Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Cell ; 180(6): 1067-1080.e16, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32160527

ABSTRACT

Short-chain fatty acids are processed from indigestible dietary fibers by gut bacteria and have immunomodulatory properties. Here, we investigate propionic acid (PA) in multiple sclerosis (MS), an autoimmune and neurodegenerative disease. Serum and feces of subjects with MS exhibited significantly reduced PA amounts compared with controls, particularly after the first relapse. In a proof-of-concept study, we supplemented PA to therapy-naive MS patients and as an add-on to MS immunotherapy. After 2 weeks of PA intake, we observed a significant and sustained increase of functionally competent regulatory T (Treg) cells, whereas Th1 and Th17 cells decreased significantly. Post-hoc analyses revealed a reduced annual relapse rate, disability stabilization, and reduced brain atrophy after 3 years of PA intake. Functional microbiome analysis revealed increased expression of Treg-cell-inducing genes in the intestine after PA intake. Furthermore, PA normalized Treg cell mitochondrial function and morphology in MS. Our findings suggest that PA can serve as a potent immunomodulatory supplement to MS drugs.


Subject(s)
Multiple Sclerosis/metabolism , Propionates/immunology , Propionates/metabolism , Adult , Aged , Disease Progression , Feces/chemistry , Feces/microbiology , Female , Humans , Immunomodulation/physiology , Male , Middle Aged , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy , Propionates/therapeutic use , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
2.
EMBO J ; 41(24): e112006, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36398858

ABSTRACT

Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF-κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF-κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1- and K63-linked ubiquitin chains are generated. NF-κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria-nucleus contact sites in a HOIP-dependent manner. Notably, TNF-induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1-ubiquitin-specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF-mediated NF-κB activation, both serving as a signaling platform, as well as a transport mode for activated NF-κB to the nuclear.


Subject(s)
NF-kappa B , Ubiquitin , NF-kappa B/genetics , NF-kappa B/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Signal Transduction/physiology , Mitochondria/metabolism , Ubiquitination
3.
J Biol Chem ; 300(6): 107310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657863

ABSTRACT

Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation-π interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.


Subject(s)
Copper , Histidine , Prion Proteins , Protein Domains , Animals , Mice , Amino Acid Motifs , Copper/metabolism , Copper/chemistry , Histidine/metabolism , Histidine/chemistry , Phase Separation , Prion Proteins/metabolism , Prion Proteins/chemistry , Prion Proteins/genetics
4.
EMBO J ; 40(16): e107913, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34191328

ABSTRACT

The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.


Subject(s)
Mitochondrial Membrane Transport Proteins/metabolism , Peptides/metabolism , Protein Aggregation, Pathological/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Line , Cytosol/metabolism , Humans , Mitochondria/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Saccharomyces cerevisiae
5.
Brain ; 147(1): 240-254, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37669322

ABSTRACT

A common pathological denominator of various neurodegenerative diseases is the accumulation of protein aggregates. Neurotoxic effects are caused by a loss of the physiological activity of the aggregating protein and/or a gain of toxic function of the misfolded protein conformers. In transmissible spongiform encephalopathies or prion diseases, neurodegeneration is caused by aberrantly folded isoforms of the prion protein (PrP). However, it is poorly understood how pathogenic PrP conformers interfere with neuronal viability. Employing in vitro approaches, cell culture, animal models and patients' brain samples, we show that misfolded PrP can induce aggregation and inactivation of TAR DNA-binding protein-43 (TDP-43). Purified PrP aggregates interact with TDP-43 in vitro and in cells and induce the conversion of soluble TDP-43 into non-dynamic protein assemblies. Similarly, mislocalized PrP conformers in the cytosol bind to and sequester TDP-43 in cytosolic aggregates. As a consequence, TDP-43-dependent splicing activity in the nucleus is significantly decreased, leading to altered protein expression in cells with cytosolic PrP aggregates. Finally, we present evidence for cytosolic TDP-43 aggregates in neurons of transgenic flies expressing mammalian PrP and Creutzfeldt-Jakob disease patients. Our study identified a novel mechanism of how aberrant PrP conformers impair physiological pathways by cross-seeding.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Animals , Humans , DNA-Binding Proteins , Mammals/metabolism , Prion Diseases/metabolism , Prion Proteins , Prions/metabolism
6.
Proc Natl Acad Sci U S A ; 119(34): e2202653119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969792

ABSTRACT

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically transmitted viral hepatitis worldwide. Ribavirin (RBV) is currently the only treatment option for many patients; however, cases of treatment failures or posttreatment relapses have been frequently reported. RBV therapy was shown to be associated with an increase in HEV genome heterogeneity and the emergence of distinct HEV variants. In this study, we analyzed the impact of eight patient-derived open reading frame 2 (ORF2) single-nucleotide variants (SNVs), which occurred under RBV treatment, on the replication cycle and pathogenesis of HEV. The parental HEV strain and seven ORF2 variants showed comparable levels of RNA replication in human hepatoma cells and primary human hepatocytes. However, a P79S ORF2 variant demonstrated reduced RNA copy numbers released in the supernatant and an impairment in the production of infectious particles. Biophysical and biochemical characterization revealed that this SNV caused defective, smaller HEV particles with a loss of infectiousness. Furthermore, the P79S variant displayed an altered subcellular distribution of the ORF2 protein and was able to interfere with antibody-mediated neutralization of HEV in a competition assay. In conclusion, an SNV in the HEV ORF2 could be identified that resulted in altered virus particles that were noninfectious in vitro and in vivo, but could potentially serve as immune decoys. These findings provide insights in understanding the biology of circulating HEV variants and may guide development of personalized antiviral strategies in the future.


Subject(s)
Hepatitis E virus , Ribavirin , Viral Proteins , Cell Line, Tumor , Hepatitis E virus/genetics , Hepatitis E virus/physiology , Hepatocytes/virology , Humans , Neoplasm Recurrence, Local/genetics , Nucleotides , RNA, Viral , Ribavirin/pharmacology , Viral Proteins/genetics , Virus Replication
7.
PLoS Genet ; 17(4): e1009479, 2021 04.
Article in English | MEDLINE | ID: mdl-33857132

ABSTRACT

Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson's disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair.


Subject(s)
Drosophila Proteins/genetics , Mitochondria/genetics , Neurons/metabolism , Parkinson Disease/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Disease Models, Animal , Drosophila melanogaster/genetics , Humans , Light , Loss of Function Mutation/genetics , Mitochondria/radiation effects , Neurons/pathology , Neurons/radiation effects , Optogenetics/methods , Parkinson Disease/pathology , Phosphatidylinositol 3-Kinases/genetics , Retina/growth & development , Retina/metabolism , Signal Transduction/genetics , Transfection
8.
Eur J Neurosci ; 57(5): 739-761, 2023 03.
Article in English | MEDLINE | ID: mdl-36656174

ABSTRACT

Increasing evidence suggests that astrocytes play an important role in the progression of Parkinson's disease (PD). Previous studies on our parkin knockout mouse demonstrated a higher accumulation of damaged mitochondria in astrocytes than in surrounding dopaminergic (DA) neurons, suggesting that Parkin plays a crucial role regarding their interaction during PD pathogenesis. In the current study, we examined primary mesencephalic astrocytes and neurons in a direct co-culture system and discovered that the parkin deletion causes an impaired differentiation of mesencephalic neurons. This effect required the parkin mutation in astrocytes as well as in neurons. In Valinomycin-treated parkin-deficient astrocytes, ubiquitination of Mitofusin 2 was abolished, whereas there was no significant degradation of the outer mitochondrial membrane protein Tom70. This result may explain the accumulation of damaged mitochondria in parkin-deficient astrocytes. We examined differential gene expression in the substantia nigra region of our parkin-KO mouse by RNA sequencing and identified an upregulation of the endoplasmic reticulum (ER) Ca2+ -binding protein reticulocalbin 1 (RCN1) expression, which was validated using qPCR. Immunostaining of the SN brain region revealed RCN1 expression mainly in astrocytes. Our subcellular fractionation of brain extract has shown that RCN1 is located in the ER and in mitochondria-associated membranes (MAM). Moreover, a loss of Parkin function reduced ATP-stimulated calcium-release in ER mesencephalic astrocytes that could be attenuated by siRNA-mediated RCN1 knockdown. Our results indicate that RCN1 plays an important role in ER-associated calcium dyshomeostasis caused by the loss of Parkin function in mesencephalic astrocytes, thereby highlighting the relevance of astrocyte function in PD pathomechanisms.


Subject(s)
Calcium , Endoplasmic Reticulum , Parkinson Disease , Ubiquitin-Protein Ligases , Animals , Mice , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Dopaminergic Neurons/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Mice, Knockout , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Up-Regulation
9.
EMBO J ; 38(9)2019 05 02.
Article in English | MEDLINE | ID: mdl-30886048

ABSTRACT

Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence domain-containing transcription factor Sp1, and proteasomal degradation of misfolded Huntingtin is facilitated. Notably, all three core LUBAC components are transcriptionally regulated by Sp1, linking defective LUBAC expression to Huntington's disease. In support of a protective activity of linear ubiquitination, silencing of OTULIN, a deubiquitinase with unique specificity for linear polyubiquitin, decreases proteotoxicity, whereas silencing of HOIP has the opposite effect. These findings identify linear ubiquitination as a protein quality control mechanism and hence a novel target for disease-modifying strategies in proteinopathies.


Subject(s)
Huntingtin Protein/metabolism , Huntington Disease/metabolism , Polyubiquitin/metabolism , Protein Processing, Post-Translational , Sp1 Transcription Factor/metabolism , Valosin Containing Protein/metabolism , Adult , Aged , Animals , Brain/metabolism , Brain/pathology , Case-Control Studies , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Male , Mice , Mice, Knockout , Middle Aged , NF-kappa B/genetics , NF-kappa B/metabolism , Neurons/metabolism , Neurons/pathology , Protein Binding , Protein Interaction Domains and Motifs , Signal Transduction , Sp1 Transcription Factor/genetics , Ubiquitination , Valosin Containing Protein/genetics
10.
Phys Chem Chem Phys ; 25(41): 28063-28069, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37840355

ABSTRACT

Understanding how protein rich condensates formed upon liquid-liquid phase separation (LLPS) evolve into solid aggregates is of fundamental importance for several medical applications, since these are suspected to be hot-spots for many neurotoxic diseases. This requires developing experimental approaches to observe in real-time both LLPS and liquid-solid phase separation (LSPS), and to unravel the delicate balance of protein and water interactions dictating the free energy differences between the two. We present a vibrational THz spectroscopy approach that allows doing so from the point of view of hydration water. We focus on a cellular prion protein of high medical relevance, which we can drive to undergo either LLPS or LSPS with few mutations. We find that it is a subtle balance of hydrophobic and hydrophilic solvation contributions that allows tuning between LLPS and LSPS. Hydrophobic hydration provides an entropic driving force to phase separation, through the release of hydration water into the bulk. Water hydrating hydrophilic groups provides an enthalpic driving force to keep the condensates in a liquid state. As a result, when we modify the protein by a few mutations to be less hydrophilic, we shift from LLPS to LSPS. This molecular understanding paves the way for a rational design of proteins.


Subject(s)
Proteins , Water , Proteins/chemistry , Thermodynamics , Entropy , Hydrophobic and Hydrophilic Interactions , Water/chemistry
11.
Semin Cell Dev Biol ; 99: 163-171, 2020 03.
Article in English | MEDLINE | ID: mdl-31154011

ABSTRACT

Mitochondria are essential organelles for the maintenance of neuronal integrity, based on their manifold functions in regulating cellular metabolism and coordinating cell death and viability pathways. Accordingly, mitochondrial damage, dysfunction, or ineffective mitochondrial quality control is associated with neurological disorders and can occur as a cause or consequence of neurodegenerative diseases. Recent research revealed that mitochondria play a central role in orchestrating both innate and adaptive immune responses, thereby providing a link between neurodegenerative and neuroinflammatory processes. Here we summarize new insights into the complex interplay between mitochondria, innate immunity and neurodegeneration.


Subject(s)
Inflammation/metabolism , Inflammation/pathology , Mitochondria/metabolism , Mitochondria/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Animals , Humans
12.
J Biol Chem ; 297(1): 100860, 2021 07.
Article in English | MEDLINE | ID: mdl-34102212

ABSTRACT

Formation of biomolecular condensates through liquid-liquid phase separation (LLPS) has been described for several pathogenic proteins linked to neurodegenerative diseases and is discussed as an early step in the formation of protein aggregates with neurotoxic properties. In prion diseases, neurodegeneration and formation of infectious prions is caused by aberrant folding of the cellular prion protein (PrPC). PrPC is characterized by a large intrinsically disordered N-terminal domain and a structured C-terminal globular domain. A significant fraction of mature PrPC is proteolytically processed in vivo into an entirely unstructured fragment, designated N1, and the corresponding C-terminal fragment C1 harboring the globular domain. Notably, N1 contains a polybasic motif that serves as a binding site for neurotoxic Aß oligomers. PrP can undergo LLPS; however, nothing is known how phase separation of PrP is triggered on a molecular scale. Here, we show that the intrinsically disordered N1 domain is necessary and sufficient for LLPS of PrP. Similar to full-length PrP, the N1 fragment formed highly dynamic liquid-like droplets. Remarkably, a slightly shorter unstructured fragment, designated N2, which lacks the Aß-binding domain and is generated under stress conditions, failed to form liquid-like droplets and instead formed amorphous assemblies of irregular structures. Through a mutational analysis, we identified three positively charged lysines in the postoctarepeat region as essential drivers of condensate formation, presumably largely via cation-π interactions. These findings provide insights into the molecular basis of LLPS of the mammalian prion protein and reveal a crucial role of the Aß-binding domain in this process.


Subject(s)
Neurodegenerative Diseases/genetics , Prion Diseases/genetics , Prion Proteins/genetics , Prions/genetics , Amyloid/genetics , Amyloid/ultrastructure , Animals , Biophysical Phenomena , Humans , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/ultrastructure , Liquid-Liquid Extraction , Neurodegenerative Diseases/pathology , Prion Diseases/pathology , Prion Proteins/ultrastructure , Protein Domains/genetics , Protein Folding
13.
Biophys J ; 120(7): 1266-1275, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33515602

ABSTRACT

Formation of biomolecular condensates through liquid-liquid phase separation (LLPS) has emerged as a pervasive principle in cell biology, allowing compartmentalization and spatiotemporal regulation of dynamic cellular processes. Proteins that form condensates under physiological conditions often contain intrinsically disordered regions with low-complexity domains. Among them, the RNA-binding proteins FUS and TDP-43 have been a focus of intense investigation because aberrant condensation and aggregation of these proteins is linked to neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. LLPS occurs when protein-rich condensates form surrounded by a dilute aqueous solution. LLPS is per se entropically unfavorable. Energetically favorable multivalent protein-protein interactions are one important aspect to offset entropic costs. Another proposed aspect is the release of entropically unfavorable preordered hydration water into the bulk. We used attenuated total reflection spectroscopy in the terahertz frequency range to characterize the changes in the hydrogen bonding network accompanying the FUS enrichment in liquid-liquid phase-separated droplets to provide experimental evidence for the key role of the solvent as a thermodynamic driving force. The FUS concentration inside LLPS droplets was determined to be increased to 2.0 mM independent of the initial protein concentration (5 or 10 µM solutions) by fluorescence measurements. With terahertz spectroscopy, we revealed a dewetting of hydrophobic side chains in phase-separated FUS. Thus, the release of entropically unfavorable water populations into the bulk goes hand in hand with enthalpically favorable protein-protein interaction. Both changes are energetically favorable, and our study shows that both contribute to the thermodynamic driving force in phase separation.


Subject(s)
Amyotrophic Lateral Sclerosis , Water , DNA-Binding Proteins/metabolism , Humans , Protein Domains , RNA-Binding Protein FUS , Solvents
14.
Chemistry ; 27(46): 11845-11851, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34165838

ABSTRACT

Liquid-liquid phase separation (LLPS) has emerged as a key mechanism for intracellular organization, and many recent studies have provided important insights into the role of LLPS in cell biology. There is also evidence that LLPS is associated with a variety of medical conditions, including neurodegenerative disorders. Pathological aggregation of α-synuclein, which is causally linked to Parkinson's disease, can proceed via droplet condensation, which then gradually transitions to the amyloid state. We show that the antimicrobial peptide LL-III is able to interact with both monomers and condensates of α-synuclein, leading to stabilization of the droplet and preventing conversion to the fibrillar state. The anti-aggregation activity of LL-III was also confirmed in a cellular model. We anticipate that studying the interaction of antimicrobial-type peptides with liquid condensates such as α-synuclein will contribute to the understanding of disease mechanisms (that arise in such condensates) and may also open up exciting new avenues for intervention.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Amyloid , Humans , Pore Forming Cytotoxic Proteins , alpha-Synuclein
15.
Mol Cell ; 49(5): 908-21, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23453807

