communicable inflammatory conditions in people from high- and middle-income countries. This correlation has led to studies that have identified proteins produced by hookworms that can suppress inflammatory bowel disease (IBD) and asthma in animal models. Hookworms secrete a family of abundant netrin-domain containing proteins referred to as AIPs (Anti-Inflammatory Proteins), but there is no information on the structure-function relationships. Here we have applied a downsizing approach to the hookworm AIPs to derive peptides of 20 residues or less, some of which display anti-inflammatory effects when co-cultured with human peripheral blood mononuclear cells and oral therapeutic activity in a chemically induced mouse model of acute colitis. Our results indicate that a conserved helical region is responsible, at least in part, for the anti-inflammatory effects. This helical region has potential in the design of improved leads for treating IBD and possibly other inflammatory conditions.

13.
Front Pharmacol ; 12: 795455, 2021.
Article in English | MEDLINE | ID: mdl-35002728

ABSTRACT

Given the important role of voltage-gated sodium (NaV) channel-modulating spider toxins in elucidating the function, pharmacology, and mechanism of action of therapeutically relevant NaV channels, we screened the venom from Australian theraphosid species against the human pain target hNaV1.7. Using assay-guided fractionation, we isolated a 33-residue inhibitor cystine knot (ICK) peptide (Ssp1a) belonging to the NaSpTx1 family. Recombinant Ssp1a (rSsp1a) inhibited neuronal hNaV subtypes with a rank order of potency hNaV1.7 > 1.6 > 1.2 > 1.3 > 1.1. rSsp1a inhibited hNaV1.7, hNaV1.2 and hNaV1.3 without significantly altering the voltage-dependence of activation, inactivation, or delay in recovery from inactivation. However, rSsp1a demonstrated voltage-dependent inhibition at hNaV1.7 and rSsp1a-bound hNaV1.7 opened at extreme depolarizations, suggesting rSsp1a likely interacted with voltage-sensing domain II (VSD II) of hNaV1.7 to trap the channel in its resting state. Nuclear magnetic resonance spectroscopy revealed key structural features of Ssp1a, including an amphipathic surface with hydrophobic and charged patches shown by docking studies to comprise the interacting surface. This study provides the basis for future structure-function studies to guide the development of subtype selective inhibitors.

14.
Biomedicines ; 8(8)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751897

ABSTRACT

Despite scorpion stings posing a significant public health issue in particular regions of the world, certain aspects of scorpion venom chemistry remain poorly described. Although there has been extensive research into the identity and activity of scorpion venom peptides, non-peptide small molecules present in the venom have received comparatively little attention. Small molecules can have important functions within venoms; for example, in some spider species the main toxic components of the venom are acylpolyamines. Other molecules can have auxiliary effects that facilitate envenomation, such as purines with hypotensive properties utilised by snakes. In this study, we investigated some non-peptide small molecule constituents of Hormurus waigiensis venom using LC/MS, reversed-phase HPLC, and NMR spectroscopy. We identified adenosine, adenosine monophosphate (AMP), and citric acid within the venom, with low quantities of the amino acids glutamic acid and aspartic acid also being present. Purine nucleosides such as adenosine play important auxiliary functions in snake venoms when injected alongside other venom toxins, and they may have a similar role within H. waigiensis venom. Further research on these and other small molecules in scorpion venoms may elucidate their roles in prey capture and predator defence, and gaining a greater understanding of how scorpion venom components act in combination could allow for the development of improved first aid.

15.
Biomedicines ; 8(5)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443665

ABSTRACT

Conopeptides belonging to the A-superfamily from the venomous molluscs, Conus, are typically α-conotoxins. The α-conotoxins are of interest as therapeutic leads and pharmacological tools due to their selectivity and potency at nicotinic acetylcholine receptor (nAChR) subtypes. Structurally, the α-conotoxins have a consensus fold containing two conserved disulfide bonds that define the two-loop framework and brace a helical region. Here we report on a novel α-conotoxin Pl168, identified from the transcriptome of Conus planorbis, which has an unusual 4/8 loop framework. Unexpectedly, NMR determination of its three-dimensional structure reveals a new structural type of A-superfamily conotoxins with a different disulfide-stabilized fold, despite containing the conserved cysteine framework and disulfide connectivity of classical α-conotoxins. The peptide did not demonstrate activity on a range of nAChRs, or Ca2+ and Na+ channels suggesting that it might represent a new pharmacological class of conotoxins.

16.
Front Endocrinol (Lausanne) ; 11: 606530, 2020.
Article in English | MEDLINE | ID: mdl-33613446

ABSTRACT

Type 2 diabetes (T2D) is a major health problem and is considered one of the top 10 diseases leading to death globally. T2D has been widely associated with systemic and local inflammatory responses and with alterations in the gut microbiota. Microorganisms, including parasitic worms and gut microbes have exquisitely co-evolved with their hosts to establish an immunological interaction that is essential for the formation and maintenance of a balanced immune system, including suppression of excessive inflammation. Herein we show that both prophylactic and therapeutic infection of mice with the parasitic hookworm-like nematode, Nippostrongylus brasiliensis, significantly reduced fasting blood glucose, oral glucose tolerance and body weight gain in two different diet-induced mouse models of T2D. Helminth infection was associated with elevated type 2 immune responses including increased eosinophil numbers in the mesenteric lymph nodes, liver and adipose tissues, as well as increased expression of IL-4 and alternatively activated macrophage marker genes in adipose tissue, liver and gut. N. brasiliensis infection was also associated with significant compositional changes in the gut microbiota at both the phylum and order levels. Our findings show that N. brasiliensis infection drives changes in local and systemic immune cell populations, and that these changes are associated with a reduction in systemic and local inflammation and compositional changes in the gut microbiota which cumulatively might be responsible for the improved insulin sensitivity observed in infected mice. Our findings indicate that carefully controlled therapeutic hookworm infection in humans could be a novel approach for treating metabolic syndrome and thereby preventing T2D.


Subject(s)
Diabetes Mellitus, Type 2/therapy , Gastrointestinal Microbiome , Inflammation/prevention & control , Insulin Resistance , Nippostrongylus , Strongylida Infections/physiopathology , Animals , Blood Glucose , Body Weight , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Eosinophils , Glucose Tolerance Test , Leukocyte Count , Male , Metabolic Syndrome/therapy , Mice , Mice, Inbred C57BL
17.
J Med Chem ; 63(21): 12682-12692, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33063995

ABSTRACT

Venom peptides are promising drug leads, but their therapeutic use is often limited by stability and bioavailability issues. In this study, we designed cyclic analogues of α-conotoxin CIA, a potent muscle nicotinic acetylcholine receptor (nAChR) blocker with a significantly lower affinity at the neuronal α3ß2 subtype. Remarkably, all analogues retained the low nanomolar activity of native CIA toward muscle-type nAChRs but showed greatly improved resistance to degradation in human serum and, surprisingly, displayed up to 52-fold higher potency for the α3ß2 neuronal nAChR subtype (IC50 1.3 nM). Comparison of nuclear magnetic resonance-derived structures revealed some differences that might explain the gain of potency at α3ß2 nAChRs. All peptides were highly paralytic when injected into adult zebrafish and bath-applied to zebrafish larvae, suggesting barrier-crossing capabilities and efficient uptake. Finally, these cyclic CIA analogues were shown to be unique pharmacological tools to investigate the contribution of the presynaptic α3ß2 nAChR subtype to the train-of-four fade.


Subject(s)
Ligands , Muscles/metabolism , Neurons/metabolism , Nicotinic Antagonists/chemistry , Peptides/chemistry , Receptors, Nicotinic/metabolism , Venoms/metabolism , Amino Acid Sequence , Animals , Conotoxins/chemistry , Cyclization , Larva/drug effects , Larva/physiology , Locomotion/drug effects , Mice , Muscle Contraction/drug effects , Nicotinic Antagonists/metabolism , Nicotinic Antagonists/pharmacology , Peptides/metabolism , Peptides/pharmacology , Protein Binding , Protein Structure, Tertiary , Receptors, Nicotinic/chemistry , Zebrafish/growth & development , Zebrafish/physiology
18.
Biochem Pharmacol ; 74(4): 623-38, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17610847

ABSTRACT

The omega-atracotoxins (omega-ACTX) are a family of arthropod-selective peptide neurotoxins from Australian funnel-web spider venoms (Hexathelidae: Atracinae) that are candidates for development as biopesticides. We isolated a 37-residue insect-selective neurotoxin, omega-ACTX-Ar1a, from the venom of the Sydney funnel-web spider Atrax robustus, with high homology to several previously characterized members of the omega-ACTX-1 family. The peptide induced potent excitatory symptoms, followed by flaccid paralysis leading to death, in acute toxicity tests in house crickets. Using isolated smooth and skeletal nerve-muscle preparations, the toxin was shown to lack overt vertebrate toxicity at concentrations up to 1 microM. To further characterize the target of the omega-ACTXs, voltage-clamp analysis using the whole-cell patch-clamp technique was undertaken using cockroach dorsal unpaired median neurons. It is shown here for the first time that omega-ACTX-Ar1a, and its homolog omega-ACTX-Hv1a from Hadronyche versuta, reversibly block both mid-low- (M-LVA) and high-voltage-activated (HVA) insect calcium channel (Ca(v)) currents. This block occurred in the absence of alterations in the voltage-dependence of Ca(v) channel activation, and was voltage-independent, suggesting that omega-ACTX-1 family toxins are pore blockers rather than gating modifiers. At a concentration of 1 microM omega-ACTX-Ar1a failed to significantly affect global K(v) channel currents. However, 1 microM omega-ACTX-Ar1a caused a modest 18% block of insect Na(v) channel currents, similar to the minor block of Na(v) channels reported for other insect Ca(v) channel blockers such as omega-agatoxin IVA. These findings validate both M-LVA and HVA Ca(v) channels as potential targets for insecticides.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Neurotoxins/toxicity , Spider Venoms/toxicity , Amino Acid Sequence , Animals , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/isolation & purification , Chickens , Dose-Response Relationship, Drug , Electrophysiology , Female , Gryllidae/drug effects , Lethal Dose 50 , Male , Molecular Sequence Data , Molecular Weight , Muscle, Skeletal/drug effects , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Neurotoxins/chemistry , Neurotoxins/genetics , Periplaneta/drug effects , Rats , Rats, Sprague-Dawley , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Species Specificity , Spider Venoms/chemistry , Spider Venoms/genetics , Spiders , Toxicity Tests/methods , Vas Deferens/drug effects , Vas Deferens/pathology
19.
Peptides ; 26(12): 2412-26, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15979762

ABSTRACT

This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N- and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significant amino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins including mamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 (PK1) and prokineticin 2 (PK2). These AVIT family proteins target prokineticin receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MIT1, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pig ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1muM, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin receptors.


Subject(s)
Protein Processing, Post-Translational , Spider Venoms/genetics , Spiders/genetics , Amino Acid Sequence , Animals , Calcium Signaling/drug effects , Cell Line , Gastrointestinal Hormones/pharmacology , Humans , Intercellular Signaling Peptides and Proteins , Male , Molecular Sequence Data , Muscle Contraction/drug effects , Muscle, Smooth/cytology , Muscle, Smooth/metabolism , Peptides/genetics , Protein Structure, Tertiary , Rats , Rats, Wistar , Sequence Homology, Amino Acid , Spider Venoms/pharmacology , Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL