Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurosci ; 43(4): 540-558, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36460463

ABSTRACT

In the CNS, oligodendrocyte progenitor cells (OPCs) differentiate into mature oligodendrocytes to generate myelin, an essential component for normal nervous system function. OPC differentiation is driven by signaling pathways, such as mTOR, which functions in two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), containing Raptor or Rictor, respectively. In the current studies, mTORC2 signaling was selectively deleted from OPCs in PDGFRα-Cre X Rictorfl/fl mice. This study examined developmental myelination in male and female mice, comparing the impact of mTORC2 deletion in the corpus callosum and spinal cord. In both regions, Rictor loss in OPCs resulted in early reduction in myelin RNAs and proteins. However, these deficits rapidly recovered in spinal cord, where normal myelin was noted at P21 and P45. By contrast, the losses in corpus callosum resulted in severe hypomyelination and increased unmyelinated axons. The hypomyelination may result from decreased oligodendrocytes in the corpus callosum, which persisted in animals as old as postnatal day 350. The current studies focus on uniquely altered signaling pathways following mTORC2 loss in developing oligodendrocytes. A major mTORC2 substrate is phospho-Akt-S473, which was significantly reduced throughout development in both corpus callosum and spinal cord at all ages measured, yet this had little impact in spinal cord. Loss of mTORC2 signaling resulted in decreased expression of actin regulators, such as gelsolin in corpus callosum, but only minimal loss in spinal cord. The current study establishes a regionally specific role for mTORC2 signaling in OPCs, particularly in the corpus callosum.SIGNIFICANCE STATEMENT mTORC1 and mTORC2 signaling has differential impact on myelination in the CNS. Numerous studies identify a role for mTORC1, but deletion of Rictor (mTORC2 signaling) in late-stage oligodendrocytes had little impact on myelination in the CNS. However, the current studies establish that deletion of mTORC2 signaling from oligodendrocyte progenitor cells results in reduced myelination of brain axons. These studies also establish a regional impact of mTORC2, with little change in spinal cord in these conditional Rictor deletion mice. Importantly, in both brain and spinal cord, mTORC2 downstream signaling targets were impacted by Rictor deletion. Yet, these signaling changes had little impact on myelination in spinal cord, while they resulted in long-term alterations in myelination in brain.


Subject(s)
Oligodendrocyte Precursor Cells , Animals , Female , Male , Mice , Cell Differentiation/physiology , Central Nervous System/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice, Knockout , Myelin Sheath/metabolism , Oligodendroglia/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
J Neurosci ; 41(9): 1864-1877, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33478987

ABSTRACT

The actin cytoskeleton is crucial for oligodendrocyte differentiation and myelination. Here we show that p21-activated kinase 1 (PAK1), a well-known actin regulator, promotes oligodendrocyte morphologic change and myelin production in the CNS. A combination of in vitro and in vivo models demonstrated that PAK1 is expressed throughout the oligodendrocyte lineage with highest expression in differentiated oligodendrocytes. Inhibiting PAK1 early in oligodendrocyte development decreased oligodendrocyte morphologic complexity and altered F-actin spreading at the tips of oligodendrocyte progenitor cell processes. Constitutively activating AKT in oligodendrocytes in male and female mice, which leads to excessive myelin wrapping, increased PAK1 expression, suggesting an impact of PAK1 during active myelin wrapping. Furthermore, constitutively activating PAK1 in oligodendrocytes in zebrafish led to an increase in myelin internode length while inhibiting PAK1 during active myelination decreased internode length. As myelin parameters influence conduction velocity, these data suggest that PAK1 may influence communication within the CNS. These data support a model in which PAK1 is a positive regulator of CNS myelination.SIGNIFICANCE STATEMENT Myelin is a critical component of the CNS that provides metabolic support to neurons and also facilitates communication between cells in the CNS. Recent data demonstrate that actin dynamics drives myelin wrapping, but how actin is regulated during myelin wrapping is unknown. The authors investigate the role of the cytoskeletal modulator PAK1 during differentiation and myelination by oligodendrocytes, the myelinating cells of the CNS. They demonstrate that PAK1 promotes oligodendrocyte differentiation and myelination by modulating the cytoskeleton and thereby internode length, thus playing a critical role in the function of the CNS.


Subject(s)
Myelin Sheath/metabolism , Neurogenesis/physiology , Oligodendroglia/cytology , Oligodendroglia/metabolism , p21-Activated Kinases/metabolism , Animals , Cell Differentiation/physiology , Female , Male , Mice , Rats , Rats, Sprague-Dawley , Zebrafish
3.
J Neurosci ; 41(40): 8321-8337, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34417330

ABSTRACT

In demyelinating diseases, such as multiple sclerosis, primary loss of myelin and subsequent neuronal degeneration throughout the CNS impair patient functionality. While the importance of mechanistic target of rapamycin (mTOR) signaling during developmental myelination is known, no studies have yet directly examined the function of mTOR signaling specifically in the oligodendrocyte (OL) lineage during remyelination. Here, we conditionally deleted Mtor from adult oligodendrocyte precursor cells (OPCs) using Ng2-CreERT in male adult mice to test its function in new OLs responsible for remyelination. During early remyelination after cuprizone-induced demyelination, mice lacking mTOR in adult OPCs had unchanged OL numbers but thinner myelin. Myelin thickness recovered by late-stage repair, suggesting a delay in myelin production when Mtor is deleted from adult OPCs. Surprisingly, loss of mTOR in OPCs had no effect on efficiency of remyelination after lysophosphatidylcholine lesions in either the spinal cord or corpus callosum, suggesting that mTOR signaling functions specifically in a pathway dysregulated by cuprizone to promote remyelination efficiency. We further determined that cuprizone and inhibition of mTOR cooperatively compromise metabolic function in primary rat OLs undergoing differentiation. Together, our results support the conclusion that mTOR signaling in OPCs is required to overcome the metabolic dysfunction in the cuprizone-demyelinated adult brain.SIGNIFICANCE STATEMENT Impaired remyelination by oligodendrocytes contributes to the progressive pathology in multiple sclerosis, so it is critical to identify mechanisms of improving remyelination. The goal of this study was to examine mechanistic target of rapamycin (mTOR) signaling in remyelination. Here, we provide evidence that mTOR signaling promotes efficient remyelination of the brain after cuprizone-mediated demyelination but has no effect on remyelination after lysophosphatidylcholine demyelination in the spinal cord or brain. We also present novel data revealing that mTOR inhibition and cuprizone treatment additively affect the metabolic profile of differentiating oligodendrocytes, supporting a mechanism for the observed remyelination delay. These data suggest that altered metabolic function may underlie failure of remyelination in multiple sclerosis lesions and that mTOR signaling may be of therapeutic potential for promoting remyelination.


Subject(s)
Brain/metabolism , Cuprizone/toxicity , Oligodendrocyte Precursor Cells/metabolism , Remyelination/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Brain/drug effects , Chelating Agents/toxicity , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Rats, Sprague-Dawley , Remyelination/drug effects , TOR Serine-Threonine Kinases/genetics
4.
J Neurosci ; 40(15): 2993-3007, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32139584

ABSTRACT

During differentiation, oligodendrocyte precursor cells (OPCs) extend a network of processes that make contact with axons and initiate myelination. Recent studies revealed that actin polymerization is required for initiation of myelination whereas actin depolymerization promotes myelin wrapping. Here, we used primary OPCs in culture isolated from neonatal rat cortices of both sexes and young male and female mice with oligodendrocyte-specific deletion of mechanistic target of rapamycin (mTOR) to demonstrate that mTOR regulates expression of specific cytoskeletal targets and actin reorganization in oligodendrocytes during developmental myelination. Loss or inhibition of mTOR reduced expression of profilin2 and ARPC3, actin polymerizing factors, and elevated levels of active cofilin, which mediates actin depolymerization. The deficits in actin polymerization were revealed in reduced phalloidin and deficits in oligodendrocyte cellular branching complexity at the peak of morphologic differentiation and a delay in initiation of myelination. We further show a critical role for mTOR in expression and localization of myelin basic protein (Mbp) mRNA and MBP protein to the cellular processes where it is necessary at the myelin membrane for axon wrapping. Mbp mRNA transport deficits were confirmed by single molecule RNA FISH. Moreover, expression of the kinesin family member 1B, an Mbp mRNA transport protein, was reduced in CC1+ cells in the mTOR cKO and in mTOR inhibited oligodendrocytes undergoing differentiation in vitro These data support the conclusion that mTOR regulates both initiation of myelination and axon wrapping by targeting cytoskeletal reorganization and MBP localization to oligodendrocyte processes.SIGNIFICANCE STATEMENT Myelination is essential for normal CNS development and adult axon preservation and function. The mechanistic target of rapamycin (mTOR) signaling pathway has been implicated in promoting CNS myelination; however, there is a gap in our understanding of the mechanisms by which mTOR promotes developmental myelination through regulating specific downstream targets. Here, we present evidence that mTOR promotes the initiation of myelination through regulating specific cytoskeletal targets and cellular process expansion by oligodendrocyte precursor cells as well as expression and cellular localization of myelin basic protein.


Subject(s)
Cytoskeleton/genetics , Myelin Sheath/genetics , Oligodendroglia , TOR Serine-Threonine Kinases/physiology , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actins/genetics , Actins/metabolism , Animals , Axons , Cell Differentiation/genetics , Kinesins/genetics , Kinesins/metabolism , Mice , Mice, Knockout , Myelin Basic Protein/genetics , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Oligodendroglia/ultrastructure , Rats , Rats, Sprague-Dawley , Stem Cells , TOR Serine-Threonine Kinases/genetics , Zebrafish
5.
Carcinogenesis ; 41(9): 1294-1305, 2020 09 24.
Article in English | MEDLINE | ID: mdl-31958132

ABSTRACT

The insulin receptor gene (INSR) undergoes alternative splicing to give rise to two functionally related, but also distinct, isoforms IR-A and IR-B, which dictate proliferative and metabolic regulations, respectively. Previous studies identified the RNA-binding protein CUGBP1 as a key regulator of INSR splicing. In this study, we show that the differential splicing of INSR occurs more frequently in breast cancer than in non-tumor breast tissues. In breast cancer cell lines, the IR-A:IR-B ratio varies in different molecular subtypes, knockdown or overexpression of CUGBP1 gene in breast cancer cells altered IR-A:IR-B ratio through modulation of IR-A expression, thereby reversed or enhanced the insulin-induced oncogenic behavior of breast cancer cells, respectively. Our data revealed the predominant mitogenic role of IR-A isoform in breast cancer and depicted a novel interplay between INSR and CUGBP1, implicating CUGBP1 and IR-A isoform as the potential therapeutic targets and biomarkers for breast cancer.


Subject(s)
Antigens, CD/genetics , Breast Neoplasms/pathology , CELF1 Protein/metabolism , RNA Splicing , Receptor, ErbB-2/metabolism , Receptor, Insulin/genetics , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/classification , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , CELF1 Protein/genetics , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Protein Isoforms
6.
Glia ; 68(6): 1274-1290, 2020 06.
Article in English | MEDLINE | ID: mdl-31904150

ABSTRACT

Oligodendrocyte precursor cells (OPCs) differentiate and mature into oligodendrocytes, which produce myelin in the central nervous system. Prior studies have shown that the mechanistic target of rapamycin (mTOR) is necessary for proper myelination of the mouse spinal cord and that bone morphogenetic protein (BMP) signaling inhibits oligodendrocyte differentiation, in part by promoting expression of inhibitor of DNA binding 2 (Id2). Here we provide evidence that mTOR functions specifically in the transition from early stage OPC to immature oligodendrocyte by downregulating BMP signaling during postnatal spinal cord development. When mTOR is deleted from the oligodendrocyte lineage, expression of the FK506 binding protein 1A (FKBP12), a suppressor of BMP receptor activity, is reduced, downstream Smad activity is increased and Id2 expression is elevated. Additionally, mTOR inhibition with rapamycin in differentiating OPCs alters the transcriptional complex present at the Id2 promoter. Deletion of mTOR in oligodendroglia in vivo resulted in fewer late stage OPCs and fewer newly formed oligodendrocytes in the spinal cord with no effect on OPC proliferation or cell cycle exit. Finally, we demonstrate that inhibiting BMP signaling rescues the rapamycin-induced deficit in myelin protein expression. We conclude that mTOR promotes early oligodendrocyte differentiation by suppressing BMP signaling in OPCs.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cell Differentiation/physiology , Oligodendroglia/metabolism , Sirolimus/metabolism , Spinal Cord/metabolism , Animals , Cell Cycle/physiology , Central Nervous System/metabolism , Mice , Myelin Proteins/metabolism , Neurogenesis , Signal Transduction/physiology , Stem Cells/cytology , Stem Cells/metabolism , TOR Serine-Threonine Kinases/metabolism
7.
J Neurosci ; 37(31): 7534-7546, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28694334

ABSTRACT

Although the mammalian target of rapamycin (mTOR) is an essential regulator of developmental oligodendrocyte differentiation and myelination, oligodendrocyte-specific deletion of tuberous sclerosis complex (TSC), a major upstream inhibitor of mTOR, surprisingly also leads to hypomyelination during CNS development. However, the function of TSC has not been studied in the context of remyelination. Here, we used the inducible Cre-lox system to study the function of TSC in the remyelination of a focal, lysolecithin-demyelinated lesion in adult male mice. Using two different mouse models in which Tsc1 is deleted by Cre expression in oligodendrocyte progenitor cells (OPCs) or in premyelinating oligodendrocytes, we reveal that deletion of Tsc1 affects oligodendroglia differently depending on the stage of the oligodendrocyte lineage. Tsc1 deletion from NG2+ OPCs accelerated remyelination. Conversely, Tsc1 deletion from proteolipid protein (PLP)-positive oligodendrocytes slowed remyelination. Contrary to developmental myelination, there were no changes in OPC or oligodendrocyte numbers in either model. Our findings reveal a complex role for TSC in oligodendrocytes during remyelination in which the timing of Tsc1 deletion is a critical determinant of its effect on remyelination. Moreover, our findings suggest that TSC has different functions in developmental myelination and remyelination.SIGNIFICANCE STATEMENT Myelin loss in demyelinating disorders such as multiple sclerosis results in disability due to loss of axon conductance and axon damage. Encouragingly, the nervous system is capable of spontaneous remyelination, but this regenerative process often fails. Many chronically demyelinated lesions have oligodendrocyte progenitor cells (OPCs) within their borders. It is thus of great interest to elucidate mechanisms by which we might enhance endogenous remyelination. Here, we provide evidence that deletion of Tsc1 from OPCs, but not differentiating oligodendrocytes, is beneficial to remyelination. This finding contrasts with the loss of oligodendroglia and hypomyelination seen with Tsc1 or Tsc2 deletion in the oligodendrocyte lineage during CNS development and points to important differences in the regulation of developmental myelination and remyelination.


Subject(s)
Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Nerve Fibers, Myelinated/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Stem Cells/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Axons , Cell Differentiation/physiology , Cells, Cultured , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin Sheath/metabolism , Myelin Sheath/pathology , Nerve Fibers, Myelinated/metabolism , Nerve Regeneration/physiology , Stem Cells/pathology , Tuberous Sclerosis Complex 1 Protein
8.
Breast Cancer Res ; 20(1): 138, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30458886

ABSTRACT

BACKGROUND: Early analyses of human breast cancer identified high expression of the insulin-like growth factor type 1 receptor (IGF-1R) correlated with hormone receptor positive breast cancer and associated with a favorable prognosis, whereas low expression of IGF-1R correlated with triple negative breast cancer (TNBC). We previously demonstrated that the IGF-1R acts as a tumor and metastasis suppressor in the Wnt1 mouse model of TNBC. The mechanisms for how reduced IGF-1R contributes to TNBC phenotypes is unknown. METHODS: We analyzed the METABRIC dataset to further stratify IGF-1R expression with patient survival and specific parameters of TNBC. To investigate molecular events associated with the loss of IGF-1R function in breast tumor cells, we inhibited IGF-1R in human cell lines using an IGF-1R blocking antibody and analyzed MMTV-Wnt1-mediated mouse tumors with reduced IGF-1R function through expression of a dominant-negative transgene. RESULTS: Our analysis of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset revealed association between low IGF-1R and reduced overall patient survival. IGF-1R expression was inversely correlated with patient survival even within hormone receptor-positive breast cancers, indicating reduced overall patient survival with low IGF-1R was not due simply to low IGF-1R expression within TNBCs. Inhibiting IGF-1R in either mouse or human tumor epithelial cells increased reactive oxygen species (ROS) production and activation of the endoplasmic reticulum stress response. IGF-1R inhibition in tumor epithelial cells elevated interleukin (IL)-6 and C-C motif chemokine ligand 2 (CCL2) expression, which was reversed by ROS scavenging. Moreover, the Wnt1/dnIGF-1R primary tumors displayed a tumor-promoting immune phenotype. The increased CCL2 promoted an influx of CD11b+ monocytes into the primary tumor that also had increased matrix metalloproteinase (MMP)-2, MMP-3, and MMP-9 expression. Increased MMP activity in the tumor stroma was associated with enhanced matrix remodeling and collagen deposition. Further analysis of the METABRIC dataset revealed an increase in IL-6, CCL2, and MMP-9 expression in patients with low IGF-1R, consistent with our mouse tumor model and data in human breast cancer cell lines. CONCLUSIONS: Our data support the hypothesis that reduction of IGF-1R function increases cellular stress and cytokine production to promote an aggressive tumor microenvironment through infiltration of immune cells and matrix remodeling.


Subject(s)
Cytokines/metabolism , Endoplasmic Reticulum Stress , Mammary Neoplasms, Experimental/pathology , Receptors, Somatomedin/metabolism , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Datasets as Topic , Female , Humans , Mammary Glands, Animal/cytology , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/virology , Mammary Tumor Virus, Mouse/genetics , Mammary Tumor Virus, Mouse/pathogenicity , Mice , Mice, Transgenic , Receptor, IGF Type 1 , Signal Transduction , Tumor Microenvironment , Wnt1 Protein/genetics
9.
Matern Child Health J ; 22(11): 1668-1675, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29978309

ABSTRACT

Objectives The first 6 weeks postpartum represent a time of significant adjustment and learning for parents. Healthcare providers accurately understanding parents' needs and preferences regarding support, education, and services during this critical time is essential for optimizing maternal and infant health. The first objective of this study was to explore parents' experiences adjusting to the parenting role during the first 6 weeks postpartum. The second objective was to elicit from parents where and how they sought support and information during the early postpartum period, and what hindered this process. Methods Five focus groups were conducted with 33 mothers and fathers of young children, stratified by ethnicity, education, and income. An interdisciplinary team thematically coded verbatim transcripts and identified emergent themes. Results Main themes included low confidence in parenting and sifting through parenting information. Additional themes included communicating with partner about changing roles, breastfeeding, maternal mental health, and maternal postpartum recovery. Low parenting confidence was closely linked with information seeking, yet participants expressed being overwhelmed by the task of managing conflicting parenting information. Women reported that providers focused on infant needs, leaving them feeling unprepared for their own mental and physical health needs. Conclusions for Practice Parents report extensive needs for education and support in the early postpartum period, yet also report feeling overwhelmed by the quantity of parenting information available. These findings suggest parents need and desire reliable healthcare education after discharge that includes parent health and adjustment.


Subject(s)
Fathers/psychology , Mothers/psychology , Parenting/psychology , Postpartum Period , Social Support , Adolescent , Adult , Breast Feeding/psychology , Child Rearing , Female , Focus Groups , Humans , Infant , Male , Parents/education , Young Adult
10.
J Neurosci Res ; 94(12): 1421-1433, 2016 12.
Article in English | MEDLINE | ID: mdl-27557736

ABSTRACT

There are many lines of evidence indicating that oligodendrocyte progenitor cells and oligodendrocyte populations in the central nervous system (CNS) are heterogeneous based on their developmental origins as well as from morphological and molecular criteria. Whether these distinctions reflect functional heterogeneity is less clear and has been the subject of considerable debate. Recent findings, particularly from knockout mouse models, have provided new evidence for regional variations in myelination phenotypes, particularly between brain and spinal cord. These data raise the possibility that oligodendrocytes in these regions have different functional capacities and/or ability to compensate for loss of a specific gene. The goal of this review is to briefly revisit the evidence for oligodendrocyte heterogeneity and then to present data from transgenic and demyelinating mouse models suggesting functional heterogeneity in myelination, demyelination, and remyelination in the CNS and, finally, to discuss the implications of these findings for human diseases. © 2016 Wiley Periodicals, Inc.


Subject(s)
Central Nervous System Diseases/pathology , Disease Models, Animal , Oligodendroglia/pathology , Animals , Humans , Mice , Mice, Transgenic , Neural Stem Cells/pathology
11.
J Neurosci ; 34(13): 4453-65, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24671992

ABSTRACT

Prior studies support a role for mammalian target of rapamycin (mTOR) signaling in oligodendrocyte differentiation and myelination. Here we use Cre-recombinase driven by the CNP promoter to generate a mouse line with oligodendrocyte-specific knockdown of mTOR (mTOR cKO) in the CNS. We provide evidence that mTOR is necessary for proper oligodendrocyte differentiation and myelination in the spinal cord. Specifically, the number of mature oligodendrocytes was reduced, and the initiation and extent of myelination were impaired during spinal cord development. Consistent with these data, myelin protein expression, including myelin basic protein, proteolipid protein, myelin oligodendrocyte glycoprotein, and myelin-associated glycoprotein, was delayed in the spinal cord. Hypomyelination of the spinal cord persisted into adulthood, as did the reduction in numbers of mature oligodendrocytes. In the cortex, the structure of myelin appeared normal during development and in the adult; however, myelin protein expression was delayed during development and was abnormal in the adult. Myelin basic protein was significantly reduced in all regions at postnatal day 25. These data demonstrate that mTOR promotes oligodendrocyte differentiation and CNS myelination in vivo and show that the requirement for mTOR varies by region with the spinal cord most dependent on mTOR.


Subject(s)
Cell Differentiation/genetics , Central Nervous System/cytology , Gene Expression Regulation, Developmental/physiology , Myelin Sheath/metabolism , Oligodendroglia/metabolism , TOR Serine-Threonine Kinases/physiology , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , Age Factors , Animals , Animals, Newborn , Cell Count , Central Nervous System/growth & development , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , In Vitro Techniques , Integrases/genetics , Integrases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Proteins/metabolism , Myelin Sheath/ultrastructure , Oligodendroglia/ultrastructure , TOR Serine-Threonine Kinases/deficiency , TOR Serine-Threonine Kinases/genetics
12.
J Neurosci ; 34(13): 4466-80, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24671993

ABSTRACT

During CNS development, oligodendrocytes, the myelinating glia of the CNS, progress through multiple transitory stages before terminating into fully mature cells. Oligodendrocyte differentiation and myelination is a tightly regulated process requiring extracellular signals to converge to elicit specific translational and transcriptional changes. Our lab has previously shown that the protein kinases, Akt and mammalian Target of Rapamycin (mTOR), are important regulators of CNS myelination in vivo. mTOR functions through two distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, by binding to either Raptor or Rictor, respectively. To establish whether the impact of mTOR on CNS myelination results from unique functions of mTORC1 or mTORC2 during CNS myelination, we conditionally ablated either Raptor or Rictor in the oligodendrocyte lineage, in vivo. We show that Raptor (mTORC1) is a positive regulator of developmental CNS mouse myelination when mTORC2 is functional, whereas Rictor (mTORC2) ablation has a modest positive effect on oligodendrocyte differentiation, and very little effect on myelination, when mTORC1 is functional. Also, we show that loss of Raptor in oligodendrocytes results in differential dysmyelination in specific areas of the CNS, with the greatest impact on spinal cord myelination.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Carrier Proteins/metabolism , Cell Differentiation/physiology , Central Nervous System/cytology , Corpus Callosum/cytology , Myelin Sheath/metabolism , Oligodendroglia/physiology , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Carrier Proteins/genetics , Cell Count , Cell Differentiation/genetics , Central Nervous System/physiology , Corpus Callosum/ultrastructure , Female , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Sheath/ultrastructure , Oligodendroglia/metabolism , Oligodendroglia/ultrastructure , Rapamycin-Insensitive Companion of mTOR Protein , Regulatory-Associated Protein of mTOR , Signal Transduction/physiology , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
13.
J Biol Chem ; 289(8): 4626-33, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24398690

ABSTRACT

The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R.


Subject(s)
Insulin-Like Growth Factor II/analogs & derivatives , Insulin-Like Growth Factor II/pharmacology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Receptor, Insulin/metabolism , Animals , Biomarkers/metabolism , Cell Proliferation/drug effects , Flow Cytometry , Humans , Inhibitor of Differentiation Protein 2/metabolism , Ligands , Mice , Mice, Inbred C57BL , Protein Binding/drug effects , Receptor, IGF Type 2/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism
14.
J Biol Chem ; 289(13): 9430-9, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24509861

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family. The interaction of TRAIL with death receptor 4 (DR4) and DR5 can trigger apoptotic cell death. The aim of this study was to investigate the role of TRAIL signaling in neonatal hypoxia-ischemia (HI). Using a neonatal mouse model of HI, mRNA, and protein expression of TRAIL, DR5 and the TRAIL decoy receptors osteoprotegerin (OPG), mDcTRAILR1, and mDcTRAILR2 were determined. In vitro, mRNA expression of these genes was measured in primary neurons and oligodendrocyte progenitor cells (OPCs) after inflammatory cytokine (TNF-α/IFN-γ) treatment and/or oxygen and glucose deprivation (OGD). The toxicity of these various paradigms was also measured. The expression of TRAIL, DR5, OPG, and mDcTRAILR2 was significantly increased after HI. In vitro, inflammatory cytokines and OGD treatment significantly induced mRNAs for TRAIL, DR5, OPG, and mDcTRAILR2 in primary neurons and of TRAIL and OPG in OPCs. TRAIL protein was expressed primarily in microglia and astroglia, whereas DR5 co-localized with neurons and OPCs in vivo. OGD enhanced TNF-α/IFN-γ toxicity in both neuronal and OPC cultures. Recombinant TRAIL exerted toxicity alone or in combination with OGD and TNF-α/IFN-γ in primary neurons but not in OPC cultures. The marked increases in the expression of TRAIL and its receptors after cytokine exposure and OGD in primary neurons and OPCs were similar to those found in our animal model of neonatal HI. The toxicity of TRAIL in primary neurons suggests that TRAIL signaling participates in neonatal brain injury after inflammation and HI.


Subject(s)
Central Nervous System/pathology , Hypoxia/pathology , Ischemia/pathology , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand/metabolism , Animals , Cell Death/drug effects , Female , Gene Expression Regulation/drug effects , Glucose/deficiency , Hypoxia/metabolism , Inflammation/metabolism , Inflammation/pathology , Interferon-gamma/pharmacology , Ischemia/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Oligodendroglia/pathology , Oxygen/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Signal Transduction/drug effects , Stem Cells/drug effects , Stem Cells/pathology , TNF-Related Apoptosis-Inducing Ligand/genetics , Tumor Necrosis Factor-alpha/pharmacology
15.
Article in English | MEDLINE | ID: mdl-38503504

ABSTRACT

Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.


Subject(s)
Cell Differentiation , Myelin Sheath , Oligodendroglia , Oligodendroglia/physiology , Oligodendroglia/cytology , Humans , Animals , Myelin Sheath/physiology , Myelin Sheath/metabolism , Signal Transduction , Central Nervous System/physiology , Axons/physiology , Axons/metabolism
16.
Acta Biomater ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097123

ABSTRACT

Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an extracellular matrix (ECM) for personalized medicine. The ECM influences the tumor response, and understanding the ECM-tumor relationship is important before translating tumor-on-chips into clinics. In this work, we tuned the physical and structural characteristics of ECM in a bioprinted soft-tissue sarcoma microtissue. We formed 3D spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR results showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. In conclusion, this work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips, and our tunable bioink may help reduce the variability of current tumor-on-chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. The cell spheroids' responses underscore the importance of replicating physical and structural properties to mimic tumor response. This work can contribute to personalized medicine by making more effective, tailored cancer models.

17.
Stem Cells ; 30(6): 1265-76, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22593020

ABSTRACT

Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance.


Subject(s)
Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor I/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Animals , Cell Differentiation/physiology , Cell Growth Processes/physiology , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor II/genetics , Mice , Signal Transduction
18.
J Mammary Gland Biol Neoplasia ; 17(2): 119-23, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22678420

ABSTRACT

Originally adapted from the neurosphere assay, the nonadherent mammosphere assay has been utilized to assess early progenitor/stem cell frequency in a given population of mammary epithelial cells. This method has also been used to measure the frequency of tumorsphere initiating cells in both primary mammary tumors as well as in tumor cell lines. Although, the mammosphere assay has been used extensively in the mammary gland field, a standard method of quantifying and analyzing sphere growth in this assay has remained undefined. Here, we discuss the use and benefit of using a limiting dilution analysis to quantify sphere-forming frequency in primary mammary epithelial cells grown in nonadherent conditions.


Subject(s)
Breast Neoplasms/pathology , Mammary Glands, Human/pathology , Neoplastic Stem Cells/pathology , Tumor Stem Cell Assay , Animals , Cell Culture Techniques , Cell Line, Tumor , Cellular Microenvironment , Epithelium/pathology , Female , Humans , Mammary Glands, Animal/pathology , Tumor Cells, Cultured
19.
Endocr Relat Cancer ; 30(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37490874

ABSTRACT

Despite decades of research presenting insulin-like growth factor-1 receptor (IGF1R) as an attractive target for cancer therapy, IGF1R inhibitors ultimately failed in clinical trials. This was surprising due to the known cancer-promoting functions of IGF1R, including stimulation of cell invasion, proliferation, and survival. Discourse in the literature has acknowledged that a lack of patient stratification may have impacted the success of IGF1R-inhibitor trials. This argument alludes to the possibility that IGF1R function may be contingent on tumor type and cellular composition. Looking into the known roles of IGF1R, it becomes clear that this receptor interacts with a multitude of different proteins and even has tumor-suppressing functions. IGF1R is implicated in both cell-cell and cell-surface adhesion dynamics, and the effects of either IGF1R downregulation or pharmacological inhibition on cellular adhesion remain poorly understood. In turn, adhesion receptors modulate IGF1R signaling. In addition, our understanding of IGF1R function in tumor-associated immune and stromal cells is lacking, which could contribute to the overwhelming failure of IGF1R inhibitors in the clinic. In this review, we re-investigate clinical trial data to make connections between the failure of these drugs in human cancer patients and the understudied facets of IGF1R function. We describe lesser-known and potentially tumor-suppressive functions of IGF1R that include promoting cell-cell adhesion through E-cadherin, augmenting a pro-inflammatory macrophage phenotype, and stimulating B cells to produce immunoglobulins. We also highlight the important role of adhesion receptors in regulating IGF1R function, and we use this information to infer stratification criteria for selecting patients that might benefit from IGF1R inhibitors.


Subject(s)
Insulin-Like Growth Factor I , Neoplasms , Receptor, IGF Type 1 , Humans , Cadherins/genetics , Cadherins/metabolism , Cadherins/pharmacology , Cell Line, Tumor , Cell Proliferation , Insulin-Like Growth Factor I/metabolism , Integrins , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Signal Transduction
20.
Neurotrauma Rep ; 4(1): 433-446, 2023.
Article in English | MEDLINE | ID: mdl-37435356

ABSTRACT

Myelin loss and oligodendrocyte death are well documented in patients with traumatic brain injury (TBI), as well as in experimental animal models after moderate-to-severe TBI. In comparison, mild TBI (mTBI) does not necessarily result in myelin loss or oligodendrocyte death, but causes structural alterations in the myelin. To gain more insight into the impact of mTBI on oligodendrocyte lineage in the adult brain, we subjected mice to mild lateral fluid percussion injury (mFPI) and characterized the early impact (1 and 3 days post-injury) on oligodendrocytes in the corpus callosum using multiple oligodendrocyte lineage markers (platelet-derived growth factor receptor [PDGFR]-α, glutathione S-transferase [GST]-π, CC1, breast carcinoma-amplified sequence 1 [BCAS1], myelin basic protein [MBP], myelin-associated glycoprotein [MAG], proteolipid protein [PLP], and FluoroMyelin™). Two regions of the corpus callosum in relation to the impact site were analyzed: areas near (focal) and anterior (distal) to the impact site. mFPI did not result in oligodendrocyte death in either the focal or distal corpus callosum, nor impact on oligodendrocyte precursors (PDGFR-α+) and GST-π+ oligodendrocyte numbers. In the focal but not distal corpus callosum, mFPI caused a decrease in CC1+ as well as BCAS1+ actively myelinating oligodendrocytes and reduced FluoroMyelin intensity without altering myelin protein expression (MBP, PLP, and MAG). Disruption in node-paranode organization and loss of Nav1.6+ nodes were observed in both the focal and distal regions, even in areas without obvious axonal damage. Altogether, our study shows regional differences in mature and myelinating oligodendrocyte in response to mFPI. Further, mFPI elicits a widespread impact on node-paranode organization that affects regions both close to and remotely located from the site of injury.

SELECTION OF CITATIONS
SEARCH DETAIL