Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Publication year range
1.
Nature ; 600(7890): 675-679, 2021 12.
Article in English | MEDLINE | ID: mdl-34887591

ABSTRACT

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Cardiovascular Diseases/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Linkage Disequilibrium , Multifactorial Inheritance , Polymorphism, Single Nucleotide/genetics , Population Groups
2.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931049

ABSTRACT

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Chromatin/genetics , Genomics , Humans , Lipids/genetics , Polymorphism, Single Nucleotide/genetics
4.
BMC Bioinformatics ; 24(1): 355, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735349

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have identified hundreds of genetic loci associated with kidney function. By combining these findings with post-GWAS information (e.g., statistical fine-mapping to identify independent association signals and to narrow down signals to causal variants; or different sources of annotation data), new hypotheses regarding physiology and disease aetiology can be obtained. These hypotheses need to be tested in laboratory experiments, for example, to identify new therapeutic targets. For this purpose, the evidence obtained from GWAS and post-GWAS analyses must be processed and presented in a way that they are easily accessible to kidney researchers without specific GWAS expertise. MAIN: Here we present KidneyGPS, a user-friendly web-application that combines genetic variant association for estimated glomerular filtration rate (eGFR) from the Chronic Kidney Disease Genetics consortium with annotation of (i) genetic variants with functional or regulatory effects ("SNP-to-gene" mapping), (ii) genes with kidney phenotypes in mice or human ("gene-to-phenotype"), and (iii) drugability of genes (to support re-purposing). KidneyGPS adopts a comprehensive approach summarizing evidence for all 5906 genes in the 424 GWAS loci for eGFR identified previously and the 35,885 variants in the 99% credible sets of 594 independent signals. KidneyGPS enables user-friendly access to the abundance of information by search functions for genes, variants, and regions. KidneyGPS also provides a function ("GPS tab") to generate lists of genes with specific characteristics thus enabling customizable Gene Prioritisation (GPS). These specific characteristics can be as broad as any gene in the 424 loci with a known kidney phenotype in mice or human; or they can be highly focussed on genes mapping to genetic variants or signals with particularly with high statistical support. KidneyGPS is implemented with RShiny in a modularized fashion to facilitate update of input data ( https://kidneygps.ur.de/gps/ ). CONCLUSION: With the focus on kidney function related evidence, KidneyGPS fills a gap between large general platforms for accessing GWAS and post-GWAS results and the specific needs of the kidney research community. This makes KidneyGPS an important platform for kidney researchers to help translate in silico research results into in vitro or in vivo research.


Subject(s)
Genome-Wide Association Study , Renal Insufficiency, Chronic , Humans , Animals , Mice , Phenotype , Kidney , Chromosome Mapping
5.
Br J Psychiatry ; 222(6): 257-263, 2023 06.
Article in English | MEDLINE | ID: mdl-37204025

ABSTRACT

BACKGROUND: Observational studies indicate a relationship between vitamin D (25-hydroxyvitamin D; 25OHD) deficiency and the development of internalising disorders, especially depression. However, causal inference approaches (e.g. Mendelian randomisation) did not confirm this relationship. Findings from biobehavioural research suggests that new insights are revealed when focusing on psychopathological dimensions rather than on clinical diagnoses. This study provides further evidence on the relationship between 25OHD and the internalising dimension. AIMS: This investigation aimed at examining the causality between 25OHD and internalising disorders including a common internalising factor. METHOD: We performed a two-sample Mendelian randomisation using genome-wide association study (GWAS) summary data for 25OHD (417 580 participants), major depressive disorder (45 591 cases; 97 674 controls), anxiety (5580 cases; 11 730 controls), post-traumatic stress disorder (12 080 cases; 33 446 controls), panic disorder (2248 cases; 7992 controls), obsessive-compulsive disorder (2688 cases; 7037 controls) and anorexia nervosa (16 992 cases; 55 525 controls). GWAS results of the internalising phenotypes were combined to a common factor representing the internalising dimension. We performed several complementary analyses to reduce the risk of pleiotropy and used a second 25OHD GWAS for replication. RESULTS: We found no causal relationship between 25OHD and any of the internalising phenotypes studied, nor with the common internalising factor. Several pleiotropy-robust methods corroborated the null association. CONCLUSIONS: Following current transdiagnostic approaches to investigate mental disorders, our results focused on the shared genetic basis between different internalising phenotypes and provide no evidence for an effect of 25OHD on the internalising dimension.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis/methods , Vitamin D/genetics , Polymorphism, Single Nucleotide
6.
Diabetes Obes Metab ; 25(7): 1803-1812, 2023 07.
Article in English | MEDLINE | ID: mdl-36855799

ABSTRACT

AIM: To examine the association between body mass index (BMI)-independent allometric body shape indices and kidney function. MATERIALS AND METHODS: We performed a two-sample Mendelian randomization (MR) analysis, using summary statistics from UK Biobank, CKDGen and DIAGRAM. BMI-independent allometric body shape indices were: A Body Shape Index (ABSI), Waist-Hip Index (WHI) and Hip Index (HI). Kidney function outcomes were: urinary albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate and blood urea nitrogen. Furthermore, we investigated type 2 diabetes (T2D) as a potential mediator on the pathway to albuminuria. The main analysis was inverse variance-weighted random-effects MR in participants of European ancestry. We also performed several sensitivity MR analyses. RESULTS: A 1-standard deviation (SD) increase in genetically predicted ABSI and WHI levels was associated with higher UACR (ß = 0.039 [95% confidence interval: 0.016, 0.063] log [UACR], P = 0.001 for ABSI, and ß = 0.028 [0.012, 0.044] log [UACR], P = 6 x 10-4 for WHI) in women, but not in men. Meanwhile, a 1-SD increase in genetically predicted HI was associated with lower UACR in women (ß = -0.021 [-0.041, 0.000] log [UACR], P = 0.05) and in men (ß = -0.026 [-0.058, 0.005] log [UACR], P = 0.10). Corresponding estimates in individuals with diabetes were substantially augmented. Risk of T2D increased for genetically high ABSI and WHI in women (P < 6 x 10-19 ) only, but decreased for genetically high HI in both sexes (P < 9 x 10-3 ). No other associations were observed. CONCLUSIONS: Genetically high HI was associated with decreased risk of albuminuria, mediated through decreased T2D risk in both sexes. Opposite associations applied to genetically high ABSI and WHI in women only.


Subject(s)
Diabetes Mellitus, Type 2 , Male , Humans , Female , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Albuminuria/genetics , Albuminuria/complications , Mendelian Randomization Analysis , Somatotypes , Glomerular Filtration Rate , Kidney , Genome-Wide Association Study
7.
Nature ; 542(7640): 186-190, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28146470

ABSTRACT

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.


Subject(s)
Body Height/genetics , Gene Frequency/genetics , Genetic Variation/genetics , ADAMTS Proteins/genetics , Adult , Alleles , Cell Adhesion Molecules/genetics , Female , Genome, Human/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosaminoglycans/biosynthesis , Hedgehog Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Interferon Regulatory Factors/genetics , Interleukin-11 Receptor alpha Subunit/genetics , Male , Multifactorial Inheritance/genetics , NADPH Oxidase 4 , NADPH Oxidases/genetics , Phenotype , Pregnancy-Associated Plasma Protein-A/metabolism , Procollagen N-Endopeptidase/genetics , Proteoglycans/biosynthesis , Proteolysis , Receptors, Androgen/genetics , Somatomedins/metabolism
8.
Kidney Int ; 102(3): 624-639, 2022 09.
Article in English | MEDLINE | ID: mdl-35716955

ABSTRACT

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.


Subject(s)
N-Acetylgalactosaminyltransferases , Renal Insufficiency, Chronic , Renal Insufficiency , Cross-Sectional Studies , Genetic Loci , Genome-Wide Association Study , Glomerular Filtration Rate/genetics , Humans , Kidney , Longitudinal Studies , N-Acetylgalactosaminyltransferases/genetics , Renal Insufficiency/genetics
9.
Clin Chem ; 68(3): 461-472, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34922334

ABSTRACT

BACKGROUND: Obesity and type 2 diabetes (T2D) are correlated risk factors for chronic kidney disease (CKD). METHODS: Using summary data from GIANT (Genetic Investigation of Anthropometric Traits), DIAGRAM (DIAbetes Genetics Replication And Meta-analysis), and CKDGen (CKD Genetics), we examined causality and directionality of the association between obesity and kidney function. Bidirectional 2-sample Mendelian randomization (MR) estimated the total causal effects of body mass index (BMI) and waist-to-hip ratio (WHR) on kidney function, and vice versa. Effects of adverse obesity and T2D were examined by stratifying BMI variants by their association with WHR and T2D. Multivariable MR estimated the direct causal effects of BMI and WHR on kidney function. The inverse variance weighted random-effects MR for Europeans was the main analysis, accompanied by several sensitivity MR analyses. RESULTS: One standard deviation (SD ≈ 4.8 kg/m2) genetically higher BMI was associated with decreased estimated glomerular filtration rate (eGFR) [ß=-0.032 (95% confidence intervals: -0.036, -0.027) log[eGFR], P = 1 × 10-43], increased blood urea nitrogen (BUN) [ß = 0.010 (0.005, 0.015) log[BUN], P = 3 × 10-6], increased urinary albumin-to-creatinine ratio [ß = 0.199 (0.067, 0.332) log[urinary albumin-to-creatinine ratio (UACR)], P = 0.003] in individuals with diabetes, and increased risk of microalbuminuria [odds ratios (OR) = 1.15 [1.04-1.28], P = 0.009] and CKD [1.13 (1.07-1.19), P = 3 × 10-6]. Corresponding estimates for WHR and for trans-ethnic populations were overall similar. The associations were driven by adverse obesity, and for microalbuminuria additionally by T2D. While genetically high BMI, unlike WHR, was directly associated with eGFR, BUN, and CKD, the pathway to albuminuria was likely through T2D. Genetically predicted kidney function was not associated with BMI or WHR. CONCLUSIONS: Genetically high BMI is associated with impaired kidney function, driven by adverse obesity, and for albuminuria additionally by T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Albumins , Albuminuria/genetics , Body Mass Index , Creatinine , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Humans , Kidney , Mendelian Randomization Analysis , Obesity/complications , Obesity/genetics , Renal Insufficiency, Chronic/genetics
10.
Mol Psychiatry ; 26(11): 6293-6304, 2021 11.
Article in English | MEDLINE | ID: mdl-33859359

ABSTRACT

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 Pjoint < 5 × 10-8), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (Pint < 5 × 10-8). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (Pint = 2 × 10-6). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (Pint < 10-3). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.


Subject(s)
Genome-Wide Association Study , Hypertension , Blood Pressure/genetics , Genetic Loci/genetics , Humans , Hypertension/genetics , Polymorphism, Single Nucleotide/genetics , Sleep/genetics
11.
Genet Epidemiol ; 44(7): 759-777, 2020 10.
Article in English | MEDLINE | ID: mdl-32741009

ABSTRACT

Imaging technology and machine learning algorithms for disease classification set the stage for high-throughput phenotyping and promising new avenues for genome-wide association studies (GWAS). Despite emerging algorithms, there has been no successful application in GWAS so far. We establish machine learning-based phenotyping in genetic association analysis as misclassification problem. To evaluate chances and challenges, we performed a GWAS based on automatically classified age-related macular degeneration (AMD) in UK Biobank (images from 135,500 eyes; 68,400 persons). We quantified misclassification of automatically derived AMD in internal validation data (4,001 eyes; 2,013 persons) and developed a maximum likelihood approach (MLA) to account for it when estimating genetic association. We demonstrate that our MLA guards against bias and artifacts in simulation studies. By combining a GWAS on automatically derived AMD and our MLA in UK Biobank data, we were able to dissect true association (ARMS2/HTRA1, CFH) from artifacts (near HERC2) and identified eye color as associated with the misclassification. On this example, we provide a proof-of-concept that a GWAS using machine learning-derived disease classification yields relevant results and that misclassification needs to be considered in analysis. These findings generalize to other phenotypes and emphasize the utility of genetic data for understanding misclassification structure of machine learning algorithms.


Subject(s)
Diagnostic Errors/statistics & numerical data , High-Temperature Requirement A Serine Peptidase 1/genetics , Machine Learning , Macular Degeneration/genetics , Proteins/genetics , Algorithms , Genome-Wide Association Study , Humans , Likelihood Functions , Models, Genetic , Phenotype , United Kingdom
12.
Kidney Int ; 99(4): 926-939, 2021 04.
Article in English | MEDLINE | ID: mdl-33137338

ABSTRACT

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.


Subject(s)
Genome-Wide Association Study , Kidney , AMP-Activated Protein Kinases , Creatinine , Glomerular Filtration Rate/genetics , Humans , Protein Disulfide-Isomerases , United Kingdom
13.
Hum Mol Genet ; 28(1): 166-174, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30239722

ABSTRACT

More than one in three adults worldwide is either overweight or obese. Epidemiological studies indicate that the location and distribution of excess fat, rather than general adiposity, are more informative for predicting risk of obesity sequelae, including cardiometabolic disease and cancer. We performed a genome-wide association study meta-analysis of body fat distribution, measured by waist-to-hip ratio (WHR) adjusted for body mass index (WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, will inform the biology of body fat distribution and its relationship with disease.


Subject(s)
Adiposity/genetics , Body Fat Distribution/methods , Obesity/genetics , Adipose Tissue/physiology , Adult , Alleles , Body Mass Index , Female , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Male , Polymorphism, Single Nucleotide/genetics , Waist-Hip Ratio , White People/genetics
14.
Hum Mol Genet ; 28(15): 2615-2633, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31127295

ABSTRACT

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.


Subject(s)
Arterial Pressure/genetics , Gene-Environment Interaction , Hypertension/genetics , Polymorphism, Genetic , Racial Groups/genetics , Smoking/adverse effects , Adolescent , Adult , Aged , Aged, 80 and over , Antiporters/genetics , Blood Pressure/genetics , Caspase 9/genetics , Ethnicity/genetics , Female , Genome-Wide Association Study , Humans , Hypertension/etiology , Male , Membrane Proteins/genetics , Middle Aged , Receptors, Vasopressin/genetics , Sulfate Transporters/genetics , Tumor Suppressor Proteins/genetics , Young Adult
15.
Am J Hum Genet ; 102(3): 375-400, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29455858

ABSTRACT

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10-8) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10-8). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).


Subject(s)
Blood Pressure/genetics , Genetic Loci , Genome-Wide Association Study , Racial Groups/genetics , Smoking/genetics , Cohort Studies , Diastole/genetics , Epistasis, Genetic , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Reproducibility of Results , Systole/genetics
16.
Nature ; 518(7538): 187-196, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25673412

ABSTRACT

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.


Subject(s)
Adipose Tissue/metabolism , Body Fat Distribution , Genome-Wide Association Study , Insulin/metabolism , Quantitative Trait Loci/genetics , Adipocytes/metabolism , Adipogenesis/genetics , Age Factors , Body Mass Index , Epigenesis, Genetic , Europe/ethnology , Female , Genome, Human/genetics , Humans , Insulin Resistance/genetics , Male , Models, Biological , Neovascularization, Physiologic/genetics , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Racial Groups/genetics , Sex Characteristics , Transcription, Genetic/genetics , Waist-Hip Ratio
17.
Nature ; 518(7538): 197-206, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25673413

ABSTRACT

Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.


Subject(s)
Body Mass Index , Genome-Wide Association Study , Obesity/genetics , Obesity/metabolism , Adipogenesis/genetics , Adiposity/genetics , Age Factors , Energy Metabolism/genetics , Europe/ethnology , Female , Genetic Predisposition to Disease/genetics , Glutamic Acid/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Male , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Racial Groups/genetics , Synapses/metabolism
18.
Genet Epidemiol ; 43(5): 559-576, 2019 07.
Article in English | MEDLINE | ID: mdl-31016765

ABSTRACT

While current genome-wide association analyses often rely on meta-analysis of study-specific summary statistics, individual participant data (IPD) from multiple studies increase options for modeling. When multistudy IPD is available, however, it is unclear whether this data is to be imputed and modeled across all participants (mega-imputation and mega-analysis) or study-specifically (meta-imputation and meta-analysis). Here, we investigated different approaches toward imputation and analysis using 52,189 subjects from 25 studies of the International Age-related Macular Degeneration (AMD) Genomics Consortium including, 16,144 AMD cases and 17,832 controls for association analysis. From 27,448,454 genetic variants after 1,000-Genomes-based imputation, mega-imputation yielded ~400,000 more variants with high imputation quality (mostly rare variants) compared to meta-imputation. For AMD signal detection (P < 5 × 10-8 ) in mega-imputed data, most loci were detected with mega-analysis without adjusting for study membership (40 loci, including 34 known); we considered these loci genuine, since genetic effects and P-values were comparable across analyses. In meta-imputed data, we found 31 additional signals, mostly near chromosome tails or reference panel gaps, which disappeared after accounting for interaction of whole-genome amplification (WGA) with study membership or after excluding studies with WGA-participants. For signal detection with multistudy IPD, we recommend mega-imputation and mega-analysis, with meta-imputation followed by meta-analysis being a computationally appealing alternative.


Subject(s)
Genetic Predisposition to Disease , Macular Degeneration/genetics , Chromosomes, Human, Pair 5/genetics , Genetic Loci , Genome-Wide Association Study , Humans , Models, Genetic , Polymorphism, Single Nucleotide
19.
Curr Diab Rep ; 20(1): 1, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31970540

ABSTRACT

PURPOSE OF REVIEW: Our review provides a brief summary of the most recent advances towards the identification of the genetic basis of specific aspects of obesity and the quantification of their consequences on health. We also highlight the most promising avenues to be explored in the future. RECENT FINDINGS: While obesity has been demonstrated to lead to adverse cardio-metabolic consequences, the determinants of inter-individual variability remain largely unknown. The elucidation of the molecular underpinnings of this relationship is hampered by the extremely heterogeneous nature of obesity as a human trait. Recent technological advances have facilitated a more in-depth characterization of body composition at large-scale. At the pace of current data acquisition and resolution, it is realistic to improve characterization of obesity and to advise individuals based on detailed body composition combined with tissue-specific molecular signatures. Individualized predictions of health implications would enable more personalized and effective public health interventions.


Subject(s)
Adiposity/physiology , Obesity/genetics , Obesity/metabolism , Adiposity/genetics , Body Composition/genetics , Body Composition/physiology , Body Fat Distribution , Body Mass Index , Genetic Heterogeneity , Humans , Obesity/complications , Obesity/diagnosis , Phenotype , Sex Factors , Waist Circumference/genetics , Waist Circumference/physiology
20.
PLoS Genet ; 13(6): e1006812, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28614350

ABSTRACT

Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (Pv), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (Pm). Correlations between Pv and Pm were stronger for SNPs with established marginal effects (Spearman's ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv and Pm were compared for all pruned SNPs, only BMI was statistically significant (Spearman's ρ = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the Pv distribution (Pbinomial <0.05). SNPs from the top 1% of the Pm distribution for BMI had more significant Pv values (PMann-Whitney = 1.46×10-5), and the odds ratio of SNPs with nominally significant (<0.05) Pm and Pv was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant G×E interaction P-values (Pint<0.05) were enriched with nominally significant Pv values (Pbinomial = 8.63×10-9 and 8.52×10-7 for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them.


Subject(s)
Cholesterol, HDL/genetics , Cholesterol, LDL/genetics , Gene-Environment Interaction , Obesity/genetics , Body Mass Index , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Genetic Heterogeneity , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Obesity/blood , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Risk Factors , Smoking/genetics , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL