ABSTRACT
The construction of DNA origami nanostructures is heavily dependent on the folding of the scaffold strand, which is typically a single-stranded DNA genome extracted from a bacteriophage (M13). Custom scaffolds can be prepared in a number of methods, but they are not widely accessible to a broad user base in the DNA nanotechnology community. Here, we explored new design and construction possibilities with custom scaffolds prepared in our cost- and time-efficient production pipeline. According to the pipeline, we de novo produced a variety of scaffolds of specified local and global sequence characteristics and consequent origami constructs of modular arrangement in morphologies and functionalities. Taking advantage of this strategy of template-free scaffold production, we also designed and produced three-letter-coded scaffolds that can fold into designated morphologies rapidly at room temperature. The expanded design and construction freedom immediately brings in many new research opportunities and invites many more on the horizon.
Subject(s)
DNA , Nanostructures , Nucleic Acid Conformation , Nanostructures/chemistry , DNA/chemistry , Nanotechnology/methods , DNA, Single-Stranded/chemistryABSTRACT
The production of high-performance starch-based packaging films by extrusion blowing is challenging, ascribed to poor processability of the blend precursors. In this study, a new strategy of mechanical activation (MA)-enhanced metal-organic coordination was proposed to improve the processability of starch (St)/polyvinyl alcohol (PVA) blend precursor, with calcium acetate (CA) as a chelating agent and glycerol as a plasticizer. MA pretreatment activated the hydroxyl groups of starch and PVA for constructing strong metal-organic coordination between CA and St/PVA during reactive extrusion, which effectively enhanced the melt processing properties of the blend precursor, contributing to the fabrication of high-performance St/PVA films by the extrusion-blowing method. The as-prepared St/PVA films exhibited excellent mechanical properties (tensile strength of 34.5 MPa; elongation at break of 271.8 %), water vapor barrier performance (water vapor permeability of 0.704 × 10-12 g·cm-1·s-1·Pa-1), and oxygen barrier performance (oxygen transmission rate of 0.7 cm3/(m2·day·bar)), along with high transmittance and good uniformity. These outstanding characteristics and performances can be attributed to the improved interfacial interaction and compatibility between the two matrix phases. This study uncovers the mechanism of MA-enhanced metal-organic coordination for improving the properties of starch-based films, which provides a convenient and eco-friendly technology for the preparation of high-performance biodegradable films.
ABSTRACT
Developing environmentally friendly film materials for packaging pesticides is significant yet challenging. The use of native starch for preparing inner packaging materials of pesticides is limited by its physicochemical properties. In this study, a novel strategy of synergetic mechanical activation (MA)-enhanced solid-phase esterification of starch and cooperative combination of starch and polyvinyl alcohol (PVA) was proposed to fabricate biodegradable and cold-water-soluble starch (St)/PVA films. The appropriate esterification of starch and favorable compatibility between starch and PVA contributed to the production of St/PVA films by the extrusion-blowing method. The as-prepared film with St/PVA ratio of 4:6 exhibited outstanding mechanical properties (tensile strengths of 21.0 MPa; elongation at break of 213.9 %), cold-water solubility (dissolution time of 90 s), and oxygen barrier performance (oxygen transmission rate of 1.41 cm3/(m2·day·bar)). The dissolved St/PVA films with amphiphilic groups were conducive to the emulsification of butachlor (a fat-soluble liquid pesticide) and the dispersibility of oxyfluorfen (a fat-soluble solid pesticide). Furthermore, a mechanism of the interaction between pesticides and the surface of weed leaves was proposed to reveal the enhanced efficacy of St/PVA films-packaged pesticides. The strategy based on MA-enhanced esterification and PVA blending is efficient to produce starch-based films suitable for inner packaging materials of pesticides.