Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Biol Chem ; 404(6): 619-631, 2023 05 25.
Article in English | MEDLINE | ID: mdl-36780323

ABSTRACT

MicroRNA (miR)-143-3p is a potential regulatory molecule in myocardial ischemia/reperfusion injury (MI/RI), wherein its expression and pathological effects remains controversial. Thus, a mouse MI/RI and cell hypoxia/reoxygenation (H/R) models were built for clarifying the miR-143-3p's role in MI/RI. Following myocardial ischemia for 30 min, mice underwent reperfusion for 3, 6, 12 and 24 h. It was found miR-143-3p increased in the ischemic heart tissue over time after reperfusion. Cardiomyocytes transfected with miR-143-3p were more susceptible to apoptosis. Mechanistically, miR-143-3p targeted B cell lymphoma 2 (bcl-2). And miR-143-3p inhibition reduced cardiomyocytes apoptosis upon H/R, whereas it was reversed by a specific bcl-2 inhibitor ABT-737. Of note, miR-143-3p inhibition upregulated bcl-2 with better mitochondrial membrane potential (Δψm), reduced cytoplasmic cytochrome c (cyto-c) and caspase proteins, and minimized infarction area in mice upon I/R. Collectively, inhibition of miR-143-3p might alleviate MI/RI via targeting bcl-2 to limit mitochondria-mediated apoptosis. To our knowledge, this study further clarifies the miR-143-3p's pathological role in the early stages of MI/RI, and inhibiting miR-143-3p could be an effective treatment for ischemic myocardial disease.


Subject(s)
MicroRNAs , Myocardial Ischemia , Myocardial Reperfusion Injury , Reperfusion Injury , Mice , Animals , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , MicroRNAs/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Apoptosis , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Reperfusion Injury/metabolism
2.
J Org Chem ; 82(6): 3232-3238, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28224795

ABSTRACT

An efficient selective N-arylation of 3-(hydroxyimino)indolin-2-ones with diaryliodonium salts to prepare (Z)-N-aryl oxindole nitrones has been achieved under simple base-mediated conditions. The reaction tolerated a variety of diaryliodonium salts with diverse and sensitive functional groups. Studies on the oxime structures revealed that the pyrroline ring and carbonyl group in 3-(hydroxyimino)indolin-2-ones played important roles in the selective N-arylation process. The N-aryl oxindole nitrones could be prepared rapidly and easily at the gram scale.

3.
J Org Chem ; 82(1): 502-511, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27983834

ABSTRACT

A facile synthesis of various spirofluorenylpiperidin-4-ones has been achieved in good yields from fluorenone N-aryl nitrones and methylenecyclopropanes. This method involved an initial cycloaddition to form a 5-spirocyclopropane-isoxazoline, which underwent a highly selective 1,3-rearrangement to give the desired product. The stereochemistry of the spirofluorenylpiperidin-4-one could be controlled by the cycloaddition and sequential rearrangement strategy. Furthermore, the spirofluorenylpiperidin-4-ones could be not only prepared in one-pot procedure but also converted to useful scaffolds by reduction or oxidation conditions.

4.
Org Lett ; 20(12): 3527-3530, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29798675

ABSTRACT

A variety of 2-aminobenzonitriles were prepared from 2-arylindoles in good to excellent yields through tert-butylnitrite (TBN)-mediated nitrosation and sequential iron(III)-catalyzed C-C Bond cleavage in a one-pot fashion. The 2-aminobenzonitriles can be used to rapidly synthesize benzoxazinones by intramolecular condensation. The present method features an inexpensive iron(III) catalyst, gram scalable preparations, and novel C-C bond cleavage of indoles.

SELECTION OF CITATIONS
SEARCH DETAIL