ABSTRACT

Parkin, a RING-between-RING-type E3 ubiquitin ligase associated with Parkinson's disease, has a wide neuroprotective activity, preventing cell death in various stress paradigms. We identified a stress-protective pathway regulated by parkin that links NF-κB signaling and mitochondrial integrity via linear ubiquitination. Under cellular stress, parkin is recruited to the linear ubiquitin assembly complex and increases linear ubiquitination of NF-κB essential modulator (NEMO), which is essential for canonical NF-κB signaling. As a result, the mitochondrial guanosine triphosphatase OPA1 is transcriptionally upregulated via NF-κB-responsive promoter elements for maintenance of mitochondrial integrity and protection from stress-induced cell death. Parkin-induced stress protection is lost in the absence of either NEMO or OPA1, but not in cells defective for the mitophagy pathway. Notably, in parkin-deficient cells linear ubiquitination of NEMO, activation of NF-κB, and upregulation of OPA1 are significantly reduced in response to TNF-α stimulation, supporting the physiological relevance of parkin in regulating this antiapoptotic pathway.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Animals , Apoptosis , Fibroblasts/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Signal Transduction , Transfection , Ubiquitin-Protein Ligases/metabolism
16.
Biol Chem ; 401(6-7): 891-899, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32297878

ABSTRACT

Mitochondria are highly vulnerable organelles based on their complex biogenesis, entailing dependence on nuclear gene expression and efficient import strategies. They are implicated in a wide spectrum of vital cellular functions, including oxidative phosphorylation, iron-sulfur cluster synthesis, regulation of calcium homeostasis, and apoptosis. Moreover, damaged mitochondria can release mitochondrial components, such as mtDNA or cardiolipin, which are sensed as danger-associated molecular patterns and trigger innate immune signaling. Thus, dysfunctional mitochondria pose a thread not only to the cellular but also to the organismal integrity. The elimination of dysfunctional and damaged mitochondria by selective autophagy, called mitophagy, is a major mechanism of mitochondrial quality control. Certain types of stress-induced mitophagy are regulated by the mitochondrial kinase PINK1 and the E3 ubiquitin ligase Parkin, which are both linked to autosomal recessive Parkinson's disease.


Subject(s)
Mitochondria/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Humans , Mitochondria/genetics , Mitophagy , Neurons/metabolism , Oxidative Stress , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics
17.
J Biol Chem ; 293(21): 8020-8031, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29636413

ABSTRACT

A central step in the pathogenesis of prion diseases is the conformational transition of the cellular prion protein (PrPC) into the scrapie isoform, denoted PrPSc Studies in transgenic mice have indicated that this conversion requires a direct interaction between PrPC and PrPSc; however, insights into the underlying mechanisms are still missing. Interestingly, only a subfraction of PrPC is converted in scrapie-infected cells, suggesting that not all PrPC species are suitable substrates for the conversion. On the basis of the observation that PrPC can form homodimers under physiological conditions with the internal hydrophobic domain (HD) serving as a putative dimerization domain, we wondered whether PrP dimerization is involved in the formation of neurotoxic and/or infectious PrP conformers. Here, we analyzed the possible impact on dimerization of pathogenic mutations in the HD that induce a spontaneous neurodegenerative disease in transgenic mice. Similarly to wildtype (WT) PrPC, the neurotoxic variant PrP(AV3) formed homodimers as well as heterodimers with WTPrPC Notably, forced PrP dimerization via an intermolecular disulfide bond did not interfere with its maturation and intracellular trafficking. Covalently linked PrP dimers were complex glycosylated, GPI-anchored, and sorted to the outer leaflet of the plasma membrane. However, forced PrPC dimerization completely blocked its conversion into PrPSc in chronically scrapie-infected mouse neuroblastoma cells. Moreover, PrPC dimers had a dominant-negative inhibition effect on the conversion of monomeric PrPC Our findings suggest that PrPC monomers are the major substrates for PrPSc propagation and that it may be possible to halt prion formation by stabilizing PrPC dimers.


Subject(s)
Neuroblastoma/prevention & control , Prion Proteins/chemistry , Prion Proteins/metabolism , Protein Multimerization , Scrapie/prevention & control , Animals , HeLa Cells , Humans , Mice , Mice, Transgenic , Neuroblastoma/pathology , Protein Transport , Scrapie/pathology , Tumor Cells, Cultured
18.
J Neural Transm (Vienna) ; 126(7): 815-840, 2019 07.
Article in English | MEDLINE | ID: mdl-31240402

ABSTRACT

Parkinson's disease (PD) comprises a spectrum of disorders with differing subtypes, the vast majority of which share Lewy bodies (LB) as a characteristic pathological hallmark. The process(es) underlying LB generation and its causal trigger molecules are not yet fully understood. α-Synuclein (α-syn) is a major component of LB and SNCA gene missense mutations or duplications/triplications are causal for rare hereditary forms of PD. As typical sporadic PD is associated with LB pathology, a factor of major importance is the study of the α-syn protein and its pathology. α-Syn pathology is, however, also evident in multiple system atrophy (MSA) and Lewy body disease (LBD), making it non-specific for PD. In addition, there is an overlap of these α-synucleinopathies with other protein-misfolding diseases. It has been proven that α-syn, phosphorylated tau protein (pτ), amyloid beta (Aß) and other proteins show synergistic effects in the underlying pathogenic mechanisms. Multiple cell death mechanisms can induce pathological protein-cascades, but this can also be a reverse process. This holds true for the early phases of the disease process and especially for the progression of PD. In conclusion, while rare SNCA gene mutations are causal for a minority of familial PD patients, in sporadic PD (where common SNCA polymorphisms are the most consistent genetic risk factor across populations worldwide, accounting for 95% of PD patients) α-syn pathology is an important feature. Conversely, with regard to the etiopathogenesis of α-synucleinopathies PD, MSA and LBD, α-syn is rather a bystander contributing to multiple neurodegenerative processes, which overlap in their composition and individual strength. Therapeutic developments aiming to impact on α-syn pathology should take this fact into consideration.


Subject(s)
Parkinson Disease/pathology , alpha-Synuclein , Animals , Humans
19.
J Biol Chem ; 292(52): 21383-21396, 2017 12 29.
Article in English | MEDLINE | ID: mdl-29084847

ABSTRACT

About one-quarter to nearly one-third of the proteins synthesized in the cytosol of eukaryotic cells are integrated into the plasma membrane or are secreted. Translocation of secretory proteins into the lumen of the endoplasmic reticulum or the periplasm of bacteria is mediated by a highly conserved heterotrimeric membrane protein complex denoted Sec61 in eukaryotes and SecYEG in bacteria. To evaluate a possible modulation of the translocation efficiency by secondary structures of the nascent peptide chain, we performed a comparative analysis in bacteria, yeast, and mammalian cells. Strikingly, neither the bacterial SecY nor the eukaryotic Sec61 translocon was able to efficiently transport proteins entirely composed of intrinsically disordered domains (IDDs) or ß-strands. However, translocation could be restored by α-helical domains in a position- and organism-dependent manner. In bacteria, we found that the α-helical domains have to precede the IDD or ß-strands, whereas in mammalian cells, C-terminally located α-helical domains are sufficient to promote translocation. Our study reveals an evolutionarily conserved deficiency of the Sec61/SecY complex to translocate IDDs and ß-strands in the absence of α-helical domains. Moreover, our results may suggest that adaptive pathways co-evolved with the expansion of IDDs in the proteome of eukaryotic cells to increase the transport capacity of the Sec61 translocon.


Subject(s)
SEC Translocation Channels/metabolism , SEC Translocation Channels/physiology , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , HeLa Cells , Humans , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Peptides/metabolism , Protein Structure, Secondary , Protein Transport , SEC Translocation Channels/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
20.
EMBO J ; 33(4): 341-55, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24473149

ABSTRACT

Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (Ret(MEN2B) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of Ret(MEN2B) significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD.


Subject(s)
Drosophila Proteins/deficiency , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Mitochondria, Muscle/ultrastructure , Muscular Atrophy/prevention & control , Protein Serine-Threonine Kinases/deficiency , Proto-Oncogene Proteins c-ret/physiology , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Autophagy , Cell Line, Tumor , Disease Models, Animal , Dopamine/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Electron Transport Complex I/physiology , Genes, Lethal , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Humans , Neuroblastoma/pathology , Neurons/ultrastructure , Oxygen Consumption , Parkinson Disease , Phenotype , Protein Kinases/deficiency , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins c-ret/genetics , Pupa , Signal Transduction/physiology , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL