Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Appl Environ Microbiol ; : e0131924, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248463

ABSTRACT

3,6-Dichlorosalicylic acid (3,6-DCSA) is the demethylation metabolite of herbicide 3,6-dichloro-2-methoxy benzoic acid (dicamba). Previous studies have shown that anaerobic sludge further transformed 3,6-DCSA through decarboxylation and dechlorination. However, the anaerobe, enzyme, and gene involved in the anaerobic degradation of 3,6-DCSA are still unknown. In this study, an anaerobic sludge that efficiently degraded dicamba was enriched, and a 3,6-DCSA decarboxylase, designated chlorosalicylic acid decarboxylase (CsaD), was partially purified and identified from the anaerobic sludge. Metagenomic analysis showed that the csaD gene was located in a gene cluster of metagenome-assembled genome 8 (MAG8). MAG8 belonged to an uncultured order, OPB41, in the class Coriobacteriia of the phylum Actinobacteria, and its abundance increased approximately once during the enrichment process. CsaD was a non-oxidative decarboxylase in the amidohydrolase 2 family catalyzing the decarboxylation of 3,6-DCSA and 6-chlorosalicylic acid (6-CSA). Its affinity and catalytic efficiency for 3,6-DCSA were significantly higher than those for 6-CSA. This study provides new insights into the anaerobic catabolism of herbicide dicamba.IMPORTANCEDicamba, an important hormone herbicide, easily migrates to anoxic habitats such as sediment, ground water, and deep soil. Thus, the anaerobic catabolism of dicamba is of importance. Anaerobic bacteria or sludge demethylated dicamba to 3,6-DCSA, and in a previous study, based on metabolite identification, it was proposed that 3,6-DCSA be further degraded via two pathways: decarboxylation to 2,5-dichlorophenol, then dechlorination to 3-chlorophenol (3-CP); or dechlorination to 6-CSA, then decarboxylation to 3-CP. However, there was no physiological and genetic validation for the pathway. In this study, CsaD catalyzed the decarboxylation of both 3,6-DCSA and 6-CSA, providing enzyme-level evidence for the anaerobic catabolism of 3,6-DCSA through the two pathways. CsaD was located in MAG8, which belonged to an uncultured anaerobic actinomycetes order, OPB41, indicating that anaerobic actinomycetes in OPB41 was involved in the decarboxylation of 3,6-DCSA. This study provides a basis for understanding the anaerobic catabolism of dicamba and the demethylation product, 3,6-DCSA.

2.
Ann Hematol ; 103(1): 141-151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37749318

ABSTRACT

Musashi-2 (MSI2), implicated in the oncogenesis and propagation of a broad array of malignancies, inclusive of certain leukemia, remains a nascent field of study within the context of acute lymphoblastic leukemia (ALL). Using lentiviral transfection, ALL cells with stable MSI2 knockdown were engineered. A suite of analytic techniques - a CCK-8 assay, flow cytometry, qRT-PCR, and western blotting - were employed to evaluate cellular proliferation, cell cycle arrest, and apoptosis and to confirm differential gene expression. The suppression of MSI2 expression yielded significant results: inhibition of cell proliferation, G0/G1 cell cycle arrest, and induced apoptosis in ALL cell lines. Furthermore, it was noted that MSI2 inhibition heightened the responsiveness of ALL cells to dexamethasone. Significantly, the depletion of MSI2 prompted the translocation of GR from the cytoplasm to the nucleus upon dexamethasone treatment, consequently leading to enhanced sensitivity. Additionally, the FOXO1/4 signaling pathway contributed to the biological effects of ALL cells evoked by MSI2 silencing. Our study offers novel insight into the inhibitory effects of MSI2 suppression on ALL cells, positing MSI2 as a promising therapeutic target in the treatment of ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Down-Regulation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Cell Proliferation , Signal Transduction , Apoptosis , Dexamethasone/pharmacology , Cell Line, Tumor , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/pharmacology
3.
Article in English | MEDLINE | ID: mdl-38634749

ABSTRACT

A Gram-stain-negative bacterium, designated XZ-24T, was isolated from sediment of a river in Mianyang city, Sichuan province, PR China. Cells (1.0-2.0 µm long and 0.4-0.5 µm in width) were strictly aerobic, non-spore-forming, rod shaped, prosthecate and motile by means of a polar flagellum. Growth occurred at 10-37 °C (optimum, 30 °C), at pH 5.0-9.0 (optimum pH 7.0) and with 0-3.0 % (w/v) NaCl (optimum 1.0 % NaCl). The results of phylogenetic analysis based on genomes and 16S rRNA gene sequences indicated that XZ-24T formed a distinct phyletic branch within the family Caulobacteraceae and was most closely related to members of the genera Brevundimonas, Caulobacter and Phenylobacterium with 95.3-96.5 % 16S rRNA gene sequence similarities. The average amino acid identities (AAI) between XZ-24T and species of the family Caulobacteraceae were 47.0-64.5 %, which were below the genus boundary (70 %). The predominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω7c 11-methyl and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), the isoprenoid quinone was Q-10, and the major polar lipids were 1,2-di-O-acyl-3-O-α-d-glucopyranuronosyl glycerol; 1,2-di-O-acyl-3-O-[d-glucopyranosyl-(1→4)-α-d glucopyranuronosyl] glycerol and phosphatidylglycerol. The genome size of XZ-24T was 2.64 Mb with a DNA G+C content of 68.9 %. On the basis of the evidence presented in this study, strain XZ-24T represents a novel species of a novel genus in the family Caulobacteraceae, for which the name Peiella sedimenti gen. nov., sp. nov. (Type strain XZ-24T=CCTCC AB 20 23 094T=KCTC 8038T) is proposed.


Subject(s)
Caulobacteraceae , Rivers , Base Composition , Fatty Acids/chemistry , Glycerol , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques
4.
Curr Microbiol ; 81(5): 117, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492090

ABSTRACT

Atrazine is an important herbicide that has been widely used for weed control in recent decades. However, with the extensive use of atrazine, its residue seriously pollutes the environment. Therefore, the microbial degradation and detoxification of atrazine have received extensive attention. To date, the aerobic degradation pathway of atrazine has been well studied; however, little is known about its anaerobic degradation in the environment. In this study, an anaerobic microbial consortium capable of efficiently degrading atrazine was enriched from soil collected from an herbicide-manufacturing plant. Six metabolites including hydroxyatrazine, deethylatrazine, N-isopropylammelide, deisopropylatrazine, cyanuric acid, and the novel metabolite 4-ethylamino-6-isopropylamino-1,3,5-triazine (EIPAT) were identified, and two putative anaerobic degradation pathways of atrazine were proposed: a hydrolytic dechlorination pathway is similar to that seen in aerobic degradation, and a novel pathway initiated by reductive dechlorination. During enrichment, Denitratisoma, Thiobacillus, Rhodocyclaceae_unclassified, Azospirillum, and Anaerolinea abundances significantly increased, dominating the enriched consortium, indicating that they may be involved in atrazine degradation. These findings provide valuable evidence for elucidating the anaerobic catabolism of atrazine and facilitating anaerobic remediation of residual atrazine pollution.


Subject(s)
Atrazine , Herbicides , Soil Pollutants , Atrazine/analysis , Atrazine/chemistry , Atrazine/metabolism , Herbicides/metabolism , Soil/chemistry , Anaerobiosis , Microbial Consortia , Biodegradation, Environmental , Soil Microbiology , Soil Pollutants/metabolism
5.
Mol Biol Evol ; 39(11)2022 11 03.
Article in English | MEDLINE | ID: mdl-36251882

ABSTRACT

Neotropical Heliconius butterflies are well known for their intricate behaviors and multiple instances of incipient speciation. Chemosensing plays a fundamental role in the life history of these groups of butterflies and in the establishment of reproductive isolation. However, chemical communication involves synergistic sensory and accessory functions, and it remains challenging to investigate the molecular mechanisms underlying behavioral differences. Here, we examine the gene expression profiles and genomic divergence of three sensory tissues (antennae, legs, and mouthparts) between sexes (females and males) and life stages (different adult stages) in two hybridizing butterflies, Heliconius melpomene and Heliconius cydno. By integrating comparative transcriptomic and population genomic approaches, we found evidence of widespread gene expression divergence, supporting a crucial role of sensory tissues in the establishment of species barriers. We also show that sensory diversification increases in a manner consistent with evolutionary divergence based on comparison with the more distantly related species Heliconius charithonia. The findings of our study strongly support the unique chemosensory function of antennae in all three species, the importance of the Z chromosome in interspecific divergence, and the nonnegligible role of nonchemosensory genes in the divergence of chemosensory tissues. Collectively, our results provide a genome-wide illustration of diversification in the chemosensory system under incomplete reproductive isolation, revealing strong molecular separation in the early stage of speciation. Here, we provide a unique perspective and relevant view of the genetic architecture (sensory and accessory functions) of chemosensing beyond the classic chemosensory gene families, leading to a better understanding of the magnitude and complexity of molecular changes in sensory tissues that contribute to the establishment of reproductive isolation and speciation.


Subject(s)
Butterflies , Animals , Female , Male , Butterflies/genetics , Genetic Speciation , Reproductive Isolation , Biological Evolution , Gene Expression
6.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37888849

ABSTRACT

A Gram-stain-positive, coccoid-shaped, non-spore-forming, facultatively anaerobic bacterium, designated YN-L-12T, was isolated from the activate sludge of a pesticide plant. Colonies on tryptone soya agar were small, white, opaque and circular. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YN-L-12T belonged to the genus of Jeotgalibaca, and showed the highest similarity to Jeotgalibaca arthritidis 1805-02T (97.0 %), followed by Jeotgalibaca ciconiae H21T32T (96.5 %), Jeotgalibaca porci 1804-02T (95.6 %) and Jeotgalibaca dankookensis EX-07T (95.4 %). The strain grew at 15-37 °C (optimum, 30 °C), with 0-6.5 % (w/v) NaCl (optimum, 0.5 %) and at pH 7-9 (optimum, pH 7.5). The major fatty acids were C18 : 1 ω9c, C16 : 1 ω9c and C16 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, glycolipid and an unidentified lipid. The DNA G+C content of the strain was 41.1 mol%. Average nucleotide identity values between strain YN-L-12T and J. arthritidis 1805-02T and J. ciconiae H21T32T were 72.8 and 72.3 %, respectively. The digital DNA-DNA hybridization values between YN-L-12T and J. arthritidis 1805-02T and J. ciconiae H21T32T were 24.1 and 20.3 %, respectively. According to the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain YN-L-12T represents a novel species of the genus Jeotgalibaca, for which the name Jeotgalibaca caeni sp. nov. is proposed, with strain YN-L-12T (=KCTC 43533T=CCTCC AB 2022400T) as the type strain.


Subject(s)
Fatty Acids , Sewage , Fatty Acids/chemistry , Sewage/microbiology , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA
7.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37991223

ABSTRACT

A Gram-stain-negative, facultatively anaerobic, motile, curved-rod-shaped flagellated bacterium, designated DSL-7T, was isolated from the intestine of Chanodichthys dabryi in the Yangtze river, PR China. The strain grew optimally in tryptone soy broth medium at 37 °C, pH 7.0 and with 1 % (w/v) NaCl. Strain DSL-7T showed less than 96.2 % 16S rRNA gene sequence similarity to type strains of the genus Vibrio. Phylogenetic analysis based on genomes indicated that strain DSL-7T belonged to the genus Vibrio and formed a subclade with Vibrio mimicus NCTC 11435T, Vibrio metoecus OP3HT, Vibrio cholerae ATCC 14035T, Vibrio albensis ATCC14547T, Vibrio paracholerae OP3HEDC-792T and Vibrio tarriae 2521-89T. The average nucleotide identity (ANI) and in digital DNA-DNA hybridization (dDDH) values between DSL-7T and closely related type strains were below the accepted threshold to delineate a new species of 95 and 70 %, respectively. The major cellular fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C14 : 0. The genomic DNA G+C content was 47.6 mol%. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain DSL-7T represents a novel species of the genus Vibrio, for which the name Vibrio chanodichtyis sp. nov. is proposed, with strain DSL-7T (=KCTC 92851T=CCTCC AB 2022396T) as the type strain.


Subject(s)
Fatty Acids , Vibrio , Fatty Acids/chemistry , Phospholipids/chemistry , Sequence Analysis, DNA , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Intestines
8.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38054484

ABSTRACT

A novel yellow-pigmented bacterial strain, designated YZ-48T, was isolated from the sediment of the Yangtze River, PR China. Cells were Gram-stain-negative, non-motile, rod-shaped, strictly aerobic, catalase-positive and oxidase-positive. The strain grew optimally on R2A medium at 37 °C, pH 7.0 and with 1.0 % (w/v) NaCl. Strain YZ-48T showed the closest 16S rRNA gene sequence similarity to Flavobacterium solisilvae SE-s27T (96.4 %) and F. dankookense DSM 25687T (96.2 %). The phylogenetic trees based on 16S rRNA gene sequences showed that strain YZ-48T belonged to the genus Flavobacterium but formed a distinct phylogenetic lineage. The obtained average nucleotide identity and digital DNA-DNA hybridization values between YZ-48T and the two closest strains were 75.0 and 74.5 % and 19.6 and 19.0 %, respectively. The sole respiratory quinone was MK-6. The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and three unidentified polar lipids. The major cellular fatty acids were iso-C16 : 0, iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and iso-C16 : 0 3-OH. The DNA G+C content was 40.2 mol%. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain YZ-48T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium sedimenticola sp. nov. is proposed, with strain YZ-48T (=KCTC 82329T=CCTC AB 2023061T=MCCC 1K08804T) as the type strain.


Subject(s)
Flavobacteriaceae , Flavobacterium , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Sequence Analysis, DNA , Base Composition , Bacterial Typing Techniques , Vitamin K 2/chemistry , Flavobacteriaceae/genetics
9.
Mikrochim Acta ; 190(4): 158, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36971858

ABSTRACT

A fluorescent method is described for trypsin determination through the strong electrostatic interactions between cationic polyelectrolytes and single-stranded DNA (ssDNA) templated Au nanoclusters (AuNCs). The ssDNA-AuNCs display improved fluorescence emission with excitation/emission maxima at 280/475 nm after being incorporated with poly(diallyldimethylammonium chloride) (PDDA). Fluorescent enhancement is mainly attributed to the electrostatic interactions occurring  between PDDA and ssDNA templates. This can make the conformation of the ssDNA templates to change. Thus, it offers a better microenvironment for stabilizing and protecting ssDNA-AuNCs, and results in fluorescence emission enhancement. By using protamine as a model, the method is employed for the determination of trypsin. The assay enables trypsin to be determined with good sensitivity and a linear response ranging from 5 ng⋅mL-1 to 60 ng⋅mL-1 with a 1.5 ng⋅mL-1 limit of detection. It is also extended to determine  the trypsin contents in human's serum samples with recoveries between 98.7% and 103.5% with relative standard deviations (RSDs) between 3.5% and 4.8%. A novel fluorescent strategy has been developed for of trypsin determination by using protamine mediated fluorescent enhancement of DNA templated Au nanoclusters.


Subject(s)
Metal Nanoparticles , Humans , Trypsin , Protamines , Gold , Fluorescent Dyes , DNA, Single-Stranded
10.
J Am Chem Soc ; 144(1): 436-445, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34965113

ABSTRACT

A coating with programmable multifunctionality based on application requirements is desirable. However, it is still a challenge to prepare a hard and flexible coating with a quick self-healing ability. Here, a hard but reversible Si-O-Si network enabled by aminopropyl-functionalized poly(silsesquioxane) and triethylamine (TEA) was developed. On the basis of this Si-O-Si network, basic coatings with excellent transparency, hardness, flexibility, and quick self-healing properties can be prepared by filling soft polymeric micelles into hard poly(silsesquioxane) networks. The highly cross-linked continuous network endows the coating with a hardness (H = 0.83 GPa) higher than those of most polymers (H < 0.3 GPa), while the uniformly dispersed micelles decrease the Young's modulus (E = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an H/E of 14.1% and an elastic recovery rate (We) of 86.3%. Scratches (∼50 µm) on the coating can be healed within 4 min. The hybrid composition of poly(silsesquioxane) networks also shows great advantages in integration with other functional components to realize programmable multifunctionality without diminishing the basic properties. This nanocomposite design provides a route toward the preparation of materials with excellent comprehensive functions without trade-offs between these properties.

11.
BMC Cancer ; 22(1): 127, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35100989

ABSTRACT

BACKGROUND: Myelodysplastic syndromes (MDS) is a group of heterogeneous myeloid clonal diseases originating from hematopoietic stem cells. It has been demonstrated that apolipoproteins A1(ApoA1) are associated with disease risk in many cancer types. However, there still lacks evidence regarding the link between ApoA1 and MDS. This study was designed to investigate the prognostic value of pretreatment ApoA1 levels in MDS patients. METHODS: We retrospectively analyzed a cohort of 228 MDS patients to explore the prognostic value of the serum ApoA1 levels at diagnosis. Patients were divided into the high ApoA1 group and the low ApoA1 group. The prognostic significance was determined by univariate and multivariate Cox hazard models. RESULTS: MDS patients with low ApoA1 levels had significantly shorter overall survival (OS, P < 0.0001) along with a higher frequency of TP53 mutation (P = 0.002). Based on univariate analysis, age (≥ 60 years), gender (male), lower levels of hemoglobin (< 10 g/dl), HDL (≤0.91 mmol/L), higher bone marrow blast percentage (> 5%), higher IPSS-R scores and poorer karyotype were significantly associated with decreased OS. However, low ApoA1 level did not influence leukemia-free survival (LFS, P = 0.367). Multivariate Cox proportional hazards regression analysis indicated that low ApoA1 level (≤ 1.02 g/L) was also an independent adverse prognostic factor for OS in MDS (P = 0.034). CONCLUSIONS: Decreased ApoA1 level predicts a poor prognosis of MDS patients and thus provides a novel evaluation factor for them that is independent of the IPSS-R system.


Subject(s)
Apolipoprotein A-I/blood , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/mortality , Aged , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Proportional Hazards Models , Retrospective Studies
12.
Curr Microbiol ; 79(12): 381, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329290

ABSTRACT

A bacterium, designated 50T was isolated from the sediment of a pesticide plant in Shandong Province, PR China. The strain was non-motile, Gram stain-negative, rod shaped and grew optimally on NA medium at 30 °C, pH 7.5 and with 0% (w/v) NaCl. Strain 50T showed the highest 16S rRNA gene sequence similarity with Lysobacter pocheonensis Gsoil 193T (96.7%), followed by Luteimonas lumbrici 1.1416T (96.5%). Phylogenetic analyses based on 16S rRNA indicated that strain 50T and Luteimonas lumbrici 1.1416T were clustered with the genus of Lysobacter and formed a subclade with Lysobacter pocheonensis Gsoil 193T. In the phylogenetic analysis based on the genome sequences, strain 50T and Luteimonas lumbrici 1.1416T were also clustered with the type strains of the genus Lysobacter. The obtained ANI and the dDDH value between 50T and Luteimonas lumbrici 1.1416T were 80.6% and 24.0%, respectively. The respiratory quinone was ubiquinone-8 (Q-8), and the major cellular fatty acids were iso-C15: 0 (31.7%), summed feature 9 (iso-C17:1 ω9c or C16:0 10-methyl) (23.7%), iso-C17:0 (14.3%) and iso-C16:0 (12.6%). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unidentified aminophospholipid, unidentified phospholipid and unidentified lipid. The genomic DNA G + C content was 69.5 mol%. According to the phenotypic, chemotaxonomic and phylogenetic analyses, strain 50T represents a novel species of the genus Lysobacter, for which the name Lysobacter sedimenti sp. nov. is proposed, with strain 50T (= KCTC 92088T = CCTCC AB 2022035T) as the type strain. In this study, it is also proposed that Luteimonas lumbrici should be transferred to the genus Lysobacter as Lysobacter lumbrici comb. nov. The type strain of Lysobacter lumbrici is 1.1416T (= KCTC 62979T = CCTCC AB 2018348T).


Subject(s)
Lysobacter , Oligochaeta , Xanthomonadaceae , Animals , RNA, Ribosomal, 16S/genetics , Phylogeny , Oligochaeta/genetics , Soil Microbiology , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Xanthomonadaceae/genetics , Phospholipids/chemistry , Fatty Acids/chemistry
13.
BMC Cancer ; 21(1): 546, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33985456

ABSTRACT

BACKGROUND: Myelodysplastic syndromes (MDS) is a group of heterogeneous myeloid clonal diseases originating from hematopoietic stem cells. Clinically, elevated mature monocyte in bone marrow is often observed, but its clinical value still remains unclear. METHODS: We retrospectively analyzed a cohort of 216 MDS patients to explore the prognostic value of the percentage of mature monocyte in bone marrow (PMMBM). All patients were divided into elevated PMMBM group and the normal group by 6% PMMBM as the cut-off value. RESULTS: Our results showed that PMMBM> 6% was associated with inferior overall survival (OS) (P = 0.026) along with higher-risk IPSS-R (P = 0.025) and higher frequency of IDH2 mutation (P = 0.007). Multivariate analyses showed that besides older age (> 60 years) for OS, gender (male) for OS, lower neutrophil count (< 0.8 ×  109/L) for OS, higher bone marrow blast percentage (> 5%) for OS and LFS, poorer karyotype for OS, elevated PMMBM was also an independent adverse prognostic factor for OS in MDS (P < 0.0001) but not for LFS (P = 0.736). CONCLUSIONS: These findings indicate that increased PMMBM may assists Revised International Prognostic Scoring System (IPSS-R) to predict a poor outcome and provide a novel evaluation factor for MDS patients especially when their karyotype analyses fail.


Subject(s)
Bone Marrow/pathology , Monocytes , Myelodysplastic Syndromes/mortality , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Prognosis , Retrospective Studies , Young Adult
14.
Article in English | MEDLINE | ID: mdl-32229497

ABSTRACT

Antibiotic resistance is a global concern; however, data on antibiotic-resistant Ureaplasma spp. and Mycoplasma hominis are limited in comparison to similar data on other microbes. A total of 492 Ureaplasma spp. and 13 M. hominis strains obtained in Hangzhou, China, in 2018 were subjected to antimicrobial susceptibility testing for levofloxacin, moxifloxacin, erythromycin, clindamycin, and doxycycline using the broth microdilution method. The mechanisms underlying quinolone and macrolide resistance were determined. Meanwhile, a model of the topoisomerase IV complex bound to levofloxacin in wild-type Ureaplasma spp. was built to study the quinolone resistance mutations. For Ureaplasma spp., the levofloxacin, moxifloxacin, and erythromycin resistance rates were 84.69%, 51.44%, and 3.59% in U. parvum and 82.43%, 62.16%, and 5.40% in U. urealyticum, respectively. Of the 13 M. hominis strains, 11 were resistant to both levofloxacin and moxifloxacin, and five strains showed clindamycin resistance. ParC S83L was the most prevalent mutation in levofloxacin-resistant Ureaplasma strains, followed by ParE R448K. The two mutations GyrA S153L and ParC S91I were commonly identified in quinolone-resistant M. hominis A molecular dynamics-refined structure revealed that quinolone resistance-associated mutations inhibited the interaction and reduced affinity with gyrase or topoisomerase IV and quinolones. The novel mutations S21A in the L4 protein and G2654T and T2245C in 23S rRNA and the ermB gene were identified in erythromycin-resistant Ureaplasma spp. As fluoroquinolone resistance in Ureaplasma spp. and Mycoplasma hominis remains high in China, the rational use of antibiotics needs to be further enhanced.


Subject(s)
Mycoplasma Infections , Quinolones , Ureaplasma Infections , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Bacterial/genetics , Humans , Macrolides , Microbial Sensitivity Tests , Mycoplasma Infections/drug therapy , Mycoplasma hominis/genetics , Quinolones/pharmacology , Ureaplasma/genetics , Ureaplasma Infections/drug therapy , Ureaplasma urealyticum
16.
Med Sci Monit ; 22: 727-35, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26939934

ABSTRACT

BACKGROUND Wear particle-induced peri-implant loosening is the most common complication affecting long-term outcomes in patients who undergo total joint arthroplasty. Wear particles and by-products from joint replacements may cause chronic local inflammation and foreign body reactions, which can in turn lead to osteolysis. Thus, inhibiting the formation and activity of osteoclasts may improve the functionality and long-term success of total joint arthroplasty. The aim of this study was to interfere with CXC chemokine receptor type 2 (CXCR2) to explore its role in wear particle-induced osteolysis. MATERIAL AND METHODS Morphological and biochemical assays were used to assess osteoclastogenesis in vivo and in vitro. CXCR2 was upregulated in osteoclast formation. RESULTS Local injection with adenovirus-mediated siRNA targeting CXCR2 inhibited titanium-induced osteolysis in a mouse calvarial model in vivo. Furthermore, siCXCR2 suppressed osteoclast formation both directly by acting on osteoclasts themselves and indirectly by altering RANKL and OPG expression in osteoblasts in vitro. CONCLUSIONS CXCR2 plays a critical role in particle-induced osteolysis, and siCXCR2 may be a novel treatment for aseptic loosening.


Subject(s)
Adenoviridae/metabolism , Osteoclasts/metabolism , Osteolysis/etiology , RNA, Small Interfering/metabolism , Receptors, Interleukin-8B/metabolism , Titanium/adverse effects , Animals , Bone Marrow Cells/pathology , Female , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred BALB C , Osteoclasts/drug effects , Osteoclasts/pathology , Osteogenesis/drug effects , Osteolysis/metabolism , Osteolysis/pathology , Osteoprotegerin/metabolism , RANK Ligand/pharmacology , RAW 264.7 Cells , Signal Transduction/drug effects , Skull/drug effects , Skull/pathology , Up-Regulation/drug effects
17.
J Cell Sci ; 126(Pt 2): 532-41, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23203800

ABSTRACT

Mesenchymal stromal progenitor cells (MSCs) are multipotent progenitors that can be isolated from numerous tissues. MSCs can undergo osteogenic differentiation under proper stimuli. We have recently demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most osteogenic BMPs. As one of the least studied BMPs, BMP9 has been shown to regulate angiogenesis in endothelial cells. However, it is unclear whether BMP9-regulated angiogenic signaling plays any important role in the BMP9-initiated osteogenic pathway in MSCs. Here, we investigate the functional role of hypoxia-inducible factor 1α (HIF1α)-mediated angiogenic signaling in BMP9-regulated osteogenic differentiation of MSCs. We find that BMP9 induces HIF1α expression in MSCs through Smad1/5/8 signaling. Exogenous expression of HIF1α potentiates BMP9-induced osteogenic differentiation of MSCs both in vitro and in vivo. siRNA-mediated silencing of HIF1α or HIF1α inhibitor CAY10585 profoundly blunts BMP9-induced osteogenic signaling in MSCs. HIF1α expression regulated by cobalt-induced hypoxia also recapitulates the synergistic effect between HIF1α and BMP9 in osteogenic differentiation. Mechanistically, HIF1α is shown to exert its synergistic effect with BMP9 by inducing both angiogenic signaling and osteogenic signaling in MSCs. Thus, our findings should not only expand our understanding of the molecular basis behind BMP9-regulated osteoblastic lineage-specific differentiation, but also provide an opportunity to harness the BMP9-induced synergy between osteogenic and angiogenic signaling pathways in regenerative medicine.


Subject(s)
Growth Differentiation Factor 2/metabolism , Hypoxia-Inducible Factor 1/metabolism , Mesenchymal Stem Cells/metabolism , Osteocytes/metabolism , Animals , Cell Differentiation/physiology , Female , Growth Differentiation Factor 2/genetics , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , HEK293 Cells , Humans , Hypoxia-Inducible Factor 1/genetics , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C3H , Mice, Nude , Neovascularization, Physiologic/physiology , Osteocytes/cytology , Osteogenesis/physiology , Signal Transduction , Up-Regulation
18.
BMC Evol Biol ; 14: 124, 2014 Jun 09.
Article in English | MEDLINE | ID: mdl-24913827

ABSTRACT

BACKGROUND: The caleosin genes encode proteins with a single conserved EF hand calcium-binding domain and comprise small gene families found in a wide range of plant species. These proteins may be involved in many cellular and biological processes coupled closely to the synthesis, degradation, or stability of oil bodies. Although previous studies of this protein family have been reported for Arabidopsis and other species, understanding of the evolution of the caleosin gene family in plants remains inadequate. RESULTS: In this study, comparative genomic analysis was performed to investigate the phylogenetic relationships, evolutionary history, functional divergence, positive selection, and coevolution of caleosins. First, 84 caleosin genes were identified from five main lineages that included 15 species. Phylogenetic analysis placed these caleosins into five distinct subfamilies (sub I-V), including two subfamilies that have not been previously identified. Among these subfamilies, sub II coincided with the distinct P-caleosin isoform recently identified in the pollen oil bodies of lily; caleosin genes from the same lineage tended to be clustered together in the phylogenetic tree. A special motif was determined to be related with the classification of caleosins, which may have resulted from a deletion in sub I and sub III occurring after the evolutionary divergence of monocot and dicot species. Additionally, several segmentally and tandem-duplicated gene pairs were identified from seven species, and further analysis revealed that caleosins of different species did not share a common expansion model. The ages of each pair of duplications were calculated, and most were consistent with the time of genome-wide duplication events in each species. Functional divergence analysis showed that changes in functional constraints have occurred between subfamilies I/IV, II/IV, and II/V, and some critical amino acid sites were identified during the functional divergence. Additional analyses revealed that caleosins were under positive selection during evolution, and seven candidate amino acid sites (70R, 74G, 88 L, 89G, 100 K, 106A, 107S) for positive selection were identified. Interestingly, the critical amino acid residues of functional divergence and positive selection were mainly located in C-terminal domain. Finally, three groups of coevolved amino acid sites were identified. Among these coevolved sites, seven from group 2 were located in the Ca2+-binding region of crucial importance. CONCLUSION: In this study, the evolutionary and expansion patterns of the caleosin gene family were predicted, and a series of amino acid sites relevant to their functional divergence, adaptive evolution, and coevolution were identified. These findings provide data to facilitate further functional analysis of caleosin gene families in the plant lineage.


Subject(s)
Calcium-Binding Proteins/genetics , Evolution, Molecular , Plant Proteins/genetics , Plants/genetics , Amino Acid Sequence , Arabidopsis/chemistry , Arabidopsis/genetics , Calcium-Binding Proteins/chemistry , Genes, Duplicate , Phylogeny , Plant Cells/chemistry , Plant Proteins/chemistry , Sequence Alignment
19.
BMC Plant Biol ; 14: 373, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25524588

ABSTRACT

BACKGROUND: GRAS proteins belong to a plant transcription factor family that is involved with multifarious roles in plants. Although previous studies of this protein family have been reported for Arabidopsis, rice, Chinese cabbage and other species, investigation of expansion patterns and evolutionary rate on the basis of comparative genomics in different species remains inadequate. RESULTS: A total of 289 GRAS genes were identified in Arabidopsis, B. distachyon, rice, soybean, S. moellendorffii, and P. patens and were grouped into seven subfamilies, supported by the similarity of their exon-intron patterns and structural motifs. All of tandem duplicated genes were found in group II except one cluster of rice, indicating that tandem duplication greatly promoted the expansion of group II. Furthermore, segment duplications were mainly found in the soybean genome, whereas no single expansion pattern dominated in other plant species indicating that GRAS genes from these five species might be subject to a more complex evolutionary mechanism. Interestingly, branch-site model analyses of positive selection showed that a number of sites were positively selected under foreground branches I and V. These results strongly indicated that these groups were experiencing higher positive selection pressure. Meanwhile, the site-specific model revealed that the GRAS genes were under strong positive selection in P. patens. DIVERGE v2.0 was used to detect critical amino acid sites, and the results showed that the shifted evolutionary rate was mainly attributed to the functional divergence between the GRAS genes in the two groups. In addition, the results also demonstrated the expression divergence of the GRAS duplicated genes in the evolution. In short, the results above provide a solid foundation for further functional dissection of the GRAS gene superfamily. CONCLUSIONS: In this work, differential expression, evolutionary rate, and expansion patterns of the GRAS gene family in the six species were predicted. Especially, tandem duplication events played an important role in expansion of group II. Together, these results contribute to further functional analysis and the molecular evolution of the GRAS gene superfamily.


Subject(s)
Embryophyta/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Plant Proteins/genetics , Transcription Factors/genetics , Amino Acid Substitution , Embryophyta/metabolism , Gene Duplication , Organ Specificity , Phylogeny , Plant Proteins/metabolism , Selection, Genetic , Tandem Repeat Sequences , Transcription Factors/metabolism
20.
BMC Plant Biol ; 14: 93, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24720629

ABSTRACT

BACKGROUND: Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), ß-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited. RESULTS: A total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies. CONCLUSION: This study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have influenced the evolution of the four subfamilies. In conclusion, the results of this study contribute novel detailed information about the molecular evolution of the expansin gene superfamily in soybean.


Subject(s)
Genes, Plant , Genetic Variation , Glycine max/genetics , Multigene Family , Plant Proteins/genetics , Segmental Duplications, Genomic , Selection, Genetic , Amino Acid Motifs , Amino Acid Sequence , Arabidopsis/genetics , Chromosomes, Plant/genetics , Codon/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Likelihood Functions , Models, Genetic , Oryza/genetics , Phylogeny , Promoter Regions, Genetic/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL