Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nano Lett ; 24(11): 3525-3531, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466128

ABSTRACT

Variegation and complexity of polarization relaxation loss in many heterostructured materials provide available mechanisms to seek a strong electromagnetic wave (EMW) absorption performance. Here we construct a unique heterostructured compound that bonds α-Fe2O3 nanosheets of the (110) plane on carbon microtubes (CMTs). Through effective alignment between the Fermi energy level of CMTs and the conduction band position of α-Fe2O3 nanosheets at the interface, we attain substantial polarization relaxation loss via novel atomic valence reversal between Fe(III) ↔ Fe(III-) induced with periodic electron injection from conductive CMTs under EMW irradiation to give α-Fe2O3 nanosheets. Such heterostructured materials possess currently reported minimum reflection loss of -84.01 dB centered at 10.99 GHz at a thickness of 3.19 mm and an effective absorption bandwidth (reflection loss ≤ -10 dB) of 7.17 GHz (10.83-18 GHz) at 2.65 mm. This work provides an effective strategy for designing strong EMW absorbers by combining highly efficient electron injection and atomic valence reversal.

2.
J Sci Food Agric ; 104(2): 818-828, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37683050

ABSTRACT

BACKGROUND: Lima bean protein isolate (LPI) is an underutilized plant protein. Similar to other plant proteins, it may display poor emulsification properties. In order to improve its emulsifying properties, one effective approach is using protein and polysaccharide mixtures. This work investigated the structural and emulsifying properties of LPI as well as the development of an LPI/xanthan gum (XG)-stabilized oil-in-water emulsion. RESULTS: The highest protein solubility (84.14%) of LPI was observed and the molecular weights (Mw ) of most LPI subunits were less than 35 kDa. The enhanced emulsifying activity index (15.97 m2 g-1 ) of LPI might be associated with its relatively high protein solubility and more low-Mw subunits (Mw < 35 kDa). The effects of oil volume fraction (ϕ) on droplet size, microstructure, rheological behavior and stability of emulsions were investigated. As ϕ increased from 0.2 to 0.8, the emulsion was arranged from spherical and dispersed oil droplets to polyhedral packing of oil droplets adjacent to each other, while the LPI/XG mixtures changed from particles (in the uncrowded interfacial layer) to lamellae (in the crowded interfacial layer). When ϕ was 0.6, the emulsion was in a transitional state with the coexistence of particles and lamellar structures on the oil droplet surface. The LPI/XG-stabilized emulsions with ϕ values of 0.6-0.8 showed the highest stability during a 14-day storage period. CONCLUSION: This study developed a promising plant-based protein resource, LPI, and demonstrates potential application of LPI/XG as an emulsifying stabilizer in foods. © 2023 Society of Chemical Industry.


Subject(s)
Phaseolus , Plant Proteins , Emulsions/chemistry , Plant Proteins/chemistry , Polysaccharides, Bacterial/chemistry , Water/chemistry
3.
BMC Genomics ; 24(1): 285, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37237371

ABSTRACT

BACKGROUND: The genetic locus responsible for duck body size has been fully explained before, but the growth trait-related genetic basis is still waiting to be explored. For example, the genetic site related to growth rate, an important economic trait affecting marketing weight and feeding cost, is still unclear. Here, we performed genome wide association study (GWAS) to identify growth rate-associated genes and mutations. RESULT: In the current study, the body weight data of 358 ducks were recorded every 10 days from hatching to 120 days of age. According to the growth curve, we evaluated the relative and absolute growth rates (RGR and AGR) of 5 stages during the early rapid growth period. GWAS results for RGRs identified 31 significant SNPs on autosomes, and these SNPs were annotated by 24 protein-coding genes. Fourteen autosomal SNPs were significantly associated with AGRs. In addition, 4 shared significant SNPs were identified as having an association with both AGR and RGR, which were Chr2: 11483045 C>T, Chr2: 13750217 G>A, Chr2: 42508231 G>A and Chr2: 43644612 C>T. Among them, Chr2: 11483045 C>T, Chr2: 42508231 G>A, and Chr2: 43644612 C>T were annotated by ASAP1, LYN and CABYR, respectively. ASAP1 and LYN have already been proven to play roles in the growth and development of other species. In addition, we genotyped every duck using the most significant SNP (Chr2: 42508231 G>A) and compared the growth rate difference among each genotype population. The results showed that the growth rates of individuals carrying the Chr2: 42508231 A allele were significantly lower than those without this allele. Moreover, the results of the Mendelian randomization (MR) analysis supported the idea that the growth rate and birth weight had a causal effect on the adult body weight, with the growth rate having a greater effect size. CONCLUSION: In this study, 41 SNPs significantly related to growth rate were identified. In addition, we considered that the ASAP1 and LYN genes are essential candidate genes affecting the duck growth rate. The growth rate also showed the potential to be used as a reliable predictor of adult weight, providing a theoretical reference for preselection.


Subject(s)
Ducks , Genome-Wide Association Study , Humans , Adult , Animals , Ducks/genetics , Quantitative Trait Loci , Genotype , Body Weight/genetics , Polymorphism, Single Nucleotide
4.
Chembiochem ; 24(1): e202200388, 2023 01 03.
Article in English | MEDLINE | ID: mdl-35977913

ABSTRACT

N-Glycosylation is often essential for the structure and function of proteins. However, N-glycosylated proteins from natural sources exhibit considerable heterogeneity in the appended oligosaccharides, bringing daunting challenges to corresponding basic research and therapeutic applications. To address this issue, various synthetic, enzymatic, and chemoenzymatic approaches have been elegantly designed. Utilizing the endoglycosidase-catalyzed transglycosylation method, a single N-acetylglucosamine (N-GlcNAc, analogous to a tree stump) on proteins can be converted to various homogeneous N-glycosylated forms, thereby becoming the focus of research efforts. In this concept article, we briefly introduce the methods that allow the generation of N-GlcNAc and its close analogues on proteins and peptides and highlight the current challenges and opportunities the scientific community is facing.


Subject(s)
Glycoproteins , Polysaccharides , Glycoproteins/metabolism , Glycosylation , Polysaccharides/chemistry , Oligosaccharides/metabolism , Glycoside Hydrolases/metabolism
5.
Nano Lett ; 22(24): 10018-10024, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36475866

ABSTRACT

Reversible regulation of ferroelectric polarization possesses great potentials recently in bionic neural networks. Photoinduced cis-trans isomers have changeable dipole moments, but they cannot be directed to some specific orientation. Here, we construct a host-guest composite structure which consists of a porous ferroelectric metal (Ni)-organic framework [Ni(DPA)2] as host and photoisomer, azobenzene (AZB), as guest molecules. When AZB molecules are embedded in the nanopores of Ni(DPA)2 in the form of a single molecule, polarization strength tunable regulation is realized after ultraviolet irradiation of 365 and 405 nm via cis-trans isomerism transformation of AZB. An intrinsic built-in field originating from the distorted {NiN2O4} octahedra in Ni(DPA)2 directs the dipole moments of AZB to the applied electric field. As a result, the overlapped ferroelectric polarization strength changes with content of cis-AZB after ultraviolet and visible irradiation. Such a connection of ferroelectric Ni(DPA)2 structure with cis-trans isomers provides an important strategy for regulating the ferroelectric polarization strength.


Subject(s)
Metal-Organic Frameworks , Isomerism , Light , Ultraviolet Rays
6.
Chembiochem ; 23(18): e202200302, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35906721

ABSTRACT

Post-translational modifications (PTMs) occurring on lysine residues, especially diverse forms of acylations, have seen rapid growth over the past two decades. Among them, lactylation and ß-hydroxybutyrylation of lysine side-chains are newly identified histone marks and their implications in physiology and diseases have aroused broad research interest. Meanwhile, lysine lipoylation is highly conserved in diverse organisms and well known for its pivotal role in central metabolic pathways. Recent findings in the proteomic profiling of protein lipoylation have nonetheless suggested a pressing need for an extensive investigation. For both basic and applied research, it is necessary to prepare PTM-bearing proteins particularly in a site-specific manner. Herein, we use genetic code expansion to site-specifically generate these lysine PTMs, including lactylation, ß-hydroxybutyrylation and lipoylation in proteins in E. coli and mammalian cells. Notably, using strategies including activity-based selection, screening and rational design, unique pyrrolysyl-tRNA synthetase variants were successfully evolved for each of the three non-canonical amino acids, which enabled efficient production of recombinant proteins. Through encoding these ncAAs, we examined the deacylase activities of mammalian sirtuins to these modifications, and importantly we unfold the lipoamidase activity of several sirtuins.


Subject(s)
Amino Acyl-tRNA Synthetases , Sirtuins , Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/metabolism , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Lipoylation , Lysine/metabolism , Mammals/metabolism , Protein Processing, Post-Translational , Proteomics , Recombinant Proteins/genetics , Sirtuins/metabolism
7.
Molecules ; 27(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408510

ABSTRACT

The exploitation of mineral resources may cause the environmental release of radionuclides and their introduction in the human trophic chain, affecting public health in the short and long term. A case study of the environmental radiation impact from coal mining and germanium processing was carried out in southwest China. The coal mines contain germanium and uranium and have been exploited for more than 40 years. The farmlands around the site of the coal mining and germanium processing have been contaminated by the solid waste and mine water to some extent since then. Samples of crops were collected from contaminated farmlands in the research area. The research area covers a radius of 5 km, in which there are two coal mines. 210Pb and 210Po were analyzed as the key radionuclides during the monitoring program. The average activity concentrations of 210Pb and 210Po in the crops were 1.38 and 1.32 Bq/kg in cereals, 4.07 and 2.19 Bq/kg in leafy vegetables and 1.63 and 1.32 Bq/kg in root vegetables. The annual effective doses due to the ingestion of 210Pb and 210Po in consumed crops were estimated for adult residents living in the research area. The average annual effective dose was 0.336 mSv/a, the minimum was 0.171 mSv/a and the maximum was 0.948 mSv/a. The results show that the crops grown on contaminated farmland contained an enhanced level of radioactivity concentration. The ingestion doses of local residents in the research area were significantly higher than the average level of 0.112 mSv/a in China, and the world average level of 0.042 mSv/a through 210Pb and 210Po in crop intake, respectively.


Subject(s)
Coal Mining , Germanium , Adult , Coal , Crops, Agricultural , Eating , Humans , Lead , Polonium , Radioisotopes/analysis
8.
Angew Chem Int Ed Engl ; 61(19): e202116545, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35225420

ABSTRACT

Protein glycosylation plays critical roles in many biological processes. However, the fundamental study and application of glycobiology are hindered by the heterogeneousness of oligosaccharides in natural glycoproteins and the difficulty in constructing glycoproteins of human design. Herein, we describe a semisynthetic method to site-specifically modify proteins with reducing carbohydrates. The method involves the genetic incorporation of a side-chain-esterified aspartate, which was subsequently quantitatively converted into alanine-ß-hydrazide (Aßz), and chemoselective conjugation of Aßz with a range of readily available reducing carbohydrates. The resulting Aßz-linked GlcNAc is a close mimic of native N-GlcNAc and could be installed on various proteins, including IL-17A and RNase A. Notably, Aßz-linked GlcNAc on proteins reacted with biantennary oligosaccharide oxazoline derivatives through endoglycosidase-catalyzed transglycosylation reactions to enable the assembly of homogeneous glycans on proteins.


Subject(s)
Glycoproteins , Oligosaccharides , Glycoproteins/metabolism , Glycosylation , Humans , Oligosaccharides/metabolism , Polysaccharides/metabolism , Protein Processing, Post-Translational
9.
Arch Microbiol ; 204(1): 85, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34958398

ABSTRACT

In poultry, feed restriction is common feeding management to limit poultry nutrients intake so that poultry only intake the essential energy, meeting the basic need of growth and development. Our study investigated whether feeding restriction affects the diversity of the intestinal microbiota of growing breeding ducks. In this research, the 60-120-day-old ducks were raised in restricted and free-feeding groups. After slaughtering, the carcass traits and the cecal contents were collected for 16S rRNA sequencing analysis. After feeding restriction, the growth rate of ducks was limited, the weight and rate of abdominal fat decreased, and the rate of chest and leg muscles increased. In addition, feeding restriction can also change the diversity of intestinal microorganisms in breeding ducks, such as the increase of Firmicutes abundance and the decrease of Bacteroidetes abundance. After analyzing of correlation, significant correlations between gut microbiota and carcass phenotypes were found. The results indicated that gut microbiota might be involved in the life activities associated with phenotypic changes. This study proved the effect of feeding methods on the intestinal microbiota of ducks, providing a theoretical basis of the microbial angle for raising ducks in a feeding-restricted period.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animal Feed/analysis , Animals , Ducks , Intestines , RNA, Ribosomal, 16S/genetics
10.
Appl Opt ; 60(16): 4871-4877, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34143048

ABSTRACT

In this paper, we propose a radio-over-fiber system with no filters and generate 80 and 160 GHz millimeter (mm) waves via two Mach-Zehnder modulators (MZMs). The two MZMs, biased at the maximum transmission point, are used to suppress odd-order sidebands. By controlling the phase difference between the RF driving signal of the two MZMs, the $\pm({4}{n - 2})$-order is canceled. By adjusting the optical attenuator and phase shifter, the 0-order sideband is canceled, so only the $\pm 4{n}$-order sidebands are left. The simulation results show that using a 10 GHz RF signal to drive the MZMs, we obtain an 80 GHz mm wave signal with a 36.59 dB optical sideband suppression ratio (OSSR), a 30.27 dB radio frequency sideband suppression ratio (RFSSR), and a 160 GHz mm wave signal with a 30.34 dB OSSR and 24.77 dB RFSSR. The results are consistent with the theoretical analysis. Because no optical filter is employed and only two MZMs are used, the system exhibits a simple structure, good performance and is low cost.

11.
Sensors (Basel) ; 21(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917904

ABSTRACT

In recent years, remote sensing images has become one of the most popular directions in image processing. A small feature gap exists between satellite and natural images. Therefore, deep learning algorithms could be applied to recognize remote sensing images. We propose an improved Mask R-CNN model, called SCMask R-CNN, to enhance the detection effect in the high-resolution remote sensing images which contain the dense targets and complex background. Our model can perform object recognition and segmentation in parallel. This model uses a modified SC-conv based on the ResNet101 backbone network to obtain more discriminative feature information and adds a set of dilated convolutions with a specific size to improve the instance segmentation effect. We construct WFA-1400 based on the DOTA dataset because of the shortage of remote sensing mask datasets. We compare the improved algorithm with other state-of-the-art algorithms. The object detection AP50 and AP increased by 1-2% and 1%, respectively, objectively proving the effectiveness and the feasibility of the improved model.

12.
Bull Environ Contam Toxicol ; 106(6): 1009-1016, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33772599

ABSTRACT

Hydrolysis characteristics of a novel 3,4-dichloroisothiazole based fungicide with activating plant defense responses as a candidate plant-activator LY5-24-2 were investigated under different conditions (pH and temperature) using ultra-performance liquid chromatography (UPLC) and quadrupole Time-of-Flight (Q-TOF). The hydrolysis case complied with the first-order kinetic model, with half-lives ranging from 4.8 h to 3.2 days at pH 4, 7, 9 and temperature at 25 and 50℃. One of the hydrolysis metabolite 3,4-dichloroisothiazole-5-carboxylic acid (metabolite 1, M1) was determined and quantified using authentic standard. The other hydrolysate 3-chloro-5-(trifluoromethyl) pyridin-2-amine (metabolite 2, M2) was determined and identified according to accurate mass information, fragmentation patterns and principle component analysis (PCA). By utilizing high-resolution mass spectrometry and multivariate statistical analysis, hydrolysis dynamic of the metabolites was characterized and figured out. This research provided a non-target screening method to analyze hydrolysis metabolites of a new plant-activator and to find its degradation products in aqueous solution.


Subject(s)
Chromatography, High Pressure Liquid , Chromatography, Liquid , Hydrolysis , Kinetics , Mass Spectrometry
13.
Planta ; 251(2): 43, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31907627

ABSTRACT

MAIN CONCLUSION: Co-expression and regulatory networks yield important insights into the growth-defense tradeoffs mechanism under jasmonic acid (JA) signals in Arabidopsis. Elevated defense is commonly associated with growth inhibition. However, a comprehensive atlas of the genes associated with the plant growth-defense tradeoffs under JA signaling is lacking. To gain an insight into the dynamic architecture of growth-defense tradeoffs, a coexpression network analysis was employed on publicly available high-resolution transcriptomes of Arabidopsis treated with coronatine (COR), a mimic of jasmonoyl-l-isoleucine. The genes involved in JA-mediated growth-defense tradeoffs were systematically revealed. Promoter enrichment analysis revealed the core regulatory module in which the genes underwent rapid activation, sustained upregulation after COR treatment, and mediated the growth-defense tradeoffs. Several transcription factors (TFs), including RAP2.6L, MYB44, WRKY40, and WRKY18, were identified as instantly activated components associated with pathogen and insect resistance. JA might rapidly activate RAV1 and KAN1 to repress brassinosteroid (BR) response genes, upregulate KAN1, the C2H2 TF families ZF2, ZF3, ZAT6, and STZ/ZAT10 to repress the biosynthesis, transport, and signaling of auxin to arrest growth. Independent datasets and preserved analyses validated the reproducibility of the results. Our study provided a comprehensive snapshot of genes that respond to JA signals and provided valuable resources for functional studies on the genetic modification of breeding population that exhibit robust growth and defense simultaneously.


Subject(s)
Arabidopsis/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Amino Acids/pharmacology , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Indenes/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
14.
J Chem Phys ; 153(4): 044708, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32752689

ABSTRACT

Design of hybrid systems for photocatalytic application tends to be restricted by lacking interfacial coupling and fast charge recombination in the body competing with interface dynamics. In this work, the reduced carbon dots (rCDs) with numerous surface hydroxyl groups were deliberately anchored onto flower-like ZnO spheres with a highly exposed surface area to form heterointerfaces with sufficient interfacial electronic coupling. The incorporated rCDs evidently promote the light harvesting and charge separation of the binary hybrid system, resulting in highly enhanced photocatalytic Cr(VI) degradation performance. Ultrafast time-resolved spectra reveal that the surface C-OH bonds of rCDs play a crucial role at the heterointerfaces to regulate the charge dynamics. The long-lived surface C-OH states not only act as electron donors but also become electron mediators to rapidly capture the photoelectrons from the intrinsic state in the time-domain of 1 ps and induce a much longer lifetime for achieving highly efficient photoelectron injection from rCDs to ZnO. These results manifest that rCDs can be a promising photosensitizer to apply in photocatalytic pollutant treatment and energy conversion fields.

15.
Sensors (Basel) ; 20(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825315

ABSTRACT

The wide range, complex background, and small target size of aerial remote sensing images results in the low detection accuracy of remote sensing target detection algorithms. Traditional detection algorithms have low accuracy and slow speed, making it difficult to achieve the precise positioning of small targets. This paper proposes an improved algorithm based on You Only Look Once (YOLO)-v3 for target detection of remote sensing images. Due to the difficulty in obtaining the datasets, research on small targets for complex images, such as airplanes and ships, is the focus of research. To make up for the problem of insufficient data, we screen specific types of training samples from the DOTA (Dataset of Object Detection in Aerial Images) dataset and select small targets in two different complex backgrounds of airplanes and ships to jointly evaluate the optimization degree of the improved network. We compare the improved algorithm with other state-of-the-art target detection algorithms. The results show that the performance indexes of both datasets are ameliorated by 1-3%, effectively verifying the superiority of the improved algorithm.

16.
Bioorg Med Chem Lett ; 29(7): 912-916, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30777610

ABSTRACT

A new series of 3,6-diaryl-1H-pyrazolo[3,4-b]pyridine compounds have been discovered as potent anaplastic lymphoma kinase (ALK) inhibitors. The 4-hydroxyphenyl in the 6-position of 1H-pyrazolo[3,4-b]pyridine were crucial and a fluorine atom substitution could give promising inhibitory activity. The IC50 of compound 9v against ALK was up to 1.58 nM and a binding mechanism was proposed.


Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Pyridines/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Protein Binding , Pyridines/chemistry
17.
Sensors (Basel) ; 19(22)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766287

ABSTRACT

We report the γ-ray ionizing radiation response of commercial off-the-shelf (COTS) monolithic active-pixel sensors (MAPS) with different integration times and gains. The distribution of the eight-bit two-dimensional matrix of MAPS output frame images was studied for different parameter settings and dose rates. We present the first results of the effects of these parameters on the response of the sensor and establish a linear relationship between the average response signal and radiation dose rate in the high-dose rate range. The results show that the distribution curves can be separated into three ranges. The first range is from 0 to 24, which generates the first significant low signal peak. The second range is from 25 to 250, which shows a smooth gradient change with different integration times, gains, and dose rates. The third range is from 251 to 255, where a final peak appears, which has a relationship with integral time, gain, and dose rate. The mean pixel value shows a linear dependence on the radiation dose rate, albeit with different calibration constants depending on the integration time and gain. Hence, MAPS can be used as a radiation monitoring device with good precision.

18.
J Colloid Interface Sci ; 663: 825-833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447397

ABSTRACT

Graphitic carbon nitride (g-C3N4, CN) has garnered considerable attention in the field of photocatalysis due to its favorable band gap and high specific surface area. However, its primary practical limitation lies in the strong radiative recombination of lone pair (LP) electronic states, leading to limited efficiency in separating photogenerated carriers and subsequently diminishing photocatalytic performance. In this study, we devised and synthesized a heterojunction photocatalytic system comprising TiO2 nanosheets supported on modified g-C3N4 (MCN), designated as MCN/TiO2. The presence of CN functional groups on the tri-s-triazine nitrogen captures photogenerated electrons by modifying LP electronic states, resulting in a reduction in the fluorescence emission intensity of g-C3N4. Simultaneously, it forms chemical bonds with the supported TiO2 nanosheets, creating an efficient electron transfer pathway for the accumulation of photogenerated electrons at the active Ti sites. Experimentally, the MCN/TiO2 photocatalytic system exhibited optimal performance in CO2 reduction. The CH4 production rate reached 26.59 µmol g-1 h-1, surpassing that of TiO2 and CN/TiO2 by approximately 8 and 3 times, respectively. Furthermore, this photocatalytic system demonstrated exceptional photostability over five cycles, each lasting 4 h. This research offers a valuable approach for the efficient separation and transfer of photogenerated carriers in composite materials based on g-C3N4.

19.
Poult Sci ; 103(2): 103317, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160613

ABSTRACT

Allometric growth of the forelimb and hindlimb is a widespread phenomenon observed in vertebrates. As a typical precocial bird, ducks exhibit more advanced development of their hindlimbs compared to their forelimbs, enabling them to walk shortly after hatching. This phenomenon is closely associated with the development of long bones in the embryonic stage. However, the molecular mechanism governing the allometric growth of duck forelimb and hindlimb bones is remains elusive. In this study, we employed phenotypic, histological, and gene expression analyses to investigate developmental differences between the humerus (forelimb bone) and tibia/femur (hindlimb bones) in duck embryos. Our results revealed a gradual increase in weight and length disparity between the tibia and humerus from E12 to E28 (embryo age). At E12, endochondral ossification was observed solely in the tibia but not in the humerus. The number of differentially expressed genes (DEGs) gradually increased at H12 vs. T12, H20 vs. T20, and H28 vs. T28 stages consistent with phenotypic variations. A total of 38 DEGs were found across all 3 stages. Protein-protein interaction network analysis demonstrated strong interactions among members of HOXD gene family (HOXD3/8/9/10/11/12), HOXB gene family (HOXB8/9), TBX gene family (TBX4/5/20), HOXA11, SHOX2, and MEIS2. Gene expression profiling indicated higher expression levels for all HOXD genes in the humerus compared to tibia while opposite trends were observed for HOXA/HOXB genes with low or no expression detected in the humerus. These findings suggest distinct roles played by different clusters within HOX gene family during skeletal development regulation of duck embryo's forelimbs versus hind limbs. Notably, TBX4 exhibited high expression levels specifically in tibia whereas TBX5 showed similar patterns exclusively within humerus as seen previously across other species' studies. In summary, this study identified key regulatory genes involved in allometric growth of duck forelimb and hindlimb bones during embryonic development. Skeletal development is a complex physiological process, and further research is needed to elucidate the regulatory role of candidate genes in endochondral ossification.


Subject(s)
Ducks , Transcriptome , Animals , Ducks/genetics , Chickens , Forelimb/physiology , Hindlimb/physiology , Transcription Factors , Humerus
20.
Cell Biochem Biophys ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809352

ABSTRACT

Temozolomide (TMZ) stands as the primary chemotherapeutic drug utilized in clinical glioma treatment, particularly for high-grade glioblastoma (GBM). However, the emergence of TMZ resistance in GBM poses a significant hurdle to its clinical efficacy. Our objective was to elucidate the role of deubiquitinating enzymes (DUBs) in GBM cell resistance to TMZ. We employed the broad-spectrum DUBs inhibitor G5 to investigate the function of DUBs in TMZ cytotoxicity against GBM cells. Eighty-two GBM cell lines with specified DUBs knockout were generated and subjected to CCK-8 assays to assess cell proliferation and TMZ resistance. Furthermore, the association between DUBs and TMZ resistance in GBM cells, along with the modulation of autophagic flux, was examined. The pan-DUBs inhibitor G5 demonstrated the ability to induce cell death and enhance TMZ toxicity in GBM cells. Subsequently, we identified potential DUBs involved in regulating GBM cell proliferation and TMZ resistance. The impact of DUBs knockout on TMZ cytotoxicity was found to be associated with their regulation of TMZ-induced autophagy. In summary, our study provides primary insights into the role of DUBs in GBM cell proliferation and TMZ resistance, and contributes to a deeper understanding of the complex function of DUBs genes underlying TMZ resistance in GBM cells.

SELECTION OF CITATIONS
SEARCH DETAIL