Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928167

ABSTRACT

The placenta is a crucial determinant of fetal survival, growth, and development. Deficiency in placental development directly causes intrauterine growth retardation (IUGR). IUGR can lead to fetal growth restriction and an increase in the mortality rate. The genetic mechanisms underlying IUGR development, however, remain unclear. In the present study, we integrated whole-genome DNA methylation and transcriptomic analyses to determine distinct gene expression patterns in various placental tissues to identify pivotal genes that are implicated with IUGR development. By performing RNA-sequencing analysis, 1487 differentially expressed genes (DEGs), with 737 upregulated and 750 downregulated genes, were identified in IUGR pigs (H_IUGR) compared with that in normal birth weight pigs (N_IUGR) (p < 0.05); furthermore, 77 miRNAs, 1331 lncRNAs, and 61 circRNAs were differentially expressed. The protein-protein interaction network analysis revealed that among these DEGs, the genes GNGT1, ANXA1, and CDC20 related to cellular developmental processes and blood vessel development were the key genes associated with the development of IUGR. A total of 495,870 differentially methylated regions were identified between the N_IUGR and H_IUGR groups, which included 25,053 differentially methylated genes (DMEs); moreover, the overall methylation level was higher in the H_IUGR group than in the N_IUGR group. Combined analysis showed an inverse correlation between methylation levels and gene expression. A total of 1375 genes involved in developmental processes, tissue development, and immune system regulation exhibited methylation differences in gene expression levels in the promoter regions and gene ontology regions. Five genes, namely, ANXA1, ADM, NRP2, SHH, and SMAD1, with high methylation levels were identified as potential contributors to IUGR development. These findings provide valuable insights that DNA methylation plays a crucial role in the epigenetic regulation of gene expression and mammalian development and that DNA-hypermethylated genes contribute to IUGR development in Rongchang pigs.


Subject(s)
DNA Methylation , Fetal Growth Retardation , Placenta , Animals , Fetal Growth Retardation/genetics , Swine , Female , Pregnancy , Placenta/metabolism , Gene Expression Profiling , Protein Interaction Maps/genetics , Epigenesis, Genetic , MicroRNAs/genetics , Transcriptome/genetics , Gene Regulatory Networks
2.
Vet Med (Praha) ; 68(10): 392-402, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38028206

ABSTRACT

Rongchang piglets were easily induced to cold stress and diarrhoea in the winter when raised in an open hog house. However, they also gradually recovered under mid-cold stress. Other studies have suggested gut microbiome might be involved in the host energy metabolism to relieve stress. To study how to adapt Rongchang piglets to cold stress by gut microbiome, thirty Rongchang piglets were randomly divided into a mild cold stress group and a control group for 30 consecutive days. The findings revealed that the piglets had low growth performance and a high diarrhoea rate and mortality rate during the first half of the cold treatment, but subsequently stabilised. The level of cortisol (COR) also displayed a similar trend. In the mild cold stress group, the relative abundance of Muribaculaceae significantly increased on day 15, and the predominant bacterial on day 30 was Lactobacillus sp. Our results indicated that the Rongchang piglet's production performance and health were impaired at the start of the mild cold stress. However, as time passed, the body could progressively adapt to the low temperature, and Lactobacillus sp. participated in this process. This study provides new insight into how to alleviate health damage caused by cold stress.

3.
Yi Chuan ; 45(10): 922-932, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37872114

ABSTRACT

This study aimed to assess and compare the performance of different machine learning models in predicting selected pig growth traits and genomic estimated breeding values (GEBV) using automated machine learning, with the goal of optimizing whole-genome evaluation methods in pig breeding. The research employed genomic information, pedigree matrices, fixed effects, and phenotype data from 9968 pigs across multiple companies to derive four optimal machine learning models: deep learning (DL), random forest (RF), gradient boosting machine (GBM), and extreme gradient boosting (XGB). Through 10-fold cross-validation, predictions were made for GEBV and phenotypes of pigs reaching weight milestones (100 kg and 115 kg) with adjustments for backfat and days to weight. The findings indicated that machine learning models exhibited higher accuracy in predicting GEBV compared to phenotypic traits. Notably, GBM demonstrated superior GEBV prediction accuracy, with values of 0.683, 0.710, 0.866, and 0.871 for B100, B115, D100, and D115, respectively, slightly outperforming other methods. In phenotype prediction, GBM emerged as the best-performing model for pigs with B100, B115, D100, and D115 traits, achieving prediction accuracies of 0.547, followed by DL at 0.547, and then XGB with accuracies of 0.672 and 0.670. In terms of model training time, RF required the most time, while GBM and DL fell in between, and XGB demonstrated the shortest training time. In summary, machine learning models obtained through automated techniques exhibited higher GEBV prediction accuracy compared to phenotypic traits. GBM emerged as the overall top performer in terms of prediction accuracy and training time efficiency, while XGB demonstrated the ability to train accurate prediction models within a short timeframe. RF, on the other hand, had longer training times and insufficient accuracy, rendering it unsuitable for predicting pig growth traits and GEBV.


Subject(s)
Genome , Models, Genetic , Swine/genetics , Animals , Phenotype , Genomics/methods , Genotype , Polymorphism, Single Nucleotide
4.
Genome ; 65(7): 405-412, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35594567

ABSTRACT

Feed occupies a significant proportion in the production cost of pigs, and the feed efficiency (FE) in pigs is of utmost economic importance. Hence, the objective of this study is to identify single-nucleotide polymorphisms (SNPs) and candidate genes associated with FE-related traits, including feed conversion ratio (FCR) and residual feed intake (RFI). A genome-wide association study was conducted for FCR and RFI in 169 Yorkshire pigs using whole-genome sequencing data. A total of 23 and 33 suggestive significant SNPs (P < 1 × 10-6) were detected for FCR and RFI, respectively. However, none of SNPs achieved the genome-wide significance threshold (P < 5 × 10-8). Importantly, three common SNPs (SSC7:7987268, SSC13:42350250, and SSC13:42551718) were associated with both FCR and RFI. Additionally, the NEDD9 gene related to FCR and RFI traits was overlapped. This study detected novel SNPs on SSC7 and SSC13 common for FCR and RFI. These results provide new insights into the genetic mechanisms and candidate genes of FE-related traits in pigs.


Subject(s)
Eating , Genome-Wide Association Study , Animal Feed , Animals , Eating/genetics , Genome , Phenotype , Polymorphism, Single Nucleotide , Swine/genetics
5.
Funct Integr Genomics ; 21(5-6): 655-664, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34606016

ABSTRACT

Here we used two kinds of chips data from 5 pig breeds, Chinese Duroc (DD), Landrace (LL), Yorkshire (YY), Liangshan (LS), and Qingyu pigs (QY) in China to identify genes which show evidence of selection during domestication. Four breed pairs, LS-YY, QY-YY, DD-YY, and LL-YY pair, were performed to detect selection signatures using the Fst method. Then we identified a list of genes that played key roles in domestication and artificial selection. For example, the PTPRM gene was shared in LS-YY, QY-YY, and DD-YY pairs and it regulates a variety of cellular processes including cell growth, differentiation as signaling molecules. The HACD3 gene was shared in QY-YY and DD-YY pairs, and the HACD3 protein is involved in the production of very long-chain fatty acids of different chain lengths. Besides, the MYH11 gene that related to muscle contraction was found in LS-YY and LL-YY pair. These results suggested that genes related to immunity, disease resistance, and metabolism were subjected to strong selection pressure in Chinese domestic pigs in the progress of domestication and evolution; however, genes related to appearance, production performance, and reproduction were undergone strong artificial selection in commercial pig breeds.


Subject(s)
Breeding , Selection, Genetic , Swine/classification , Swine/genetics , Animals , China , Female , Male , Sus scrofa/classification , Sus scrofa/genetics
6.
Genome ; : 1-8, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34242523

ABSTRACT

The Chinese Qingyu pig is a typical domestic fatty pig breed and an invaluable indigenous genetic resource in China. Compared with the Landrace pig, the Qingyu pig has unique meat characteristics, including muscle development, intramuscular fat, and other meat quality traits. At present, few studies have explored epigenetic differences due to DNA methylation between the Qingyu pig and the Landrace pig. In this study, 30 Qingyu pigs and 31 Landrace pigs were subjected to reduced representation bisulfite sequencing (RRBS). Genome-wide differential DNA methylation analysis was conducted. Six genomic regions, including regions on Sus scrofa chromosome (SSC) 1: 266.09-274.23 Mb, SSC5: 0.88-10.68 Mb, SSC8: 41.23-48.51 Mb, SSC12: 45.43-54.38 Mb, SSC13: 202.15-207.95 Mb, and SSC14: 126.43-139.85 Mb, were regarded as key regions that may be associated with phenotypic differences between the Qingyu pig and the Landrace pig. Furthermore, according to further analysis, five differentially methylated genes (ADCY1, FUBP3, GRIN2B, KIT, and PIK3R6) were identified as key candidate genes that might be associated with meat characteristics. Our findings provide new insights into the differences in DNA methylation between the Qingyu pig and the Landrace pig. These results enrich the epigenetic research of the Chinese Qingyu pig.

7.
Genome ; 64(12): 1029-1040, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34139142

ABSTRACT

China has the largest pork consumption worldwide. However, the high incidence of piglet fetal mummification (3%-5%) is an important factor that causes the slow improvement of pig reproductive capacity, and the genetic mechanism is still unclear. This study aimed to identify candidate genes associated with piglet fetal mummification. RNA-seq technology was used to compare transcriptome profiling of blood from healthy and mummified piglets at different stages of pregnancy (35, 56, 77, and 98 days). A total of 137-420 differentially expressed genes (DEGs) were detected at each stage. Seven DEGs were significantly differentially expressed at various stages. IL-9R, TLR8, ABLIM3, FSH-α, ASCC1, PRKCZ, and GCK may play important roles in the course of piglet fetal mummification. The differential genes we identified between the groups were mainly enriched in immune and inflammation regulation, while others were mainly enriched in reproduction. Considering the function of candidate genes, IL-9R and TLR8 were suggested as the most promising candidate genes involved in mummified piglet traits. We speculate that during pregnancy, it may be the combined effects of the above-mentioned inflammation, immune response, and reproduction-related signaling pathways that affect the occurrence of mummified piglets and further affect pig reproduction.


Subject(s)
Fetal Death , Receptors, Interleukin-9/genetics , Toll-Like Receptor 8 , Transcriptome , Animals , Female , Gene Expression Profiling , Inflammation , Pregnancy , Swine/genetics , Toll-Like Receptor 8/genetics
8.
Genome ; 63(10): 503-515, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32615048

ABSTRACT

The Chinese Qingyu pig breed is an invaluable indigenous genetic resource. However, few studies have investigated the genetic architecture of meat quality traits in Qingyu pigs. Here, 30 purebred Qingyu pigs were subjected to whole-genome sequencing. After quality control, 18 436 759 SNPs were retained. Genome-wide association studies (GWAS) were then performed for meat pH and color at three postmortem time points (45 min, 24 h, and 48 h) using single-marker regression analysis. In total, 11 and 69 SNPs were associated with meat pH and color of the longissimus thoracis muscle (LTM), respectively, while 54 and 29 SNPs were associated with meat pH and color of the semimembranosus muscle (SM), respectively. Seven SNPs associated with pork pH were shared by all three postmortem time points. Several candidate genes for meat traits were identified, including four genes (CXXC5, RYR3, BNIP3, and MYCT1) related to skeletal muscle development, regulation of Ca2+ release in the muscle, and anaerobic respiration, which are promising candidates for selecting superior meat quality traits in Qingyu pigs. To our knowledge, this is the first study investigating the postmortem genetic architecture of pork pH and color in Qingyu pigs. Our findings further the current understanding of the genetic factors influencing meat quality.


Subject(s)
Food Quality , Genome-Wide Association Study , Genomics , Meat/analysis , Meat/standards , Whole Genome Sequencing , Animals , Food Analysis , Genomics/methods , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Quality Control , Quantitative Trait, Heritable , Swine
9.
Genomics ; 111(6): 1583-1589, 2019 12.
Article in English | MEDLINE | ID: mdl-30439481

ABSTRACT

Growth and fat deposition are important economic traits due to the influence on production in pigs. In this study, a dataset of 1200 pigs with 345,570 SNPs genotyped by sequencing (GBS) was used to conduct a GWAS with single-marker regression method to identify SNPs associated with body weight and backfat thickness (BFT) and to search for candidate genes in Landrace and Yorkshire pigs. A total of 27 and 13 significant SNPs were associated with body weight and BFT, respectively. In the region of 149.85-149.89 Mb on SSC6, the SNP (SSC6: 149876737) for body weight and the SNP (SSC6: 149876507) for BFT were in the same locus region (a gap of 230 bp). Two SNPs were located in the DOCK7 gene, which is a protein-coding gene that plays an important role in pigmentation. Two SNPs located on SSC8: 54567459 and SSC11: 33043081 were found to overlap weight and BFT; however, no candidate gene was found in these regions. In addition, based on other significant SNPs, two positional candidate genes, NSRP1 and CADPS, were proposed to influence weight. In conclusion, this is the first study report using GBS data to identify the significant SNPs for weight and BFT. A total of four particularly interesting SNPs and one potential candidate genes (DOCK7) were found for these traits in domestic pigs. This study improves our knowledge to better understand the complex genetic architecture of weight and BFT, but further validation studies of these candidate loci and genes are recommended in pigs.


Subject(s)
Body Weight/genetics , Genotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sus scrofa/genetics , Animals , Genome-Wide Association Study , Swine
10.
Physiol Genomics ; 51(7): 261-266, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31100035

ABSTRACT

Both backfat thickness at 100 kg (B100) and loin muscle thickness (LMT) are economically important traits in pigs. In this study, a total of 1,200 pigs (600 Landrace and 600 Yorkshire pigs) were examined with genotyping by sequencing. A total of 345,570 single nucleotide polymorphisms (SNPs) were obtained from 1,200 pigs. Then, a single marker regression test was used to conduct a genome-wide association study for B100 and LMT. A total of 8 and 90 significant SNPs were detected for LMT and B100, respectively. Interestingly, two shared significant loci [located at Sus scrofa chromosome (SSC) 6: 149876694 and SSC12: 46226580] were detected in two breeds for B100. Furthermore, three potential candidate genes were found for LMT and B100. The positional candidate gene FAM3C (SSC18: 25573656, P = 2.48 × 10-9), which controls the survival, growth, and differentiation of tissues and cells, was found for LMT in Landrace pigs. At SSC9: 6.78-6.82 Mb in Landrace pigs, the positional candidate gene, INPPL1, which has a negative regulatory effect on diet-induced obesity and is involved in the regulation of insulin function, was found for B100. The candidate gene, RAB35, which regulates the adipocyte glucose transporter SLC2A4/GLUT4, was identified at approximately SSC14: 40.09-40.13 Mb in Yorkshire pigs. The results of this GWAS will greatly advance our understanding of the genetic architecture of the LMT and B100 traits. However, these identified loci and genes need to be further verified in more pig populations, and their functions also need to be validated by more biological experiments in pigs.


Subject(s)
Adipose Tissue/pathology , Body Composition , Genome-Wide Association Study/veterinary , Genotype , Muscle, Skeletal/pathology , Sus scrofa/genetics , Animals , Breeding , Cytokines/genetics , Female , Genes, Regulator , Male , Phenotype , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Species Specificity , rab GTP-Binding Proteins/genetics
11.
BMC Genet ; 20(1): 4, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30616509

ABSTRACT

BACKGROUND: The number of animals born dead, which includes the number of mummified (NM) and stillborn (NS) animals, is the most important trait to directly quantify the reproductive loss in domestic pigs. In this study, 282 Landrace sows and 250 Large White sows were genotyped by sequencing (GBS). A total of 816 and 1068 litter records for NM and NS were collected from them. A genome-wide association study (GWAS) was conducted to reveal the genetic difference between NM and NS. RESULTS: A total of 248 and 10 genome-wide significant SNPs were detected for NM and NS across numerous parities in Landrace pigs. The corresponding numbers for Large White pigs were 175 and 6, respectively. All of the detected SNPs were parity specific for both NM and NS in two breeds. Based on significant SNPs, in total 242 (146 for Landrace pig, 96 for Large White pig) and 10 significant chromosome regions (8 for Landrace pigs, 2 for Large White pigs) were found for NM and NS, respectively. Among them, 237 (142 for Landrace pig, 95 for Large White pig) and 8 significant chromosome regions (6 for Landrace pigs, 2 for Large White pigs) for NM and NS were not reported in previous studies. A list of candidate genes at the identified loci was proposed, including HMGB1, SOX5, KCNJ8, ABCC9 and YY1 for NM, ASTN1 for NS. CONCLUSION: This is the first time when GBS data was used to identify genetic regions affecting NM and NS in Landrace and Large White pigs. Many identified informative SNPs and candidate genes advance our understanding of the genetic architecture of NM and NS in pigs. However, further studies are needed to validate using larger populations with more breeds.


Subject(s)
Genome-Wide Association Study , Animals , Female , Genotype , Linkage Disequilibrium , Male , Parity/genetics , Phenotype , Pregnancy , Sus scrofa
12.
Genomics ; 110(3): 171-179, 2018 05.
Article in English | MEDLINE | ID: mdl-28943389

ABSTRACT

In this study, data genotyping by sequence (GBS) was used to perform single step GWAS (ssGWAS) to identify SNPs associated with the litter traits in domestic pigs and search for candidate genes in the region of significant SNPs. After quality control, 167,355 high-quality SNPs from 532 pigs were obtained. Phenotypic traits on 2112 gilt litters from 532 pigs were recorded including total number born (TNB), number born alive (NBA), and litter weight born alive (LWB). A single-step genomic BLUP approach (ssGBLUP) was used to implement the genome-wide association analysis at a 5% genome-wide significance level. A total of 8, 23 and 20 significant SNPs were associated with TNB, NBA, and LWB, respectively, and these significant SNPs accounted for 62.78%, 79.75%, and 58.79% of genetic variance. Furthermore, 1 (SSC14: 16314857), 4 (SSC1: 81986236, SSC1: 66599775, SSC1: 161999013, and SSC1: 267883107), and 5 (SSC9: 29030061, SSC2: 32368561, SSC5: 110375350, SSC13: 45619882 and SSC13: 45647829) significant SNPs for TNB, NBA, and LWB were inferred to be novel loci. At SSC1, the AIM1 and FOXO3 genes were found to be associated with NBA; these genes increase ovarian reproductive capacity and follicle number and decrease gonadotropin levels. The genes SLC36A4 and INTU are involved in cell growth, cytogenesis and development were found to be associated with LWB. These significant SNPs can be used as an indication for regions in the Sus scrofa genome for variability in litter traits, but further studies are expected to confirm causative mutations.


Subject(s)
Litter Size/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sus scrofa/genetics , Animals , Breeding , Female , Genome-Wide Association Study , Genotyping Techniques , Pregnancy , Sequence Analysis, DNA , Sus scrofa/physiology
13.
Physiol Genomics ; 50(12): 1026-1035, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30289746

ABSTRACT

Total number born (TNB), number born alive (NBA), and litter weight born alive (LWB) are critically important traits in pig production. The sow's parity is one of the major factors influencing litter traits. Because of monogenic or polygenic contributions and the presence of temporal gene effects in different sows' parities, it is difficult to clarify the biological and genetic background. To systematically explore the genetic mechanism of litter traits, we conducted 18 GWASs using single-step GWAS (ssGWAS) based on two breeds (908 Landrace and 1,130 Large White sow litter records) for each litter trait in different parities. A total of 300 Landrace and 300 Large White sows were genotyped by sequencing (GBS). ssGWAS was performed separately for each breed and each parity due to population stratification and temporal gene effect. In summary, we identified 80 (15 for Landrace and 65 for Large White), 227 (52 for Landrace, 175 for Large White), and 187 (34 for Landrace, 153 for Large White) single nucleotide polymorphisms (SNPs) affecting TNB, NBA, and LWB, respectively. Of them, we suggest that a total of 22 loci (SSC1: 125098202, SSC1: 117560058, SSC14: 147794697, SSC8: 84823302, SSC9: 143554876, and SSC9: 138766097 for Landrace; SSC1: 4023577, SSC1: 3859573, SSC1: 4891063, SSC16: 5197665, SSC10: 32050819, SSC13: 13552924, SSC13: 92819, SSC17: 3579607, SSC13: 196698221, SSC7: 30918403, SSC16: 46221484, SSC16: 46169204, SSC2: 41988642, SSC2: 44475457, SSC2: 42521875, and SSC7: 58411951 for Large White) are shared by TNB, NBA, and LWB. These results indicate the existence of gene temporal effect in each parity. Furthermore, our findings suggest four interesting candidate genes (FBXL7, ALDH1A2, LEPR, and DDX1) associated with litter traits in different parities that have a major effect on embryonic development progression. In conclusion, 22 crucial SNPs and four interesting candidate genes were identified for three litter traits across six parities. These findings advance our understanding of the genetic architecture of litter traits and confirm the presence of temporal gene effects in different parities. Importantly, functional validation studies for findings of particular interest are recommended in litter traits.


Subject(s)
Litter Size/genetics , Parity/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Breeding/methods , Female , Genome-Wide Association Study/methods , Genotype , Phenotype , Swine
14.
Front Vet Sci ; 11: 1403493, 2024.
Article in English | MEDLINE | ID: mdl-38868499

ABSTRACT

The genetic trait of residual feed intake (RFI) holds considerable importance in the swine industry. Recent research indicates that the gut microbiota of pigs plays a pivotal role in the manifestation of the RFI trait. Nevertheless, the metabolic pathways involved in the functioning of these microorganisms remain elusive. Thus, based on the ranking of the RFI trait in Duroc pigs, the present study selected the top 10 and bottom 10 pigs as the experimental subjects. The distribution and metabolite differences of cecal microbiota were analyzed using 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. The low RFI cecal group was named LRC, and the high RFI cecal group was named HRC. The results indicate that the LRC group had lower RFI, feed conversion ratio (FCR), average daily feed intake (ADFI) (p < 0.001), and thinner backfat (p < 0.05) compared with the HRC group. We simultaneously recorded the foraging behavior as well, the LRC group had a significant increase in total time spent at the feeder per day (TPD) (p < 0.05) and a significant increase in average feed intake per mins (AFI) and the number of visits to the feeder per day (NVD) compared to the HRC group (p < 0.001). Clostridium_XVIII, Bulleidia, and Intestinimonas were significantly enriched in the LRC group (p < 0.01), while Sutterella, Fusobacterium, and Bacteroides were significantly increased in the HRC group (p < 0.01). In the metabolome, we detected 390 (248 metabolites up and 142 down in the LRC compared with HRC), and 200 (97 metabolites up and 103 down in the LRC compared with HRC) differential metabolites in positive and negative ionization modes. The comprehensive analysis found that in the LRC group, Escherichia and Eubacterium in the gut may increase serotonin content, respectively. Bacteroides may deplete serotonin. We suggest that the RFI may be partly achieved through tryptophan metabolism in gut microbes. In individuals with low RFI, gut microbes may enhance feed efficiency by enhancing host synthesis and metabolism of tryptophan-related metabolites.

15.
Microorganisms ; 12(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38930459

ABSTRACT

In this study, we investigated the correlation between the composition and function of the gut microbiota and the semen quality of Rongchang boars. Significant differences in gut microbial composition between boars with high (group H) and low (group L) semen utilization rates were identified through 16S rRNA gene sequencing, with 18 differential microbes observed at the genus level. Boars with lower semen utilization rates exhibited a higher relative abundance of Treponema, suggesting its potential role in reducing semen quality. Conversely, boars with higher semen utilization rates showed increased relative abundances of Terrisporobacter, Turicibacter, Stenotrophomonas, Clostridium sensu stricto 3, and Bifidobacterium, with Stenotrophomonas and Clostridium sensu stricto 3 showing a significant positive correlation with semen utilization rates. The metabolomic analyses revealed higher levels of gluconolactone, D-ribose, and 4-pyridoxic acid in the H group, with 4 pyridoxic acid and D-ribose showing a significant positive correlation with Terrisporobacter and Clostridium sensu stricto 3, respectively. In contrast, the L group showed elevated levels of D-erythrose-4-phosphate, which correlated negatively with Bifidobacterium and Clostridium sensu stricto 3. These differential metabolites were enriched in the pentose phosphate pathway, vitamin B6 metabolism, and antifolate resistance, potentially influencing semen quality. These findings provide new insights into the complex interplay between the gut microbiota and boar reproductive health and may offer important information for the discovery of disease biomarkers and reproductive health management.

16.
Theriogenology ; 211: 105-114, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37603936

ABSTRACT

Mummified piglets are among the leading causes of fertility loss and severely hamper reproductive performance in pigs. However, the contributions of genomic variation to the emergence of mummified piglets (MUM) have rarely been studied. This study aims to (1) elucidate the genetic architecture of MUM in sows of parity 1 - 3 using a single-step genome-wide association study (ssGWAS). The ssGWAS involved genotyping-by-sequencing of Large White and Landrace pig breeds. (2) Explore the biological role of the candidate genes at the cellular level. A total of 185 and 48 genome-wide significant SNPs are associated with MUM in Large White and Landrace pigs, explaining 0.01-36.52% genetic variance for different significant loci, respectively. All the significant SNPs are parity-specific, and the numerous, consecutive significant loci likely generated the nine significant peaks in different parities. Multiple candidate genes (including CYP24A1, FBXO30, and ARHGEF28) are associated with fetal congenital and maternal diseases. Collectively, CYP24A1 regulation contributes to steady-state levels of embryo development genes. CYP24A1 is involved in reproduction and, immune and gestational disorders. Thus, it is associated with known newborn death traits and MUM in Large White sows. Altogether, these results improve the current understanding of the genetic architecture of MUM and expand the knowledge on genetic variations for selecting against mummified piglets in pig breeding.


Subject(s)
Fetal Death , Vitamin D3 24-Hydroxylase , Animals , Female , Pregnancy , Embryonic Development , Fertility , Genome-Wide Association Study/veterinary , Swine/genetics , Swine Diseases , Vitamin D3 24-Hydroxylase/genetics , Sus scrofa
17.
Anim Biosci ; 36(1): 29-42, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36108685

ABSTRACT

OBJECTIVE: Pigs, an ideal biomedical model for human diseases, suffer from about 50% early embryonic and fetal death, a major cause of fertility loss worldwide. However, identifying the causal variant remains a huge challenge. This study aimed to detect single nucleotide polymorphisms (SNPs) and candidate genes for the number of mummified (NM) piglets using the imputed whole-genome sequence (WGS) and validate the potential candidate genes. METHODS: The imputed WGS was introduced from genotyping-by-sequencing (GBS) using a multi-breed reference population. We performed genome-wide association studies (GWAS) for NM piglets at birth from a Landrace pig populatiGWAS peak located on SSC11: 0.10 to 7.11 Mbp (Top SNP, SSC11:1,889,658 bp; p = 9.98E-13) was identified in cyclin dependent kinase on. A total of 300 Landrace pigs were genotyped by GBS. The whole-genome variants were imputed, and 4,252,858 SNPs were obtained. Various molecular experiments were conducted to determine how the genes affected NM in pigs. RESULTS: A strong GWAS peak located on SSC11: 0.10 to 7.11 Mbp (Top SNP, SSC11:1,889,658 bp; p = 9.98E-13) was identified in cyclin dependent kinase 8 (CDK8) gene, which plays a crucial role in embryonic retardation and lethality. Based on the molecular experiments, we found that Y-box binding protein 1 (YBX1) was a crucial transcription factor for CDK8, which mediated the effect of CDK8 in the proliferation of porcine ovarian granulosa cells via transforming growth factor beta/small mother against decapentaplegic signaling pathway, and, as a consequence, affected embryo quality, indicating that this pathway may be contributing to mummified fetal in pigs. CONCLUSION: A powerful imputation-based association study was performed to identify genes associated with NM in pigs. CDK8 was suggested as a functional gene for the proliferation of porcine ovarian granulosa cells, but further studies are required to determine causative mutations and the effect of loci on NM in pigs.

18.
Front Genet ; 13: 1028711, 2022.
Article in English | MEDLINE | ID: mdl-36685918

ABSTRACT

In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79 × 10 - 8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.

19.
Genes (Basel) ; 13(11)2022 11 17.
Article in English | MEDLINE | ID: mdl-36421816

ABSTRACT

Intrauterine growth restriction (IUGR) is a major problem associated with piglet growth performance. The incidence of IUGR is widespread in Rongchang pigs. The pituitary gland is important for regulating growth and metabolism, and research has identified genes associated with growth and development. The pituitary gland of newborn piglets with normal birth weight (NBW group, n = 3) and (IUGR group, n = 3) was collected for transcriptome analysis. A total of 323 differentially expression genes (DEGs) were identified (|log2(fold-change)| > 1 and q value < 0.05), of which 223 were upregulated and 100 were downregulated. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the DEGs were mainly related to the extracellular matrix, regulation of the multicellular organismal process, tissue development and angiogenesis, which participate in the growth and immune response in IUGR piglets. Moreover, 7 DEGs including IGF2, THBS1, ITGA1, ITGA8, EPSTI1, FOSB, and UCP2 were associated with growth and immune response. Furthermore, based on the interaction network analysis of the DEGs, two genes, IGF2 and THBS1, participated in cell proliferation, embryonic development and angiogenesis. IGF2 and THBS1 were also the main genes participating in the IUGR. This study identified the core genes involved in IUGR in piglets and provided a reference for exploring the effect of the pituitary gland on piglet growth.


Subject(s)
Fetal Growth Retardation , Gene Expression Profiling , Animals , Female , Pregnancy , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Gene Ontology , Genes, Regulator , Pituitary Gland/metabolism , Swine/genetics
20.
Theriogenology ; 183: 10-25, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35189563

ABSTRACT

The number of live births is a critical indicator of the performance of sows and is also a significant factor in determining the economic benefits of pig breeding. Mummified piglets are an important challenge affecting production efficiency in the pig industry. However, the value of metabolomics in unraveling the mechanisms of piglet mummification has not yet been established. This study aimed to investigate the serum and urine metabolomes of sows to identify biomarkers of piglet mummification. During gestation (35th, 56th, 77th, and 98th), serum and urine samples were collected from eight pigs from each group. To assess changes in metabolite classes in serum and urine from sows with a high incidence of mummified piglets and normal sows, a combination of liquid chromatography-mass spectrometry-based metabolomics profiling approach was used. The identified metabolites were involved in taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, arginine and proline metabolism, and bile secretion. A total of six potential markers related to piglet mummification were screened, including hypotaurine, taurodeoxycholic acid, taurocholic acid, arginine, glutamic acid, and proline. These metabolites are expected to be novel biomarkers of piglet mummification, although their use requires further validation.


Subject(s)
Body Fluids , Plant Breeding , Animals , Animals, Newborn , Arginine , Female , Lactation , Metabolome , Pregnancy , Prevalence , Swine
SELECTION OF CITATIONS
SEARCH DETAIL