ABSTRACT
Anaerobic co-digestion (AcoD) with kitchen waste (KW) is an alternative utilization strategy for algal bloom waste (AW). However, the kinetic characteristic and metabolic pathway during this process need to be explored further. This study conducted a comprehensive kinetic and metagenomic analysis for AcoD of AW and KW. A maximum co-digestion performance index (CPI) of 1.13 was achieved under the 12% AW addition. Co-digestion improved the total volatile fatty acids generation and the organic matter transformation efficiency. Kinetic analysis showed that the Superimposed model fit optimally (R2Adj = 0.9988-0.9995). The improvement of the kinetic process by co-digestion was mainly reflected in the increase of the methane production from slowly biodegradable components. Co-digestion enriched the cellulolytic bacterium Clostridium and the hydrogenotrophic methanogenic archaea Methanobacterium. Furthermore, for metagenome analysis, the abundance of key genes concerned in cellulose and lipid hydrolysis, pyruvate and methane metabolism were both increased in co-digestion process. This study provided a feasible process for the utilization of AW produced seasonally and a deeper understanding of the AcoD synergistic mechanism from kinetic and metagenomic perspectives.
Subject(s)
Metagenomics , Kinetics , Eutrophication , Bioreactors/microbiology , Anaerobiosis , Methane/metabolism , GarbageABSTRACT
The high-concentration powder carrier bio-fluidized bed (HPB) technology is an emerging approach that enables on-site upgrading of wastewater treatment plants (WWTPs). HPB technology promotes the formation of biofilm sludge with micron-scale composite powder carriers as the core and suspended sludge mainly composed of flocs surrounding the biofilm sludge. This study proposed a novel integrated strategy for assessing and controlling the sludge ages in suspended/bio-film activated sludge supported by micron-scale composite powder carrier. Utilizing the cyclone unit and the corresponding theoretical model, the proposed strategy effectively addresses the sludge ages contradiction between denitrifying bacteria and polyphosphate-accumulating organisms (PAOs), thereby enhancing the efficiency of municipal wastewater treatment. The sludge age of the suspended (25 d) and bio-film (99 d) sludge, calculated using the model, contribute to the simultaneous removal of nitrogen and phosphorus. Meanwhile, the model further estimates distinct contributions of suspended and bio-film sludge to chemical oxygen demand (COD) and total nitrogen (TN), which are 55% and 42% for COD, 20% and 57% for TN of suspended sludge and bio-film sludge, respectively. This suggests that the contribution of suspended sludge and bio-film sludge to COD and TN removal efficiency can be determined and controlled by the operational conditions of the cyclone unit. Additionally, the simulation values for COD, ammonia nitrogen (NH4+-N), TN and total phosphorus (TP) closely align with the actual values of WWTPs over 70 days (p < 0.001) with the correlation coefficients (R2) of 0.9809, 0.9932, 0.9825, and 0.837, respectively. These results support the theoretical foundation of HPB technology for simultaneous nitrogen and phosphorus removal in sewage treatment plants. Therefore, this model serves as a valuable tool to guide the operation, design, and carrier addition in HPB technology implementation.
Subject(s)
Sewage , Water Purification , Sewage/chemistry , Wastewater , Powders , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Phosphorus , Nitrogen , DenitrificationABSTRACT
Owing to the extremely complex compositions and origins of waste-activated sludge (WAS), the multiple physiochemical properties of WAS have impacts on its dewaterability, and there is a complex interaction relationship among the multiple physiochemical properties, which makes it difficult to identify the controlling factors on WAS dewaterability. Accordingly, there is still no unified certainty in the appropriate ranges of physiochemical properties for the optimal dewaterability of sludge from different sources, resulting in a lack of clear theoretical basis for technical selection and optimization of sludge dewatering processes. The large consumption of conditioning chemicals and low process efficiency stand for the major deficiency of existing sludge conditioning technologies. This study proposed to use a non-linear, adaptive and self-organizing artificial neural network (ANN) model to integrate the multiple physiochemical properties of WAS affecting its dewaterability, and WAS dewatering performance under certain conditioning schemes could be predicated by ANN model with the multiple physiochemical properties and conditioning operation parameters as the input arguments. Thus, the laborious filtration experiments for screening conditioning chemicals could be replaced by the input adjustment of ANN model. Rooted mean squared error (RMSE) of 6.51 and coefficient of determination (R2) of 0.73 confirmed the satisfied stability and accuracy of established ANN model. Furthermore, the predictor-exclusive method revealed that the exclusion of polar interface free energy decreased most, which reflected the importance of surface hydrophilicity reduction in sludge dewaterability improvement. All the contributions presented here were believed to provide an intelligent insight to improve the experience operation status of WAS dewatering process.
ABSTRACT
The widespread use of aqueous film-forming foam (AFFF) for firefighting activities (e.g., fire training to extinguish fuel-based fires at aircraft facilities) has led to extensive groundwater and soil contamination by per- and polyfluoroalkyl substances (PFASs) that are highly recalcitrant to destruction using conventional treatment technologies. This study reports on the hydrothermal alkaline treatment of diverse PFASs present in AFFFs. Quantitative and semiquantitative high-resolution mass spectrometry analyses of PFASs demonstrate a rapid degradation of all 109 PFASs identified in two AFFFs (sulfonate- and fluorotelomer-based formulations) in water amended with an alkali (e.g., 1-5 M NaOH) at near-critical temperature and pressure (350 °C, 16.5 MPa). This includes per- and polyfluoroalkyl acids and a range of acid precursors. Most PFASs were degraded to nondetectable levels within 15 min, and the most recalcitrant perfluoroalkyl sulfonates were degraded within 30 min when treated with 5 M NaOH. 19F NMR spectroscopic analysis and fluoride ion analysis confirm the near-complete defluorination of PFASs in both dilute and concentrated AFFF mixtures, and no stable volatile organofluorine species were detected in reactor headspace gases by the gas chromatography-mass spectrometry analysis. These findings indicate a significant potential for application of hydrothermal treatment technologies to manage PFAS waste streams, including on-site treatment of unused AFFF chemical stockpiles, investigation-derived wastes, and concentrated source zone materials.
Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Fluorocarbons/analysis , Soil , Water , Water Pollutants, Chemical/analysisABSTRACT
The occurrence state and molecular structure of extracellular proteins were analyzed to reveal the influencing factors on the water-holding capacities of protein-like substances in waste-activated sludge (WAS). The gelation process of extracellular proteins verified that advanced oxidation processes (AOPs) for WAS dewaterability improvement eliminated the water affinity of extracellular proteins and prevented these macromolecules from forming stable colloidal aggregates. Isobaric tags for relative and absolute quantitation proteomics identified that most of the extracellular proteins were originally derived from the intracellular part and the proteins originally located in the extracellular part were mainly membrane-associated. The main mechanism of extracellular protein transformation during AOPs could be represented by the damage of the membrane or related external encapsulating structure and the release of intracellular substances. For the selected representative extracellular proteins, the strong correlation (R2 > 0.97, p < 0.03) between the surface hydrophilicity index and α-helix percentages in the secondary structure indicated that the water affinity relied more on the spatial distribution of hydrophilic functional groups rather than the content. Destructing the secondary structure represented by the α-helix and stretching the polypeptide aggregation in the water phase through disulfide bond removal might be the key to eliminating the inhibitory effects of extracellular proteins on the interstitial water removal from WAS.
Subject(s)
Molecular Structure , Proteins , Oxidation-Reduction , Refuse Disposal , Sewage , WaterABSTRACT
The feasibility of composite hydrolysis enzymes in enhanced dewatering of waste-activated sludge (WAS) was verified in this study. A Pearson correlation analysis was conducted to explore the roles of different extracellular polymeric substance (EPS) fractions on WAS dewaterability. The results indicated that tightly bound EPS (TB-EPS) was released into the liquid phase consistently during enzymatic hydrolysis to form soluble EPS (S-EPS) and loosely bound EPS and that the TB-EPS content was positively correlated with the capillary suction time of WAS. A kinetic analysis was carried out to gain further insights into the kinetic variation in TB-EPS removal. It was found that TB-EPS reduction fit a first-order kinetic model and that mild temperature (25-30 °C) and a slightly acidic condition were favorable for the improvement of enzyme activity. Solid phase extraction combined with UV-Vis spectroscopy analysis was used to characterize the processes of migration and transformation of the hydrophobic (HPO), transphilic and hydrophilic (HPI) fractions in EPS during the enzymatic process. The results revealed that HPO and HPI were mainly composed of PN and PS, respectively, and that the enzymatic hydrolysis could enhance the transformation of HPI from TB-EPS to S-EPS, which was the dominant mechanism of improving WAS dewaterability.
Subject(s)
Hydrolases/chemistry , Models, Chemical , Sewage/chemistryABSTRACT
Dissolved organic carbon (DOC) can alter the availability of background nutrients by affecting the proliferation of heterotrophic bacteria, which exerts a notable influence on algal growth and metabolism. However, the mechanism of how allochthonous DOC (aDOC) precipitates shifts in bacterial-algal interactions and modulates the occurrence of cyanobacteria blooms remains inadequately elucidated. Therefore, this study investigated the relationship between bacteria and algae under aDOC stimulation. We found that excess aDOC triggered the breakdown and reestablishment of the equilibrium between Microcystis and heterotrophic bacteria. The rapid proliferation of heterotrophic bacteria led to a dramatic decrease in soluble phosphorus and thereby resulted in the inhibition of the Microcystis growth. When the available DOC was depleted, the rapid death of heterotrophic bacteria released large amounts of dissolved phosphorus, which provided sufficient nutrients for the recovery of Microcystis. Notably, Microcystis rejuvenated and showed higher cell density compared to the carbon-absent group. This phenomenon can be ascribed that Microcystis regulated the compositions of extracellular polymeric substances (EPS) and the expression of relevant proteins to adapt to a nutrient-limited environment. Using time of flight secondary ion mass spectrometry (TOF-SIM) and proteomic analysis, we observed an enhancement of the signal of organic matter and metal ions associated with P complexation in EPS. Moreover, Microcystis upregulated proteins related to organic phosphorus transformation to increase the availability of phosphorus in various forms. In summary, this study emphasized the role of DOC in algal blooms, revealing the underestimated enhancement of Microcystis nutrient utilization through DOC-induced heterotrophic competition and providing valuable insights into eutrophication management and control.
ABSTRACT
Phytoremediation is recognized as an environmentally friendly technique. However, the low biomass production, high time consumption, and exposure to combined toxic stress from contaminated media weaken the potential of phytoremediation. As a class of plant-beneficial microorganisms, arbuscular mycorrhizal fungi (AMF) can promote plant nutrient uptake, improve plant habitats, and regulate abiotic stresses, and the utilization of AMF to enhance phytoremediation is considered to be an effective way to enhance the remediation efficiency. In this paper, we searched 520 papers published during the period 2000-2023 on the topic of AMF-assisted phytoremediation from the Web of Science core collection database. We analyzed the author co-authorship, country, and keyword co-occurrence clustering by VOSviewer. We summarized the advances in research and proposed prospective studies on AMF-assisted phytoremediation. The bibliometric analyses showed that heavy metal, soil, stress tolerance, and growth promotion were the research hotspots. AMF-plant symbiosis has been used in water and soil in different scenarios for the remediation of heavy metal pollution and organic pollution, among others. The potential mechanisms of pollutant removal in which AMF are directly involved through hyphal exudate binding and stabilization, accumulation in their structures, and nutrient exchange with the host plant are highlighted. In addition, the tolerance strategies of AMF through influencing the subcellular distribution of contaminants as well as chemical form shifts, activation of plant defenses, and induction of differential gene expression in plants are presented. We proposed that future research should screen anaerobic-tolerant AMF strains, examine bacterial interactions with AMF, and utilize AMF for combined pollutant removal to accelerate practical applications.
ABSTRACT
The solid pore characteristics are commonly considered as the important influential factors on waste-activated sludge (WAS) dewaterability, and should be related to the cohesive force of bio-flocs dominated by cation-organic interactions at solid-water interface. This study aimed to establish an approach for regulating the solid pore structure of WAS by cationic regulation. The influential mechanism of WAS dewaterability was accordingly explored from the perspective of the pore characteristics dominated by cation-organic interactions. Primarily, with the gradient removal or addition of bivalent cations, the varying pore structure of WAS flocs was tracked by in-situ synchrotron X-ray computed microtomography imaging technique (CMT). The three-dimensional visual model was established to quantify the pore structure parameters of WAS flocs. Following the visualization analysis, the artificial intelligence means, the gradient-weighted class activation mapping (Grad CAM) of three-dimensional convolutional neural network (3D-CNN), was applied for the first time to explore the linkages among solid surface properties, solid pore structure, water occurrence states and sludge dewaterability. It was found that the number and volume of isolated pores jointly determined the mobility and the fractions of vicinal water and interstitial water (p-value ≤ 0.02); also, the decreasing polar or acid-based interfacial free energy with the cationic addition was accompanied with the decreasing isolated pore mean-volume (Pearson coefficient=-0.77, p-value < 0.01). These results indicated that the pore structure characteristics determined the water occurrence states, but the solid porosity strongly depended on the interfacial properties. Accordingly, the molecular docking was applied to explore the interfacial reaction mechanism between Ca2+/Mg2+ and solid compositions in terms of complexation sites, molecular dynamics and free energy calculations. As a result, how the cation-organic interactions affected the pore characteristics through solid surface modification could be clarified, which is expected to serve as theoretical foundation for the development of novel sludge conditioning technologies, i.e., more efforts should be devoted to increasing the dense degree of sludge particles through weakening the hydration repulsion of solid surface.
Subject(s)
Cations , Sewage , Sewage/chemistry , Waste Disposal, Fluid/methods , Water/chemistry , Porosity , X-Ray MicrotomographyABSTRACT
Heavy metal contamination in sediment has become a significant global environmental challenge. Numerous studies have demonstrated the effectiveness of modified biochar to solve heavy metal contamination in sediment. However, the modification process with complex methods and expensive modifiers prevented its large-scale application. In this study, an N self-doped biochar was obtained by pyrolysis of Spirulina sp. (SBC). Meanwhile, the K2CO3 impregnation method was utilized to prepare Spirulina sp. biochar (KSBC), which demonstrated a higher specific surface area (874 m2/g) and richer O, N functional groups. The adsorption capacity of KSBC550-120 for Cu (â ¡), Zn (â ¡), and Cd (â ¡) was 57.9 ± 0.3 mg/g, 43.6 ± 0.7 mg/g, and 63.9 ± 0.6 mg/g, respectively. The adsorption process is primarily governed by chemical processes, mainly through ion exchange, surface complexation, dissolution-precipitation, electrostatic interactions, adsorption-reduction, and cation-π interactions. Moreover, utilizing KSBC550-120 for mixing or capping effectively reduced heavy metal concentrations in both the overlying and pore water of the sediments. 1.0 wt% KSBC550-120 with capping treatment significantly reduced the release of heavy metals from the sediment by 80.3-91.9%. This study provides effective theoretical support for re-utilizing waste algal residues and remediation of the heavy metal-contaminated river and lake sediments using microalgae biochar.
Subject(s)
Charcoal , Environmental Restoration and Remediation , Geologic Sediments , Metals, Heavy , Microalgae , Water Pollutants, Chemical , Charcoal/chemistry , Microalgae/chemistry , Adsorption , Geologic Sediments/chemistry , Metals, Heavy/chemistry , Water Pollutants, Chemical/chemistry , Environmental Restoration and Remediation/methods , Spirulina/chemistry , Nitrogen/chemistryABSTRACT
Sediment is an important part of aquatic systems, which plays a vital role in transporting and storing metals. Due to its abundance, persistence, and environmental toxicity, heavy metal pollution has always been one of the hot spots in the world. In this article, the state-of-art ex situ remediation technology for metal-contaminated sediments is elaborated, including sediment washing, electrokinetic remediation (EKR), chemical extraction, biological treatment, as well as encapsulating pollutants by adding some stabilized/solidified materials. Furthermore, the progress of sustainable resource utilization methods, such as ecosystem restoration, construction materials (e.g., materials fill materials, partition blocks, and paving blocks), and agriculture use are reviewed in detail. Finally, the pros and cons of each technique are summarized. This information will provide the scientific basis for selecting the appropriate remediation technology in a particular scenario.
ABSTRACT
The sustainable application of thermal sludge drying process is limited by the high energy consumption due to the phase-change latent heat of moisture. This study proposed that the ultrahigh pressure filtration could realize the non-phase-change sludge drying. The lowest water content of 28.12 wt.% was realized by the filtration pressure of 21 MPa for the excess sludge with polyaluminium chloride as the conditioning agent. With the stepwise increase of filtration pressure employed (5-21 MPa), the diameter of solid pores was gradually narrowed to the same order of magnitude with the thickness of vicinal water film (i.e., 1-10 nm). As a result, the capillary water was transformed into the vicinal water, and the solid-water interface interaction played more crucial roles in water occurrence states. However, Hagen-Poiseuille equation was introduced to estimate the pore water outflow based on the pore wall hydrophilicity and the external filtration pressure, which implied that there can be always a sufficiently large driving force to maintain the water outflow rate no matter how the pore diameter is small and the sidewall is hydrophilic. Typically, the fitting results of excess sludge (R2=0.985, p-value<0.01) indicated that the pressure gradient of 2.11 × 109 Pa/m was required to maintain the pore water flow rate of 1.38 × 10-15 m3/s with the median pore diameter of 5.33 × 10-7 m. All these findings broke through the conventional cognition that only thermal drying process can decrease the sludge water content below 60 wt.%, and facilitated energy saving of sludge dewatering process through non-phase-change separation, i.e., ultrahigh pressure filtration.
Subject(s)
Filtration , Sewage , Sewage/chemistry , Filtration/methods , Water/chemistry , Desiccation , Hydrophobic and Hydrophilic Interactions , Waste Disposal, Fluid/methodsABSTRACT
This study proposed to improve the dewaterability of waste-activated sludge (WAS) through crystallization-driven evolution of water occurrence states. Primarily, the feasibility of clathrate hydrate (i.e., CO2 hydrate) formation in WAS was examined. The thermodynamic analysis indicated that the CO2 hydrate formation with the excessive water in WAS followed pseudo-first-order kinetics, and fit of the data yielded a kobs value of 3.905 × 10-5 Lâmol-1âs-1 for 274.15 K. With the water conversion efficiency of 100%, the crystallization-dissociation process of CO2 hydrate significantly improved the dewaterability of WAS in term of capillary suction time (CST) decreasing from 251.5 s to 57.4 s. Also, the relief of gas pressure can induce the hydrate dissociation, which creates a novel way to recycle CO2 gas and save the consumption of chemicals required by sludge dewatering process. Regarding the mechanism of hydrates-based sludge dewatering, the evolution of water occurrence state was investigated. The in-situ synchrotron X-ray computed microtomography visually analyzed the micro-scale porosity and interstitial water of WAS flocs. The model of three-dimensional pore structure was established and the porosity parameters of solid aggregates were determined. It was found that the volume of connected pores and the total pore volume fraction of solid compositions increased. But the mean volume and mean area of isolated pores simultaneously decreased by 14.6% and 12.4%, respectively, which meant that the steric hindrance caused by isolated pores was weakened due to the reduced solid-water contact area. In addition, the crystallization of water caused the reformation of conformation arrangement of vicinal water and solid molecules, which highly organized the water molecules into the crystal structure. Accordingly, an estimation method for vicinal water layer thickness was developed based on atom force microscope. The thickness of vicinal water layer was found to be reduced by 77.4% and the hydration repulsion among solid compositions was correspondingly weakened, which facilitated the aggregation of solid compositions, and the relatively separated hydrate phase and solid phase could be formed. All the above results open up a novel strategy for enhanced water-solid separation of WAS through the crystallization-driven evolution of water occurrence states. As distinguished from the conventional approaches, the hydrates-based sludge dewatering enhances the water-solid separation only with regulating the spatial arrangement of water-solid molecules, but without altering the chemical compositions. Thus, more chances can be created to increase the environmentally friendly attributes related to WAS dewatering.
Subject(s)
Sewage , Water , Sewage/chemistry , Water/chemistry , Crystallization , Carbon Dioxide , Waste Disposal, Fluid/methodsABSTRACT
Denitrification is the key driving force of nitrogen cycle in surface water and plays an important role in eutrophication water remediation. Compared with some other common carbon sources, such as glucose and sodium acetate, polyhydroxyalkanoates (PHAs) were found to have the distinguished advantages in screening specific denitrifying bacteria of natural surface water bodies. In this study, the large ensembles of taxa were obtained from surface water samples and then sub-cultured with PHA or glucose as the sole carbon source. The microbial community that could be screened by PHA was identified, and the environmental functions of these bacteria were analyzed. At the genus level, the main communities regulated by PHA included Pseudomonas (56.30 %), Acinetobacter (27.75 %), Flavobacterium (10.19 %) and Comamonas (3.14 %), which all had good denitrification ability. The changes in carbon source, nitrogen source and biomass (expressed by DNA) were simultaneously monitored when culturing the model strain (P. stuzeri) with PHA or glucose. Compared with the glucose group, less PHA was consumed to remove the same amount of nitrate within a shorter incubation time, and there was no significant difference in bacterial growth with PHA or glucose as the carbon source (glucose:ΔN:ΔC:ΔDNA = 1:18:0.072; PHA:ΔN:ΔC:ΔDNA = 1:11:0.063). PHA improved the denitrification efficiency by increasing the expression of NarGHI, NirB, NirK and NorB, i.e., the key enzymes in the denitrification process. In addition, PHA accelerated the assimilating rate of extracellular nitrate by bacteria through increasing the expression of NarK. Finally, PHA-regulated electron transfer during denitrification was studied by observing the changes in NADH and NAD+. PHA could use a large proportion of NADH to offer electrons for denitrification, which increased the rate of denitrification. Improved mechanistic insights into the PHA-enhanced denitrification capacity of the microbial community can provide novel options for the in-situ remediation of eutrophic surface water.
Subject(s)
Microbiota , Polyhydroxyalkanoates , Polyhydroxyalkanoates/metabolism , Denitrification , Electrons , Nitrates , NAD/metabolism , Nitrogen , Carbon/metabolism , Bacteria/metabolism , Glucose , WaterABSTRACT
Sediment is an important part of the aquatic ecosystem, which involves material storage and energy exchange. However, heavy metal pollution in sediment is on the increase, becoming an important concern for the world. In this paper, the state-of-art in situ remediation technology for contaminated sediment was elaborated, including water diversion, capping, electrokinetic remediation, chemical amendments, bioremediation and combined remediation. The mechanisms for these techniques to reduce/immobilize heavy metals include physical, electrical, chemical and biological processes. Furthermore, application principle, efficiency and scope, advantages and disadvantages, as well as the latest research progress for each restoration technology, are systematically reviewed. This information will benefit in selecting appropriate and effective remediation techniques for heavy metal-contaminated sediment in specific scenarios.
Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Soil Pollutants , Ecosystem , Geologic Sediments , Metals, Heavy/analysis , Biodegradation, Environmental , Soil Pollutants/analysisABSTRACT
Phosphorus release and sludge hydrolysis are the keys for phosphorus and carbon recovery from sewage sludge via anaerobic process. In this study, iron-rich sludge (a common phosphorus-rich sewage sludge) was pre-oxidized by heat-activated peroxydisulfate (PDS) to enhance volatile fatty acids (VFAs) production and iron-bound phosphorus (Fe-P) release during anaerobic fermentation (AF). With low-dosage PDS pre-oxidation (33.75 mg/g total solids), the concentration of recoverable phosphorus increased by 49.3% than that noted in control along with enhanced VFAs production after 4 days. This is mainly because PDS oxidation not only effectively disintegrated sludge, but also generated sulfate simultaneously. Sludge disintegration enhanced organic matter hydrolysis, promoting VFAs yield, while sulfate was reduced to sulfide during AF and precipitated with iron, leading to Fe-P release. The application of PDS pre-oxidation on iron-rich sludge could not only improve the resourcefulness of sludge but also reduce secondary pollution (sulfate or hydrogen sulfide).
Subject(s)
Phosphorus , Sewage , Anaerobiosis , Fatty Acids, Volatile , Fermentation , Hydrogen-Ion Concentration , Iron , Sulfates , Sulfur OxidesABSTRACT
Anaerobic digestion is known for its effectiveness and environmental friendliness in treating food waste. However, it produces anaerobically digested liquor (ADL). ADL usually has a high solid content and high concentrations of nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) carried by suspended solids (SS). Thus, when ADL with amounts of SS reaches the subsequent biochemical treatment units, they negatively impact the microbial stability of corresponding processes, causing unstable effluent qualities. For this reason, the solid-liquid separation of ADL acts as a crucial step for the wide application of anaerobic digestion. In this work, the typical sludge conditioning approaches, including flocculation/coagulation, coagulation, oxidation and advanced oxidation processes (AOPs), were systematically screened for their feasibility in enhancing the solid-liquid separation of ADL. The modified Fenton treatment combined with centrifugation was found to be the most effective approach, which realized the removal of 91.36% SS with FeSO4â¢7 H2O (5.96 g/L) and H2O2 (2.79 g/L) but without pH adjustment of ADL. The mechanism analysis showed that the modified Fenton promoted ADL colloidal aggregates to form looser medium-sized flocs with pores, increased the zeta potential to -17.6 mV, and highly reduced the total interfacial free energy. Also, extracellular polymeric substances (EPS) were released into liquid phase, which further eliminated the water-retaining properties of solid compositions. The analysis of surface chemical composition suggested that the modified Fenton decreased the hydrophilic component from 53.37% to 43.81% and the relative content of protein-N from 45.43% to 23.57%, while increased carbon chain and hydrocarbyl species. Furthermore, principal component analysis (PCA) suggested that SS, zeta potential, Lewis acid-base interfacial free energy, two-dimensional fractal index (2-Df) and C-(N, O) relative content were more sensitive to variations in conditioning approaches than protein-N relative content, and hydroxyl free radical (â¢OH) played the key role for the modified Fenton to improve SS removal from ADL.
Subject(s)
Refuse Disposal , Waste Disposal, Fluid , Food , Hydrogen Peroxide , SewageABSTRACT
Achieving phosphorus (P) recovery during treatment and disposal of waste activated sludge (WAS) by anaerobic-based processes has received increasing attention. To solve the problem of low phosphorus release efficiency, anaerobic fermentation (AF) combined with acidic cation exchange resin (ACER) pretreatment was first proposed in this study. Results showed that the isoelectric point pretreatment with ACER increased the recoverable phosphorus content by 2.3 times compared to that without ACER pretreatment. Phosphorus transformation was systematically analyzed from a whole-process perspective, and the results visually revealed that the release of phosphorus during the conventional AF process (without ACER pretreatment) was limited by insufficient phosphorus release from extracellular polymeric substances (EPS) and mineral precipitation, as well as the reprecipitation of soluble phosphorus with metals. ACER enabled effective dissolution of mineral phosphorus by acidifying WAS. On the other hand, ACER adsorbed metals to promote EPS disintegration and hydrolysis, thereby enhancing the release of EPS-bound P, which also reduced the reprecipitation of soluble phosphorus during AF. Furthermore, ACER pretreatment increased volatile fatty acids production by >2-fold with enhanced sludge hydrolysis. This finding has important implications for both non-renewable phosphorus recovery and sludge resource recovery.
Subject(s)
Phosphorus , Sewage , Cation Exchange Resins , Fatty Acids, Volatile , FermentationABSTRACT
Denitrification, a typical biological process mediated by complex environmental factors, i.e., carbon sources and dissolved oxygen (DO), has attracted great attention due to its contribution to the control of eutrophication and the biochemical cycling of nitrogen. However, the effects of carbon source on electron distribution and enzyme expression for enhanced denitrification under competition of electron acceptors (DO and nitrate) remain unclear. Here, we profile the carbon metabolic pathway of polyhydroxybutyrate (PHB) and glucose (Glu) at high and low DO levels (50% and 10% saturated DO, respectively). It was found that PHB enhanced the growth of Pseudomonas stutzeri (model denitrifying bacterium) and improved the specific nitrogen removal rate (SNRR) at all DO levels. The functional proteins had a better affinity for the cofactor nicotinamide-adenine dinucleotide (NADH) than for nicotinamide adenine dinucleotide phosphate (NADPH); thus, more electrons were involved in nitrogen reduction and intracellular PHB production in the PHB groups than in the Glu groups. Furthermore, the expression difference of enzymes in glucose and PHB metabolism was demonstrated by metaproteomic and target protein analysis, implying that PHB-driven intracellular carbon accumulation could optimize the intracellular electron allocation and correspondingly promote nitrogen metabolism. Our work integrated the mechanisms of intracellular carbon metabolism with preferences for electron transfer pathways in denitrification, providing a new perspective on how the selective parameters regulated microbial functions involved in denitrification.
Subject(s)
Denitrification , Pseudomonas stutzeri , Denitrification/physiology , Pseudomonas stutzeri/metabolism , Carbon/metabolism , Nitrates/metabolism , NAD/metabolism , NADP/metabolism , Oxygen/metabolism , Nitrogen/metabolism , Glucose/metabolismABSTRACT
The rigid cell membrane structure is widely thought to retain the intracellular water and positively contributes to the presence of bound water in waste-activated sludge (WAS), which is the main obstacle of its highly-efficient dewatering. However, few studies realized the quantification of intracellular water fraction in the total bound water. Thus, there still may be some debates on whether and what extent of cell lysis is optimal for the dewaterability improvement. This study specifically focused on the effect of microbial cell lysis on the water occurrence states of WAS. The sonication, cyclic freezing-thawing and dimethyl sulfoxide (DMSO) amendment were used as the non-chemical means for cell lysis without altering the chemical compositions of WAS. The extent of cell lysis was quantified by the aqueous lactate dehydrogenase (LDH) released from intracellular cytoplasm and the water occurrence states of WAS were characterized by the transverse relaxation time (T2) spectra of low-field nuclear magnetic resonance (NMR). The results indicated that 8 h sonication (60 W/g dry matter, solid content of WAS: 23.10±0.30 g/L) completely lysed the microbial cells, but only increased the moderately mobile water fraction from 0.555% to 2.370%; similarly, it could be estimated that nearly 15% of cells were destructed after 5 times of freezing-thawing, but the fraction of moderately mobile water only rose from 0.555% to 0.805%. The transmission electron microscope (TEM) with ultrathin sections visually tracked the WAS micro-morphology accompanied with the cell lysis; the sonication caused the notable lysis of microbial cells and dispersed the external encapsulating components, which originally surrounded microbial cells closely; most of the microbial cells could be deformed but wasn't lysed by cyclic freezing-thawing; DMSO amendment made the outer edge of microbial cells tend to be rough, which may reflect the DMSO-enhanced permeability of cell membrane. The correlative analysis further indicated that the capillary suction time (CST) had the close correlation with particle size/zeta potential (Pearson coefficient>0.85, p-value<0.05), but no strong correlation was identified between CST and slightly reduced bound water contents (Pearson coefficient<0.9, p-value≥0.05). Instead of the cell integrity, the compositional aggregation states dominated the water occurrence states of WAS. Highly-efficient conditioning approaches should rely on the reduction of bio-floc porosity through eliminating solid-liquid interfacial affinity instead of damaging the cell membrane structure.