ABSTRACT
The Austronesian settlement of the remote island of Madagascar remains one of the great puzzles of Indo-Pacific prehistory. Although linguistic, ethnographic, and genetic evidence points clearly to a colonization of Madagascar by Austronesian language-speaking people from Island Southeast Asia, decades of archaeological research have failed to locate evidence for a Southeast Asian signature in the island's early material record. Here, we present new archaeobotanical data that show that Southeast Asian settlers brought Asian crops with them when they settled in Africa. These crops provide the first, to our knowledge, reliable archaeological window into the Southeast Asian colonization of Madagascar. They additionally suggest that initial Southeast Asian settlement in Africa was not limited to Madagascar, but also extended to the Comoros. Archaeobotanical data may support a model of indirect Austronesian colonization of Madagascar from the Comoros and/or elsewhere in eastern Africa.
Subject(s)
Archaeology , Crops, Agricultural , Asia, Southeastern , Humans , MadagascarABSTRACT
Past research on Madagascar indicates that village communities were established about AD 500 by people of both Indonesian and East African heritage. Evidence of earlier visits is scattered and contentious. Recent archaeological excavations in northern Madagascar provide evidence of occupational sites with microlithic stone technologies related to foraging for forest and coastal resources. A forager occupation of one site dates to earlier than 2000 B.C., doubling the length of Madagascar's known occupational history, and thus the time during which people exploited Madagascar's environments. We detail stratigraphy, chronology, and artifacts from two rock shelters. Ambohiposa near Iharana (Vohémar) on the northeast coast, yielded a stratified assemblage with small flakes, microblades, and retouched crescentic and trapezoidal tools, probably projectile elements, made on cherts and obsidian, some brought more that 200 km. (14)C dates are contemporary with the earliest villages. No food remains are preserved. Lakaton'i Anja near Antsiranana in the north yielded several stratified assemblages. The latest assemblage is well dated to A.D. 1050-1350, by (14)C and optically stimulated luminescence dating and pottery imported from the Near East and China. Below is a series of stratified assemblages similar to Ambohiposa. (14)C and optically stimulated luminescence dates indicate occupation from at least 2000 B.C. Faunal remains indicate a foraging pattern. Our evidence shows that foragers with a microlithic technology were active in Madagascar long before the arrival of farmers and herders and before many Late Holocene faunal extinctions. The differing effects of historically distinct economies must be identified and understood to reconstruct Holocene histories of human environmental impact.
Subject(s)
Archaeology , Ecosystem , History, Ancient , Humans , MadagascarABSTRACT
The Belson site is located on an outwash plain draining the Early Algonquin stage of the central Great Lakes (coinciding with the Older Dryas stadial period around 14,000 Cal B.P) southwest across Lower Michigan into the Ohio tributaries. By 13,000 Cal B.P the St. Joseph River had incised multiple channels into this plain. On a terrace just north of a now-abandoned channel, a detailed surface study by Talbot from 2005-2018 showed several flake clusters largely of Attica chert, procured about 235 km southwest of Belson. A study of the surface sample was published by the authors in 2021 and indicated that the points were made with the Clovis technological pattern. Excavations in 2020-21 revealed hundreds of buried flakes and multiple tools in the lower, less-disturbed terrace sediment. Plotting of this material indicates successive occupations below the ploughed deposit and covering more than 30 m2. The buried assemblages are similar to the published surface assemblage with the addition of more small scrapers and manufacturing debris. Several of the buried tools have traces of proteins from a range of mammals, suggesting a broad-spectrum subsistence strategy. The documentation of a succession of little disturbed deposits with precisely recorded micro-debris will allow for testing of models describing settlement choice and developing dynamics of internal site organization. Initial analysis of recovered data provides support for an 'outcrop centered' model where high-quality chert outcrops serve as central places on the landscape. Samples of sediment and charcoal for identification and dating await study.
Subject(s)
Lakes , Geologic Sediments , Great Lakes Region , Archaeology , Group DynamicsABSTRACT
The human colonization of eastern Africa's near- and offshore islands was accompanied by the translocation of several domestic, wild and commensal fauna, many of which had long-term impacts on local environments. To better understand the timing and nature of the introduction of domesticated caprines (sheep and goat) to these islands, this study applied collagen peptide fingerprinting (Zooarchaeology by Mass Spectrometry or ZooMS) to archaeological remains from eight Iron Age sites, dating between ca 300 and 1000 CE, in the Zanzibar, Mafia and Comoros archipelagos. Where previous zooarchaeological analyses had identified caprine remains at four of these sites, this study identified goat at seven sites and sheep at three, demonstrating that caprines were more widespread than previously known. The ZooMS results support an introduction of goats to island eastern Africa from at least the seventh century CE, while sheep in our sample arrived one-two centuries later. Goats may have been preferred because, as browsers, they were better adapted to the islands' environments. The results allow for a more accurate understanding of early caprine husbandry in the study region and provide a critical archaeological baseline for examining the potential long-term impacts of translocated fauna on island ecologies.
ABSTRACT
A database has been assembled with 278 age determinations for Madagascar. Materials 14C dated include pretreated sediments and plant macrofossils from cores and excavations throughout the island, and bones, teeth, or eggshells of most of the extinct megafaunal taxa, including the giant lemurs, hippopotami, and ratites. Additional measurements come from uranium-series dates on speleothems and thermoluminescence dating of pottery. Changes documented include late Pleistocene climatic events and, in the late Holocene, the apparently human-caused transformation of the environment. Multiple lines of evidence point to the earliest human presence at ca. 2300 14C yr BP (350 cal yr BC). A decline in megafauna, inferred from a drastic decrease in spores of the coprophilous fungus Sporormiella spp. in sediments at 1720+/-40 14C yr BP (230-410 cal yr AD), is followed by large increases in charcoal particles in sediment cores, beginning in the SW part of the island, and spreading to other coasts and the interior over the next millennium. The record of human occupation is initially sparse, but shows large human populations throughout the island by the beginning of the Second Millennium AD. Dating of the "subfossil" megafauna, including pygmy hippos, elephant birds, giant tortoises, and large lemurs, demonstrates that most if not all the extinct taxa were still present on the island when humans arrived. Many taxa overlapped chronologically with humans for a millennium or more. The extinct lemurs Hadropithecus stenognathus, Pachylemur insignis, Mesopropithecus pithecoides, and Daubentonia robusta, and the elephant birds Aepyornis spp. and Mullerornis spp., were still present near the end of the First Millennium AD. Palaeopropithecus ingens, Megaladapis edwardsi, and Archaeolemur sp. (cf. edwardsi) may have survived until the middle of the Second Millennium A.D. One specimen of Hippopotamus of unknown provenance dates to the period of European colonization.