Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
J Neurosci ; 44(16)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38423760

ABSTRACT

Photoreceptors are electrically coupled to one another, and the spatiotemporal properties of electrical synapses in a two-dimensional retinal network are still not well studied, because of the limitation of the single electrode or pair recording techniques which do not allow simultaneously measuring responses of multiple photoreceptors at various locations in the retina. A multiple electrode recording system is needed. In this study, we investigate the network properties of the two-dimensional rod coupled array of the salamander retina (both sexes were used) by using the newly available multiple patch electrode system that allows simultaneous recordings from up to eight cells and to determine the electrical connectivity among multiple rods. We found direct evidence that voltage signal spread in the rod-rod coupling network in the absence of I h (mediated by HCN channels) is passive and follows the linear cable equation. Under physiological conditions, I h shapes the network signal by progressively shortening the response time-to-peak of distant rods, compensating the time loss of signal traveling from distant rods to bipolar cell somas and facilitating synchronization of rod output signals. Under voltage-clamp conditions, current flow within the coupled rods follows Ohm's law, supporting the idea that nonlinear behaviors of the rod network are dependent on membrane voltage. Rod-rod coupling is largely symmetrical in the 2D array, and voltage-clamp blocking the next neighboring rod largely suppresses rod signal spread into the second neighboring rod, suggesting that indirect coupling pathways play a minor role in rod-rod coupling.


Subject(s)
Photoreceptor Cells , Retina , Animals , Photoreceptor Cells/physiology , Retina/physiology , Urodela/physiology
2.
J Neurosci ; 42(33): 6469-6482, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35831173

ABSTRACT

Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in layer 2/3 neurons of adult male and female primary visual cortex in the MECP2-duplication syndrome animal model of autism. Increased response reliability was due in part to decreased response amplitude, decreased fluctuations in endogenous activity, and an abnormal decoupling of visual-evoked activity from endogenous activity. Similar to what was observed neuronally, the optokinetic reflex occurred more reliably at low contrasts in mutant mice compared with controls. Retinal responses did not explain our observations. These data suggest that the circuit mechanisms for combining sensory-evoked and endogenous signal and noise processes may be altered in this form of syndromic autism.SIGNIFICANCE STATEMENT Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in primary visual cortex of the animal model for MECP2-duplication syndrome, a high-penetrance single-gene cause of autism. Visual-evoked activity was abnormally decoupled from endogenous activity in mutant mice, suggesting in line with the influential "hypo-priors" theory of autism that sensory priors embedded in endogenous activity may have less influence on perception in autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autistic Disorder/genetics , Disease Models, Animal , Evoked Potentials, Visual , Female , Male , Mental Retardation, X-Linked , Methyl-CpG-Binding Protein 2/genetics , Mice , Primary Visual Cortex , Reproducibility of Results
3.
Hum Mol Genet ; 29(5): 705-715, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31600777

ABSTRACT

Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) has been identified as an autosomal-dominant disorder characterized by a complex neurological phenotype, with high prevalence of intellectual disability and optic nerve atrophy/hypoplasia. The syndrome is caused by loss-of-function mutations in NR2F1, which encodes a highly conserved nuclear receptor that serves as a transcriptional regulator. Previous investigations to understand the protein's role in neurodevelopment have mostly used mouse models with constitutive and tissue-specific homozygous knockout of Nr2f1. In order to represent the human disease more accurately, which is caused by heterozygous NR2F1 mutations, we investigated a heterozygous knockout mouse model and found that this model recapitulates some of the neurological phenotypes of BBSOAS, including altered learning/memory, hearing defects, neonatal hypotonia and decreased hippocampal volume. The mice showed altered fear memory, and further electrophysiological investigation in hippocampal slices revealed significantly reduced long-term potentiation and long-term depression. These results suggest that a deficit or alteration in hippocampal synaptic plasticity may contribute to the intellectual disability frequently seen in BBSOAS. RNA-sequencing (RNA-Seq) analysis revealed significant differential gene expression in the adult Nr2f1+/- hippocampus, including the up-regulation of multiple matrix metalloproteases, which are known to be critical for the development and the plasticity of the nervous system. Taken together, our studies highlight the important role of Nr2f1 in neurodevelopment. The discovery of impaired hippocampal synaptic plasticity in the heterozygous mouse model sheds light on the pathophysiology of altered memory and cognitive function in BBSOAS.


Subject(s)
COUP Transcription Factor I/physiology , Depression/pathology , Hippocampus/pathology , Memory Disorders/pathology , Neuronal Plasticity , Optic Atrophies, Hereditary/pathology , Animals , Behavior, Animal , Depression/etiology , Depression/metabolism , Female , Hippocampus/metabolism , Male , Memory Disorders/etiology , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Optic Atrophies, Hereditary/etiology , Optic Atrophies, Hereditary/metabolism
4.
J Neurosci ; 39(10): 1881-1891, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30622167

ABSTRACT

Elevation of intraocular pressure (IOP) causes retinal ganglion cell (RGC) dysfunction and death and is a major risk factor for glaucoma. We used a bead injection technique to increase IOP in mice of both genders by an average of ∼3 mmHg for 2 weeks. This level of IOP elevation was lower than that achieved in other studies, which allowed for the study of subtle IOP effects. We used multielectrode array recordings to determine the cellular responses of RGCs exposed to this mild degree of IOP elevation. We found that RGC photopic receptive field (RF) center size and whole-field RGC firing rates were unaffected by IOP elevation. In contrast, we found that the temporal properties of RGC photopic responses in the RF center were accelerated, particularly in ON sustained cells. We also detected a loss of antagonistic surround in several RGC subtypes. Finally, spontaneous firing rate, interspike interval variance, and contrast sensitivity were altered according to the magnitude of IOP exposure and also displayed an IOP-dependent effect. Together, these results suggest that individual RGC physiologic parameters have unique IOP-related functional thresholds that exist concurrently and change following IOP elevation according to specific patterns. Furthermore, even subtle IOP elevation can impart profound changes in RGC function, which in some cases may occur in an IOP-dependent manner. This system of overlapping functional thresholds likely underlies the complex effects of elevated IOP on the retina.SIGNIFICANCE STATEMENT Retinal ganglion cells (RGCs) are the obligate output neurons of the retina and are injured by elevated intraocular pressure (IOP) in diseases such as glaucoma. In this study, a subtle elevation of IOP in mice for 2 weeks revealed distinct IOP-related functional thresholds for specific RGC physiologic parameters and sometimes showed an IOP-dependent effect. These data suggest that overlapping IOP-related thresholds and response profiles exist simultaneously in RGCs and throughout the retina. These overlapping thresholds likely explain the range of RGC responses that occur following IOP elevation and highlight the wide capacity of neurons to respond in a diseased state.


Subject(s)
Action Potentials , Intraocular Pressure/physiology , Retinal Ganglion Cells/physiology , Vision, Ocular/physiology , Animals , Contrast Sensitivity/physiology , Female , Male , Mice, Inbred C57BL
5.
Proc Natl Acad Sci U S A ; 112(8): 2593-8, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25675503

ABSTRACT

Glaucoma is the second leading cause of blindness in the United States and the world, characterized by progressive degeneration of the optic nerve and retinal ganglion cells (RGCs). Glaucoma patients exhibit an early diffuse loss of retinal sensitivity followed by focal loss of RGCs in sectored patterns. Recent evidence has suggested that this early sensitivity loss may be associated with dysfunctions in the inner retina, but detailed cellular and synaptic mechanisms underlying such sensitivity changes are largely unknown. In this study, we use whole-cell voltage-clamp techniques to analyze light responses of individual bipolar cells (BCs), AII amacrine cells (AIIACs), and ON and sustained OFF alpha-ganglion cells (ONαGCs and sOFFαGCs) in dark-adapted mouse retinas with elevated intraocular pressure (IOP). We present evidence showing that elevated IOP suppresses the rod ON BC inputs to AIIACs, resulting in less sensitive AIIACs, which alter AIIAC inputs to ONαGCs via the AIIAC→cone ON BC→ONαGC pathway, resulting in lower ONαGC sensitivity. The altered AIIAC response also reduces sOFFαGC sensitivity via the AIIAC→sOFFαGC chemical synapses. These sensitivity decreases in αGCs and AIIACs were found in mice with elevated IOP for 3-7 wk, a stage when little RGC or optic nerve degeneration was observed. Our finding that elevated IOP alters neuronal function in the inner retina before irreversible structural damage occurs provides useful information for developing new diagnostic tools and treatments for glaucoma in human patients.


Subject(s)
Glaucoma/physiopathology , Intraocular Pressure , Photophobia , Retinal Neurons/physiology , Action Potentials/radiation effects , Amacrine Cells/metabolism , Amacrine Cells/pathology , Animals , Cations , Chloride Channels/metabolism , Disease Models, Animal , Glaucoma/pathology , Humans , Light , Mice, Inbred C57BL , Models, Biological , Retinal Bipolar Cells/metabolism , Retinal Bipolar Cells/pathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Synapses/metabolism
6.
Hum Mol Genet ; 24(6): 1584-601, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25398945

ABSTRACT

Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) are severe hereditary diseases that causes visual impairment in infants and children. SPATA7 has recently been identified as the LCA3 and juvenile RP gene in humans, whose function in the retina remains elusive. Here, we show that SPATA7 localizes at the primary cilium of cells and at the connecting cilium (CC) of photoreceptor cells, indicating that SPATA7 is a ciliary protein. In addition, SPATA7 directly interacts with the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1), a key connecting cilium protein that has also been linked to LCA. In the retina of Spata7 null mutant mice, a substantial reduction of RPGRIP1 levels at the CC of photoreceptor cells is observed, suggesting that SPATA7 is required for the stable assembly and localization of the ciliary RPGRIP1 protein complex. Furthermore, our results pinpoint a role of this complex in protein trafficking across the CC to the outer segments, as we identified that rhodopsin accumulates in the inner segments and around the nucleus of photoreceptors. This accumulation then likely triggers the apoptosis of rod photoreceptors that was observed. Loss of Spata7 function in mice indeed results in a juvenile RP-like phenotype, characterized by progressive degeneration of photoreceptor cells and a strongly decreased light response. Together, these results indicate that SPATA7 functions as a key member of a retinal ciliopathy-associated protein complex, and that apoptosis of rod photoreceptor cells triggered by protein mislocalization is likely the mechanism of disease progression in LCA3/ juvenile RP patients.


Subject(s)
DNA-Binding Proteins/metabolism , Photoreceptor Connecting Cilium/pathology , Proteins/metabolism , Retinal Rod Photoreceptor Cells/pathology , Animals , Apoptosis , Cattle , Cytoskeletal Proteins , DNA-Binding Proteins/genetics , Gene Deletion , Humans , Mice , Mice, Mutant Strains , Photoreceptor Connecting Cilium/metabolism , Protein Transport , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/metabolism , Rhodopsin/metabolism
7.
Am J Pathol ; 184(11): 2951-64, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25219356

ABSTRACT

WFDC1/ps20 is a whey acidic protein four-disulfide core member that exhibits diverse growth and immune-associated functions in vitro. In vivo functions are unknown, although WFDC1 is lower in reactive stroma. A Wfdc1-null mouse was generated to assess core functions. Wfdc1-null mice exhibited normal developmental and adult phenotypes. However, homeostasis challenges affected inflammatory and repair processes. Wfdc1-null mice infected with influenza A exhibited 2.75-log-fold lower viral titer relative to control mice. Wfdc1-null infected lungs exhibited elevated macrophages and deposition of osteopontin, a potent macrophage chemokine. In wounding studies, Wfdc1-null mice exhibited an elevated rate of skin closure, and this too was associated with elevated deposition of osteopontin and macrophage recruitment. Wfdc1-null fibroblasts exhibited impaired spheroid formation, elevated adhesion to fibronectin, and an increased rate of wound closure in vitro. This was reversed by neutralizing antibody to osteopontin. Osteopontin mRNA and cleaved protein was up-regulated in Wfdc1-null cells treated with lipopolysaccharide or polyinosinic-polycytidylic acid coordinate with constitutively active matrix metallopeptidase-9 (MMP-9), a protease that cleaves osteopontin. These data suggest that WFDC1/ps20 modulates core host response mechanisms, in part, via regulation of osteopontin and MMP-9 activity. Release from WFDC1 regulation is likely a key component of inflammatory and repair response mechanisms, and involves the processing of elevated osteopontin by activated MMP-9, and subsequent macrophage recruitment.


Subject(s)
Inflammation/metabolism , Macrophages/metabolism , Proteins/metabolism , Wound Healing/genetics , Animals , Cell Adhesion/genetics , Cell Line , Cell Movement/genetics , Fibronectins/metabolism , Humans , Inflammation/genetics , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/metabolism , Osteopontin/metabolism , Prostate/metabolism , Proteins/genetics
8.
Exp Eye Res ; 136: 38-44, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25912998

ABSTRACT

The purpose of this study was to develop a novel experimental system for the modulation and measurement of intracranial pressure (ICP), and to use this system to assess the impact of elevated ICP on the optic nerve and retinal ganglion cells (RGCs) in CD1 mice. This system involved surgical implantation of an infusion cannula and a radiowave based pressure monitoring probe through the skull and into the subarachnoid space. The infusion cannula was used to increase ICP, which was measured by the probe and transmitted to a nearby receiver. The system provided robust and consistent ICP waveforms, was well tolerated, and was stable over time. ICP was elevated to approximately 30 mmHg for one week, after which we assessed changes in optic nerve structure with transmission electron microscopy in cross section and RGC numbers with antibody staining in retinal flat mounts. ICP elevation resulted in optic nerve axonal loss and disorganization, as well as RGC soma loss. We conclude that the controlled manipulation of ICP in active, awake mice is possible, despite their small size. Furthermore, ICP elevation results in visual system phenotypes of optic nerve and RGC degeneration, suggesting that this model can be used to study the impact of ICP on the visual system. Potentially, this model can also be used to study the relationship between ICP and IOP, as well diseases impacted by ICP variation such as glaucoma, idiopathic intracranial hypertension, and the spaceflight-related visual impairment intracranial pressure syndrome.


Subject(s)
Disease Models, Animal , Intracranial Hypertension/complications , Nerve Degeneration/etiology , Optic Nerve Diseases/pathology , Retinal Degeneration/etiology , Retinal Ganglion Cells/pathology , Animals , Axons/ultrastructure , Biomarkers/metabolism , Cell Count , Female , Intracranial Pressure , Intraocular Pressure , Mice , Microscopy, Confocal , Nerve Degeneration/diagnosis , Retinal Degeneration/diagnosis , Retinal Degeneration/metabolism , Retinal Ganglion Cells/metabolism , Tonometry, Ocular , Tubulin/metabolism
9.
Exp Eye Res ; 130: 29-37, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25450059

ABSTRACT

The purpose of this study was to assess the impact of prolonged intraocular pressure (IOP) elevation on retinal anatomy and function in a mouse model of experimental glaucoma. IOP was elevated by anterior chamber injection of a fixed combination of polystyrene beads and sodium hyaluronate, and maintained via re-injection after 24 weeks. IOP was measured weekly with a rebound tonometer for 48 weeks. Histology was assessed with a combination of retrograde labeling and antibody staining. Retinal physiology and function was assessed with dark-adapted electroretinograms (ERGs). Comparisons between bead-injected animals and various controls were conducted at both 24 and 48 weeks after bead injection. IOP was elevated throughout the study. IOP elevation resulted in a reduction of retinal ganglion cell (RGCs) and an increase in axial length at both 24 and 48 weeks after bead injection. The b-wave amplitude of the ERG was increased to the same degree in bead-injected eyes at both time points, similar to previous studies. The positive scotopic threshold response (pSTR) amplitude, a measure of RGC electrical function, was diminished at both 24 and 48 weeks when normalized to the increased b-wave amplitude. At 48 weeks, the pSTR amplitude was reduced even without normalization, suggesting more profound RGC dysfunction. We conclude that injection of polystyrene beads and sodium hyaluronate causes chronic IOP elevation which results in phenotypes of stable b-wave amplitude increase and progressive pSTR amplitude reduction, as well as RGC loss and axial length elongation.


Subject(s)
Intraocular Pressure/physiology , Ocular Hypertension/physiopathology , Retinal Degeneration/physiopathology , Retinal Ganglion Cells/pathology , Animals , Axial Length, Eye/pathology , Cell Count , Cell Survival , Dark Adaptation , Disease Models, Animal , Electroretinography , Female , Fluorescent Antibody Technique, Indirect , Mice , Mice, Inbred C57BL , Night Vision/physiology , Sensory Thresholds , Tonometry, Ocular
10.
Hum Mol Genet ; 21(12): 2663-76, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22398208

ABSTRACT

Mutation of the polarity gene Crumbs homolog 1 (CRB1) is responsible for >10% of Leber congenital amaurosis (LCA) cases worldwide; LCA is characterized by early-onset degenerative retinal dystrophy. The role of CRB1 in LCA8 pathogenesis remains elusive since Crb1 mouse mutants, including a null allele, have failed to mimic the early-onset of LCA, most likely due to functional compensation by closely related genes encoding Crb2 and Crb3. Crb proteins form an evolutionarily conserved, apical polarity complex with the scaffolding protein associated with lin-seven 1 (Pals1), also known as MAGUK p55 subfamily member 5 (MPP5). Pals1 and Crbs are functionally inter-dependent in establishing and maintaining epithelial polarity. Pals1 is a single gene in the mouse and human genomes; therefore, we ablated Pals1 to establish a mouse genetic model mimicking human LCA. In our study, the deletion of Pals1 leads to the disruption of the apical localization of Crb proteins in retinal progenitors and the adult retina, validating their mutual interaction. Remarkably, the Pals1 mutant mouse exhibits the critical features of LCA such as early visual impairment as assessed by electroretinogram, disorganization of lamination and apical junctions and retinal degeneration. Our data uncover the indispensible role of Pals1 in retinal development, likely involving the maintenance of retinal polarity and survival of retinal neurons, thus providing the basis for the pathologic mechanisms of LCA8.


Subject(s)
Leber Congenital Amaurosis/metabolism , Membrane Proteins/metabolism , Nucleoside-Phosphate Kinase/metabolism , Retina/metabolism , Stem Cells/metabolism , Animals , Animals, Newborn , Cell Proliferation , Electroretinography , Female , Gene Expression Regulation, Developmental , Humans , Immunohistochemistry , In Situ Hybridization , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/pathology , Male , Membrane Glycoproteins , Membrane Proteins/genetics , Mice , Mice, Knockout , Microscopy, Electron , Nerve Tissue Proteins/metabolism , Nucleoside-Phosphate Kinase/genetics , Retina/embryology , Retina/growth & development , Stem Cells/pathology , Stem Cells/ultrastructure , Visual Acuity
11.
Proc Natl Acad Sci U S A ; 108(15): 6276-81, 2011 Apr 12.
Article in English | MEDLINE | ID: mdl-21444805

ABSTRACT

Patients with Bardet-Biedl syndrome (BBS) experience severe retinal degeneration as a result of impaired photoreceptor transport processes that are not yet fully understood. To date, there is no effective treatment for BBS-associated retinal degeneration, and blindness is imminent by the second decade of life. Here we report the development of an adeno-associated viral (AAV) vector that rescues rhodopsin mislocalization, maintains nearly normal-appearing rod outer segments, and prevents photoreceptor death in the Bbs4-null mouse model. Analysis of the electroretinogram a-wave indicates that rescued rod cells are functionally indistinguishable from wild-type rods. These results demonstrate that gene therapy can prevent retinal degeneration in a mammalian BBS model.


Subject(s)
Apoptosis , Bardet-Biedl Syndrome/therapy , Genetic Therapy , Microtubule-Associated Proteins/genetics , Photoreceptor Cells, Vertebrate/physiology , Retinal Degeneration/prevention & control , Animals , Bardet-Biedl Syndrome/complications , Disease Models, Animal , Genetic Vectors , Mice , Mice, Knockout , Photoreceptor Cells, Vertebrate/pathology , Retina/pathology , Retina/physiopathology , Retinal Degeneration/etiology , Retinal Degeneration/pathology , Transgenes
12.
Front Cell Neurosci ; 18: 1404929, 2024.
Article in English | MEDLINE | ID: mdl-38903773

ABSTRACT

Introduction: Mechanical sensitive channels expressed in mammalian retinas are effectors of elevated pressure stresses, but it is unclear how their activation affects visual function in pressure-related retinal disorders. Methods: This study investigated the role of the transient potential channel vanilloid TRPV4 in photoreceptors and rod bipolar cells (RBCs) with immunohistochemistry, confocal microscopy, electroretinography (ERG), and patch-clamp techniques. Results: TRPV4 immunoreactivity (IR) was found in the outer segments of photoreceptors, dendrites and somas of PKCα-positive RBCs and other BCs, plexiform layers, and retinal ganglion cells (RGCs) in wild-type mice. TRPV4-IR was largely diminished in the retinas of homozygous TRPV4 transgenic mice. Genetically suppressing TRPV4 expression moderately but significantly enhanced the amplitude of ERG a- and b-waves evoked by scotopic and mesopic lights (0.55 to 200 Rh*rod-1 s-1) and photopic lights (105-106 Rh*rod-1 s-1) compared to wild-type mice in fully dark-adapted conditions. The implicit time evoked by dim lights (0.55 to 200 Rh*rod-1 s-1) was significantly decreased for b-waves and elongated for a-waves in the transgenic mice. ERG b-wave evoked by dim lights is primarily mediated by RBCs, and under voltage-clamp conditions, the latency of the light-evoked cation current in RBCs of the transgenic mice was significantly shorter compared to wild-type mice. About 10% of the transgenic mice had one eye undeveloped, and the percentage was significantly higher than in wild-type mice. Conclusions: The data indicates that TRPV4 involves ocular development and is expressed and active in outer retinal neurons, and interventions of TRPV4 can variably affect visual signals in rods, cones, RBCs, and cone ON BCs.

13.
J Physiol ; 591(22): 5711-26, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24000179

ABSTRACT

We show that various types of rods and cones in the dark-adapted salamander retina are electrically coupled with linear and symmetrical junctional conductances G(j) (40-223 pS) and a rank order: Rod(C)-large single cone, rod-large single cone, rod-small single cone, rod-accessory double cone and rod-principal double cone. By systematically comparing the transjunctional current-voltage (I(j)-V(j)) relations and average G(j) values of the five types of rod-cone pairs recorded at day and night times, our results suggest that the differences in G(j) values among various types of rod-cone pairs are not caused by circadian differences, and the circadian-dependent changes in rod-cone coupling observed in the fish and rodent retinas are not present in the tiger salamander. In addition to rod-cone coupling, there is a sign-inverting, unidirectional rod→cone current I(RC), and the I(RC)-V(Cone) relations are linear, with a reversal potential near the chloride reversal potential E(Cl). I(RC) can be observed in rods and cones separated by at least 260 µm, and its waveform resembles that of the rod-elicited horizontal cell (HC) response I(HC). A glutamate transporter-associated chloride channel blocker TBOA suppresses I(RC) but not I(HC). These results suggest that I(RC) is largely mediated by HCs via a sign-inverting feedback chemical synapse associated with a chloride channel. I(RC) significantly reduced rod→cone coupling in the frequency range below 15 Hz, allowing better separation of rod and cone signals in the dark-adapted retina.


Subject(s)
Dark Adaptation/physiology , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Synapses/metabolism , Synaptic Transmission/physiology , Ambystoma/metabolism , Ambystoma/physiology , Animals , Circadian Clocks/physiology , Light , Photic Stimulation , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/physiology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism
14.
Proc Natl Acad Sci U S A ; 107(1): 395-400, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-20018684

ABSTRACT

Bipolar cells are the central neurons of the retina that transmit visual signals from rod and cone photoreceptors to third-order neurons in the inner retina and the brain. A dogma set forth by early anatomical studies is that bipolar cells in mammalian retinas receive segregated rod/cone synaptic inputs (either from rods or from cones), and here, we present evidence that challenges this traditional view. By analyzing light-evoked cation currents from morphologically identified depolarizing bipolar cells (DBCs) in the wild-type and three pathway-specific knockout mice (rod transducin knockout [Tralpha(-/-)], connexin36 knockout [Cx36(-/-)], and transcription factor beta4 knockout [Bhlhb4(-/-)]), we show that a subpopulation of rod DBCs (DBC(R2)s) receives substantial input directly from cones and a subpopulation of cone DBCs (DBC(C1)s) receives substantial input directly from rods. These results provide evidence of the existence of functional rod-DBC(C) and cone-DBC(R) synaptic pathways in the mouse retina as well as the previously proposed rod hyperpolarizing bipolar-cells pathway. This is grounds for revising the mammalian rod/cone bipolar cell dogma.


Subject(s)
Retinal Bipolar Cells , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Visual Pathways , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Shape , Connexins/genetics , Connexins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Patch-Clamp Techniques , Photic Stimulation , Retinal Bipolar Cells/cytology , Retinal Bipolar Cells/physiology , Retinal Cone Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/cytology , Synaptic Transmission/physiology , Transducin/genetics , Transducin/metabolism , Visual Pathways/anatomy & histology , Visual Pathways/physiology , Gap Junction delta-2 Protein
15.
Vision Res ; 205: 108187, 2023 04.
Article in English | MEDLINE | ID: mdl-36758452

ABSTRACT

By analyzing light-evoked spike responses, cation currents (ΔIC) and chloride currents (ΔICl) of over 100 morphologically-identified retinal ganglion cells (GCs) in dark-adapted mouse retina, we found there are at least 14 functionally- and morphologically-distinct types of RGCs. These cells can be divided into 5 groups based on their patterns of spike response to whole field light steps (SRWFLS), a GC identification scheme commonly used in studies with extracellular recording techniques. We also found that all GCs in the mouse retina express strychnine-sensitive glycine receptors, and receive light-elicited chloride current (ΔICl) accompanied by a conductance increase from narrow-field, glycinergic amacrine cells. As the dark membrane potential of RGC are near the chloride-equilibrium potential, mouse GCs' spike responses are mediated primarily by bipolar cells inputs, and modulated by "shunting inhibition" from narrow-field amacrine cells. Analysis of strychnine actions on light-evoked cation current ΔIC (bipolar cell inputs) in GCs suggests that narrow-field amacrine cells modulate GCs by sending ON-OFF crossover feedback signals to presynaptic bipolar cell axon terminals via sign-inverting glycinergic synapses, and the feedback signals are synergistic to the bipolar cell light responses. Therefore narrow-field amacrine cells enhance light-evoked bipolar cell inputs to GCs by presynaptic "synergistic addition", besides the abovementioned postsynaptic "shunting inhibition" in GCs.


Subject(s)
Amacrine Cells , Retinal Ganglion Cells , Animals , Mice , Retinal Ganglion Cells/physiology , Amacrine Cells/physiology , Retina/physiology , Strychnine , Chlorides , Cations
16.
J Physiol ; 590(1): 223-34, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22083601

ABSTRACT

Light-evoked responses of 106 morphologically identified narrow-field amacrine cells (ACs) were studied in dark-adapted mouse retinal slices. Forty-five cells exhibit AIIAC morphology, 55% of which show characteristic AIIAC physiological properties (AIIAC1s) and the remaining 45% display different physiological responses, suggesting that AIIACs are functionally heterogeneous. Moreover, we found that 42 cells exhibit morphology that resembles the seven morphological types of glycine-positive ACs (GlyAC1-7) reported in the rat retina, and for the first time assigned light response and function properties to these morphological types of glycinergic ACs in the mouse retina. In addition, five narrow-field ACs exhibited morphology resembling that of the GlyAC5 or GlyAC7 but with different physiological responses (GlyAC5(#) and GlyAC7(#)). Therefore, the eight morphological types of narrow-field ACs exhibit 12 classes of physiological responses. Furthermore, we found ACs whose physiological responses were indistinguishable from those of GlyAC3 or GlyAC4s but with different morphology (GlyAC3* or GlyAC4*). These observations suggest that although the majority of narrow-field mammalian ACs forms discrete functional groups that correlate with their morphology, a significant number of these cells with similar morphology do not display the same light responses, and some with similar light responses do not exhibit the same morphology.


Subject(s)
Amacrine Cells/cytology , Amacrine Cells/physiology , Chromosome Pairing/physiology , Retina/cytology , Retina/physiology , Vision, Ocular/physiology , Animals , Dark Adaptation/physiology , Glycine/metabolism , Light , Mice , Mice, Inbred C57BL , Photic Stimulation/methods , Rats , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/physiology
17.
J Physiol ; 590(4): 845-54, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22219344

ABSTRACT

Bipolar cells are the central neurons of the retina that convey visual signals from rod and cone photoreceptors in the outer retina to higher-order neurons in the inner retina and the brain. Early anatomical studies have suggested that there are four types of cone hyperpolarizing (OFF) bipolar cells (HBCs) in the mouse retina, but no light responses have been systematically examined. By analysing light-evoked cation and chloride currents (I(C) and I(Cl)) from over 50 morphologically identified HBCs in the dark-adapted wildtype and connexin36 knockout (Cx36(-/-)) mouse retinas, we identified three types of HBCs, each with distinct light responses and morphological characteristics. The HBC(R/MC)s with axon terminals ramifying between 0% and 30% of the inner plexiform layer (IPL) receive mixed inputs from rods and M-cones, the HBC(MC)s with axon terminals ramifying between 10% and 50% of the IPL receive inputs primarily from M-cones, and the HBC(M/SC)s with axon terminals ramifying between 25% and 50% of IPL receive inputs primarily from cones with mixed M- and S-cone pigments. Moreover, we found that HBC(R/MC)s in the Cx36(-/-) mice exhibit light responses very similar to the wildtype HBC(R/MC)s, suggesting that the mixed rod-cone inputs are not mediated by connexin36-dependent rod-cone coupling, but rather by direct synaptic contacts from rods and M-cones. This study constitutes the first systematic investigation that correlates light response characteristics and axonal morphology of HBCs in dark-adapted mouse retina, and contributes to recently emerging evidence that revises the traditional view that mammalian HBCs only contact cone photoreceptors.


Subject(s)
Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Synapses/physiology , Animals , Connexins/deficiency , Connexins/genetics , Light , Mice , Mice, Inbred C57BL , Mice, Knockout , Gap Junction delta-2 Protein
18.
Neurochem Res ; 36(4): 645-54, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20878231

ABSTRACT

Using immunofluorescence, we showed that histamine receptor 1 is expressed by horizontal cell axons and a subset of amacrine cells in the tiger salamander retina. The effects of histamine on light responses of amacrine cells were studied in slice preparations. Histamine modulated the light responses of many salamander amacrine cells, depending upon the morphological type. The most pronounced effects of histamine were decreases in the light responses of broadly stratified amacrine cells, particularly those having medium-sized dendritic field diameters. To determine whether the effects of histamine were direct, Co(++) was substituted for Ca(++) in the extracellular medium to block synaptic transmission. Histamine still affected broadly stratified amacrine cells, but not narrowly stratified amacrine cells under these conditions. Taken together, these findings suggest that inhibitory interactions between strata of the IPL and within the classical receptive fields of the ganglion cells would be particularly sensitive to histamine released from retinopetal axons.


Subject(s)
Amacrine Cells/physiology , Histamine/physiology , Light , Retina/physiology , Animals , Fluorescent Antibody Technique , Membrane Potentials , Retina/cytology , Urodela
19.
Vision Res ; 186: 13-22, 2021 09.
Article in English | MEDLINE | ID: mdl-34004350

ABSTRACT

Cone photoreceptors are the first neurons along the visual pathway that exhibit center-surround antagonistic receptive fields, the basic building blocks for spatial information processing in the visual system. The surround responses in cones are mediated by the horizontal cells (HCs) via multiple feedback synaptic mechanisms. It has been controversial on which mechanisms are responsible for the surround-elicited depolarizing responses in cones (ΔVCone(s)), and whether the surround responses of various types of cones are mediated by the same HC feedback mechanisms. In this report, we studied ΔVCone(s)) of four types of cones in the salamander retina, and found that they are mediated by feedback synapses from A-type, B-type or A- and B-type HCs. ΔVCone(s) are observable in the presence of concomitant center light spots, and surround + center light stimuli of various intensity, size and wavelength differentially activate the feedback synapses from A- and B-type HCs to cones. We found that ΔVCone(s) of the L-cones are mediated by both A- and B-type HCs, those of the P- and S-cones by B-type HCs, and those of the A-cones by the A-type HCs. Moreover, our results suggest that B-type HCs mediate ΔVCone(s) through both GABAergic and GluT-ClC feedback synaptic mechanisms, and A-type HCs mediate ΔVCone(s) via the GluT-ClC feedback mechanism. Feedback synaptic mechanisms that increase calcium influx in cone synaptic terminals play important roles in mediating the antagonistic surround responses in the postsynaptic bipolar cells, but they may not generate enough current to depolarize the cones and significantly contribute to ΔVCone(s).


Subject(s)
Retinal Cone Photoreceptor Cells , Synapses , Feedback , Retina , Visual Pathways
20.
Cells ; 10(6)2021 05 22.
Article in English | MEDLINE | ID: mdl-34067375

ABSTRACT

(1) Background: High-tension glaucoma damages the peripheral vision dominated by rods. How mechanosensitive channels (MSCs) in the outer retina mediate pressure responses is unclear. (2) Methods: Immunocytochemistry, patch clamp, and channel fluorescence were used to study MSCs in salamander photoreceptors. (3) Results: Immunoreactivity of transient receptor potential channel vanilloid 4 (TRPV4) was revealed in the outer plexiform layer, K+ channel TRAAK in the photoreceptor outer segment (OS), and TRPV2 in some rod OS disks. Pressure on the rod inner segment evoked sustained currents of three components: (A) the inward current at <-50 mV (Ipi), sensitive to Co2+; (B) leak outward current at ≥-80 mV (Ipo), sensitive to intracellular Cs+ and ruthenium red; and (C) cation current reversed at ~10 mV (Ipc). Hypotonicity induced slow currents like Ipc. Environmental pressure and light increased the FM 1-43-identified open MSCs in the OS membrane, while pressure on the OS with internal Cs+ closed a Ca2+-dependent current reversed at ~0 mV. Rod photocurrents were thermosensitive and affected by MSC blockers. (4) Conclusions: Rods possess depolarizing (TRPV) and hyperpolarizing (K+) MSCs, which mediate mutually compensating currents between -50 mV and 10 mV, serve as an electrical cushion to minimize the impact of ocular mechanical stress.


Subject(s)
Membrane Potentials/physiology , Photoreceptor Cells/physiology , Retina/physiology , Vision, Ocular/physiology , Animals , Calcium/metabolism , Calcium/pharmacology , Membrane Potentials/drug effects , Retina/drug effects , Retinal Neurons/drug effects , Retinal Neurons/physiology , Vertebrates/physiology , Vision, Ocular/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL