Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Publication year range
1.
J Immunol ; 208(8): 2019-2028, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35365565

ABSTRACT

In stroke patients, infection is a significant contributor to morbidity and mortality. Moreover, older stroke patients show an increased risk of developing stroke-associated infection, although the mechanisms underlying this increased susceptibility to infection are unknown. In this study, using an experimental mouse model of ischemic stroke, we showed that older (12-15 mo of age) mice had elevated lung bacterial infection and inflammatory damage after stroke when compared with young (8-10 wk of age) counterparts, despite undergoing the same degree of brain injury. Intravital microscopy of the lung microvasculature revealed that in younger mice, stroke promoted neutrophil arrest in pulmonary microvessels, but this response was not seen in older poststroke mice. In addition, bacterial phagocytosis by neutrophils in the lung microvasculature was reduced by both aging and stroke, such that neutrophils in aged poststroke mice showed the greatest impairment in this function. Analysis of neutrophil migration in vitro and in the cremaster muscle demonstrated that stroke alone did not negatively impact neutrophil migration, but that the combination of increased age and stroke led to reduced effectiveness of neutrophil chemotaxis. Transcriptomic analysis of pulmonary neutrophils using RNA sequencing identified 79 genes that were selectively altered in the context of combined aging and stroke, and they were associated with pathways that control neutrophil chemotaxis. Taken together, the findings of this study show that stroke in older animals results in worsening of neutrophil antibacterial responses and changes in neutrophil gene expression that have the potential to underpin elevated risk of stroke-associated infection in the context of increased age.


Subject(s)
Pneumonia , Stroke , Aged , Aging , Animals , Humans , Lung , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Phagocytosis , Pneumonia/metabolism , Stroke/metabolism
2.
J Pediatr Orthop ; 44(1): e61-e68, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37867374

ABSTRACT

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is a rare, neurodegenerative disorder that manifests with progressive loss of ambulation and refractory dystonia, especially in the early-onset classic form. This leads to osteopenia and stress on long bones, which pose an increased risk of atraumatic femur fractures. The purpose of this study is to describe the unique challenges in managing femur fractures in PKAN and the effect of disease manifestations on surgical outcomes. METHODS: A retrospective case review was conducted on 5 patients (ages 10 to 20 y) with PKAN with a femur fracture requiring surgical intervention. Data regarding initial presentation, surgical treatment, complications, and outcomes were obtained. RESULTS: All patients were non-ambulatory, with 4 of 5 patients sustaining an atraumatic femur fracture in the setting of dystonia episode. One patient had an additional contralateral acetabular fracture. Postoperatively, 4 of the 5 patients sustained orthopaedic complications requiring surgical revision, with 3 of these secondary to dystonia. Overall, 4 required prolonged hospitalization in the setting of refractory dystonia. CONCLUSION: Femur fractures in PKAN present distinct challenges for successful outcomes. A rigid intramedullary rod with proximal and distal interlocking screws is most protective against surgical complications associated with refractory dystonia occurring during the postoperative period. Multidisciplinary planning for postoperative care is essential and may include aggressive sedation and pain management to decrease the risk of subsequent injuries or complications. LEVEL OF EVIDENCE: Level IV.


Subject(s)
Dystonia , Pantothenate Kinase-Associated Neurodegeneration , Spinal Fractures , Humans , Pantothenate Kinase-Associated Neurodegeneration/complications , Pantothenate Kinase-Associated Neurodegeneration/therapy , Dystonia/complications , Dystonia/therapy , Retrospective Studies , Femur
3.
Stroke ; 54(7): 1950-1953, 2023 07.
Article in English | MEDLINE | ID: mdl-37226774

ABSTRACT

Tenecteplase is replacing alteplase as the fibrinolytic agent of choice for the acute management of ischemic stroke in many adult stroke centers due to practical and pharmacokinetic advantages in the setting of similar outcomes. Although thrombolytic use is increasing for acute childhood stroke, there is very limited experience with tenecteplase in children for any indication, and importantly, there are no data on safety, dosing, or efficacy of tenecteplase for childhood stroke. Changes in fibrinolytic capacity over childhood, pediatric pharmacological considerations such as age-specific differences in drug clearance and volume of distribution, and practical aspects of drug delivery such as availability in children's hospitals may impact decisions about transitioning from alteplase to tenecteplase for acute pediatric stroke treatment. Pediatric and adult neurologists should prepare institution-specific guidelines and organize prospective data collection.


Subject(s)
Brain Ischemia , Stroke , Adult , Child , Humans , Tenecteplase/therapeutic use , Tissue Plasminogen Activator , Brain Ischemia/drug therapy , Stroke/drug therapy , Fibrinolytic Agents/therapeutic use , Treatment Outcome
4.
Ecol Appl ; 33(1): e2728, 2023 01.
Article in English | MEDLINE | ID: mdl-36053922

ABSTRACT

Monitoring vegetation restoration is challenging because monitoring is costly, requires long-term funding, and involves monitoring multiple vegetation variables that are often not linked back to learning about progress toward objectives. There is a clear need for the development of targeted monitoring programs that focus on a reduced set of variables that are tied to specific restoration objectives. In this paper, we present a method to progress the development of a targeted monitoring program, using a pre-existing state-and-transition model. We (1) use field data to validate an expert-derived classification of woodland vegetation states; (2) use these data to identify which variable(s) help differentiate woodland states; and (3) identify the target threshold (for the variable) that signifies if the desired transition has been achieved. The measured vegetation variables from each site in this study were good predictors of the different states. We show that by measuring only a few of these variables, it is possible to assign the vegetation state for a collection of sites, and monitor if and when a transition to another state has occurred. For this ecosystem and state-and-transition models, out of nine vegetation variables considered, the density of immature trees and percentage of exotic understory vegetation cover were the variables most frequently specified as effective to define a threshold or transition. We synthesize findings by presenting a decision tree that provides practical guidance for the development of targeted monitoring strategies for woodland vegetation.


Subject(s)
Ecosystem , Forests
5.
Stroke ; 53(8): 2497-2503, 2022 08.
Article in English | MEDLINE | ID: mdl-35380052

ABSTRACT

BACKGROUND: Data from the early pandemic revealed that 0.62% of children hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had an acute arterial ischemic stroke (AIS). In a larger cohort from June 2020 to December 2020, we sought to determine whether our initial point estimate was stable as the pandemic continued and to understand radiographic and laboratory data that may clarify mechanisms of pediatric AIS in the setting of SARS-CoV-2. METHODS: We surveyed international sites with pediatric stroke expertise to determine numbers of hospitalized SARS-CoV-2 patients <18 years, numbers of incident AIS cases among children (29 days to <18 years), frequency of SARS-CoV-2 testing for children with AIS, and numbers of childhood AIS cases positive for SARS-CoV-2 June 1 to December 31, 2020. Two stroke neurologists with 1 neuroradiologist determined whether SARS-CoV-2 was the main stroke risk factor, contributory, or incidental. RESULTS: Sixty-one centers from 21 countries provided AIS data. Forty-eight centers (78.7%) provided SARS-CoV-2 hospitalization data. SARS-CoV-2 testing was performed in 335/373 acute AIS cases (89.8%) compared with 99/166 (59.6%) in March to May 2020, P<0.0001. Twenty-three of 335 AIS cases tested (6.9%) were positive for SARS-CoV-2 compared with 6/99 tested (6.1%) in March to May 2020, P=0.78. Of the 22 of 23 AIS cases with SARS-CoV-2 in whom we could collect additional data, SARS-CoV-2 was the main stroke risk factor in 6 (3 with arteritis/vasculitis, 3 with focal cerebral arteriopathy), a contributory factor in 13, and incidental in 3. Elevated inflammatory markers were common, occurring in 17 (77.3%). From centers with SARS-CoV-2 hospitalization data, of 7231 pediatric patients hospitalized with SARS-CoV-2, 23 had AIS (0.32%) compared with 6/971 (0.62%) from March to May 2020, P=0.14. CONCLUSIONS: The risk of AIS among children hospitalized with SARS-CoV-2 appeared stable compared with our earlier estimate. Among children in whom SARS-CoV-2 was considered the main stroke risk factor, inflammatory arteriopathies were the stroke mechanism.


Subject(s)
COVID-19 , Ischemic Stroke , Stroke , COVID-19/epidemiology , COVID-19 Testing , Child , Humans , Ischemic Stroke/epidemiology , Pandemics , Prevalence , SARS-CoV-2 , Stroke/epidemiology , Stroke/etiology
6.
Immunol Cell Biol ; 100(7): 482-496, 2022 08.
Article in English | MEDLINE | ID: mdl-35706327

ABSTRACT

Previous studies investigating innate leukocyte recruitment into the brain after cerebral ischemia have shown conflicting results. Using distinct cell surface and intracellular markers, the current study evaluated the contributions of innate immune cells to the poststroke brain following 1-h middle cerebral artery occlusion (tMCAO) or permanent MCAO (pMCAO), and assessed whether these cells ascribed to an inflammatory state. Moreover, we examined whether there is evidence for leukocyte infiltration into the contralateral (CL) hemisphere despite the absence of stroke infarct. We observed the recruitment of peripheral neutrophils, monocytes and macrophages into the hemisphere ipsilateral (IL) to the ischemic brain infarct at 24 and 96 h following both tMCAO and pMCAO. In addition, we found evidence of increased leukocyte recruitment to the CL hemisphere but to a lesser extent than the IL hemisphere after stroke. Robust production of intracellular cytokines in the innate immune cell types examined was most evident at 24 h after pMCAO. Specifically, brain-associated neutrophils, monocytes and macrophages demonstrated stroke-induced production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1ß, while only monocytes and macrophages exhibit a significant expression of arginase 1 (Arg1) after stroke. At 96 h after stroke, brain-resident microglia demonstrated production of TNF-α and IL-1ß following both tMCAO and pMCAO. At this later timepoint, neutrophils displayed TNF-α production and brain-associated macrophages exhibited elevation of IL-1ß and Arg1 after tMCAO. Further, pMCAO induced significant expression of Arg1 and IL-1ß in monocytes and macrophages at 96 h, respectively. These results revealed that brain-associated innate immune cells display various stroke-induced inflammatory states that are dependent on the experimental stroke setting.


Subject(s)
Brain , Immunity, Innate , Inflammation , Ischemic Stroke , Leukocytes , Brain/immunology , Brain/pathology , Brain Ischemia/immunology , Brain Ischemia/pathology , Immunity, Innate/immunology , Inflammation/immunology , Inflammation/pathology , Ischemic Stroke/immunology , Ischemic Stroke/pathology , Leukocytes/immunology , Leukocytes/pathology , Microglia/immunology , Microglia/pathology , Monocytes/immunology , Monocytes/pathology , Stroke/immunology , Stroke/pathology , Tumor Necrosis Factor-alpha/immunology
7.
Ann Neurol ; 88(2): 264-273, 2020 08.
Article in English | MEDLINE | ID: mdl-32342562

ABSTRACT

OBJECTIVE: Genome sequencing (GS) is promising for unsolved leukodystrophies, but its efficacy has not been prospectively studied. METHODS: A prospective time-delayed crossover design trial of GS to assess the efficacy of GS as a first-line diagnostic tool for genetic white matter disorders took place between December 1, 2015 and September 27, 2017. Patients were randomized to receive GS immediately with concurrent standard of care (SoC) testing, or to receive SoC testing for 4 months followed by GS. RESULTS: Thirty-four individuals were assessed at interim review. The genetic origin of 2 patient's leukoencephalopathy was resolved before randomization. Nine patients were stratified to the immediate intervention group and 23 patients to the delayed-GS arm. The efficacy of GS was significant relative to SoC in the immediate (5/9 [56%] vs 0/9 [0%]; Wild-Seber, p < 0.005) and delayed (control) arms (14/23 [61%] vs 5/23 [22%]; Wild-Seber, p < 0.005). The time to diagnosis was significantly shorter in the immediate-GS group (log-rank test, p = 0.04). The overall diagnostic efficacy of combined GS and SoC approaches was 26 of 34 (76.5%, 95% confidence interval = 58.8-89.3%) in <4 months, greater than historical norms of <50% over 5 years. Owing to loss of clinical equipoise, the trial design was altered to a single-arm observational study. INTERPRETATION: In this study, first-line GS provided earlier and greater diagnostic efficacy in white matter disorders. We provide an evidence-based diagnostic testing algorithm to enable appropriate clinical GS utilization in this population. ANN NEUROL 2020;88:264-273.


Subject(s)
Leukoencephalopathies/diagnosis , Leukoencephalopathies/genetics , Sequence Analysis, DNA/methods , Child , Child, Preschool , Cross-Over Studies , Female , Humans , Infant , Male , Prospective Studies , White Matter/pathology
8.
Dev Med Child Neurol ; 63(12): 1402-1409, 2021 12.
Article in English | MEDLINE | ID: mdl-34347296

ABSTRACT

This review provides recommendations for the evaluation and management of individuals with beta-propeller protein-associated neurodegeneration (BPAN). BPAN is one of several neurodegenerative disorders with brain iron accumulation along with pantothenate kinase-associated neurodegeneration, PLA2G6-associated neurodegeneration, mitochondrial membrane protein-associated neurodegeneration, fatty acid hydroxylase-associated neurodegeneration, and COASY protein-associated neurodegeneration. BPAN typically presents with global developmental delay and epilepsy in childhood, which is followed by the onset of dystonia and parkinsonism in mid-adolescence or adulthood. BPAN is an X-linked dominant disorder caused by pathogenic variants in WDR45, resulting in a broad clinical phenotype and imaging spectrum. This review, informed by an evaluation of the literature and expert opinion, discusses the clinical phenotype and progression of the disease, imaging findings, epilepsy features, and genetics, and proposes an approach to the initial evaluation and management of disease manifestations across the life span in individuals with BPAN. What this paper adds The complex epilepsy profile of beta-propeller protein-associated neurodegeneration (BPAN) often resolves in adolescence. The treatment for an individual with BPAN is supportive, with attention to sleep disorders, complex epilepsy, and behavioral problems. Individuals with BPAN have shifting needs throughout their life span requiring multidisciplinary care.


Subject(s)
Brain/pathology , Iron/metabolism , Neurodegenerative Diseases/diagnosis , Brain/metabolism , Disease Management , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology
9.
Proc Natl Acad Sci U S A ; 115(52): E12353-E12362, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30482864

ABSTRACT

Lower respiratory tract infections (LRTIs) lead to more deaths each year than any other infectious disease category. Despite this, etiologic LRTI pathogens are infrequently identified due to limitations of existing microbiologic tests. In critically ill patients, noninfectious inflammatory syndromes resembling LRTIs further complicate diagnosis. To address the need for improved LRTI diagnostics, we performed metagenomic next-generation sequencing (mNGS) on tracheal aspirates from 92 adults with acute respiratory failure and simultaneously assessed pathogens, the airway microbiome, and the host transcriptome. To differentiate pathogens from respiratory commensals, we developed a rules-based model (RBM) and logistic regression model (LRM) in a derivation cohort of 20 patients with LRTIs or noninfectious acute respiratory illnesses. When tested in an independent validation cohort of 24 patients, both models achieved accuracies of 95.5%. We next developed pathogen, microbiome diversity, and host gene expression metrics to identify LRTI-positive patients and differentiate them from critically ill controls with noninfectious acute respiratory illnesses. When tested in the validation cohort, the pathogen metric performed with an area under the receiver-operating curve (AUC) of 0.96 (95% CI, 0.86-1.00), the diversity metric with an AUC of 0.80 (95% CI, 0.63-0.98), and the host transcriptional classifier with an AUC of 0.88 (95% CI, 0.75-1.00). Combining these achieved a negative predictive value of 100%. This study suggests that a single streamlined protocol offering an integrated genomic portrait of pathogen, microbiome, and host transcriptome may hold promise as a tool for LRTI diagnosis.


Subject(s)
Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/immunology , Sequence Analysis, DNA/methods , Adult , Aged , Aged, 80 and over , Area Under Curve , Case-Control Studies , Cohort Studies , Critical Illness , Female , Humans , Male , Microbiota/genetics , Middle Aged , Predictive Value of Tests , Respiratory Tract Infections/microbiology , Transcriptome/genetics , Whole Genome Sequencing/methods
10.
Eat Weight Disord ; 26(1): 75-83, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31782028

ABSTRACT

PURPOSE: Research concerning eating disorders among adolescent and young adult male athletes is limited compared with female counterparts, but increasing evidence indicates that they may be at unique risk for unhealthy exercise and eating behavior. The current study aimed to characterize unhealthy exercise and eating behavior according to competitive athlete status, as well as per sport type. METHOD: Collegiate male athletes (N = 611), each affiliated with one of the 10 National College Athletics Association (NCAA) Division I schools in the United States, completed an online survey, reporting on eating and extreme weight control behaviors, and reasons for exercise. RESULTS: Competitive athletes endorsed increased driven exercise and exercising when sick. Baseball players, cyclists, and wrestlers emerged as the sports with the most players reporting elevated Eating Disorder Examination-Questionnaire scores in a clinical range, and basketball players reported the highest rates of binge eating. overall, baseball players, cyclists, rowers, and wrestlers appeared to demonstrate the greatest vulnerability for unhealthy eating and exercise behavior. CONCLUSION: Findings revealed differences between competitive and non-competitive male athletes. Among competitive athletes, results identified unique risk for unhealthy eating and exercise behavior across a variety of sport categories and support continued examination of these attitudes and behaviors in a nuanced manner. LEVEL II: Evidence obtained from well-designed controlled trials without randomization.


Subject(s)
Athletes , Sports , Adolescent , Feeding Behavior , Humans , Male , Students , United States , Universities , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL