Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Chem Biodivers ; 21(6): e202400258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581076

ABSTRACT

We presented a strategy utilizing 2D NMR-based metabolomic analysis of crude extracts, categorized by different pharmacological activities, to rapidly identify the primary bioactive components of TCM. It was applied to identify the potential bioactive components from Scutellaria crude extracts that exhibit anti-non-small cell lung cancer (anti-NSCLC) activity. Four Scutellaria species were chosen as the study subjects because of their close phylogenetic relationship, but their crude extracts exhibit significantly different anti-NSCLC activity. Cell proliferation assay was used to assess the anti-NSCLC activity of four species of Scutellaria. 1H-13C HSQC spectra were acquired for the chemical profiling of these crude extracts. Based on the pharmacological classification (PCA, OPLS-DA and univariate hypothesis test) were performed to identify the bioactive constituents in Scutellaria associated with the anti-NSCLC activity. As a result, three compounds, baicalein, wogonin and scutellarin were identified as bioactive compounds. The anti-NSCLC activity of the three potential active compounds were further confirmed via cell proliferation assay. The mechanism of the anti-NSCLC activity by these active constituents was further explored via flow cytometry and western blot analyses. This study demonstrated 2D NMR-based metabolomic analysis of pharmacologically classified crude extracts to be an efficient approach to the identification of active components of herbal medicine.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Magnetic Resonance Spectroscopy , Metabolomics , Plant Extracts , Scutellaria , Scutellaria/chemistry , Humans , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Apigenin/pharmacology , Apigenin/chemistry , Apigenin/isolation & purification , Apigenin/analysis , Flavanones/pharmacology , Flavanones/chemistry , Flavanones/isolation & purification , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Glucuronates/pharmacology , Glucuronates/isolation & purification , Glucuronates/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Drug Screening Assays, Antitumor
2.
Environ Sci Technol ; 55(24): 16477-16488, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34851619

ABSTRACT

Building mechanical ventilation systems are a major driver of indoor air chemistry as their design and operation influences indoor ozone (O3) concentrations, the dilution and transport of indoor-generated volatile organic compounds (VOCs), and indoor environmental conditions. Real-time VOC and O3 measurements were integrated with a building sensing platform to evaluate the influence of mechanical ventilation modes and human occupancy on the dynamics of skin oil ozonolysis products (SOOPs) in an office in a LEED-certified building during the winter. The ventilation system operated under variable recirculation ratios (RRs) from RR = 0 (100% outdoor air) to RR = 1 (100% recirculation air). Time-resolved source rates for 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), and decanal were highly dynamic and changed throughout the day with RR and occupancy. Total SOOP source rates during high-occupancy periods (10:00-18:00) varied from 2500-3000 µg h-1 when RR = 0.1 to 6300-6700 µg h-1 when RR = 1. Source rates for gas-phase reactions, outdoor air, and occupant-associated emissions generally decreased with increasing RR. The recirculation air source rate increased with RR and typically became the dominant source for RR > 0.5. SOOP emissions from surface reservoirs were also a prominent source, contributing 10-50% to total source rates. Elevated per person SOOP emission factors were observed, potentially due to multiple layers of soiled clothing worn during winter.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Oils, Volatile , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Ozone/analysis , Respiration, Artificial , Ventilation
3.
Environ Sci Technol ; 55(3): 1864-1875, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33450149

ABSTRACT

Carpet dust contains microbial and chemical material that can impact early childhood health. Infants may be exposed to greater quantities of resuspended dust, given their close proximity to floor surfaces. Chamber experiments with a robotic infant were integrated with a material balance model to provide new fundamental insights into the size-dependency of infant crawling-induced particle resuspension and exposure. The robotic infant was exposed to resuspended particle concentrations from 105 to 106 m-3 in the near-floor (NF) microzone during crawling, with concentrations generally decreasing following vacuum cleaning of the carpets. A pronounced vertical variation in particle concentrations was observed between the NF microzone and bulk air. Resuspension fractions for crawling are similar to those for adult walking, with values ranging from 10-6 to 10-1 and increasing with particle size. Meaningful amounts of dust are resuspended during crawling, with emission rates of 0.1 to 2 × 104 µg h-1. Size-resolved inhalation intake fractions ranged from 5 to 8 × 103 inhaled particles per million resuspended particles, demonstrating that a significant fraction of resuspended particles can be inhaled. A new exposure metric, the dust-to-breathing zone transport efficiency, was introduced to characterize the overall probability of a settled particle being resuspended and delivered to the respiratory airways. Values ranged from less than 0.1 to over 200 inhaled particles per million settled particles, increased with particle size, and varied by over 2 orders of magnitude among 12 carpet types.


Subject(s)
Air Pollution, Indoor , Floors and Floorcoverings , Child , Child, Preschool , Dust , Humans , Infant , Particle Size
4.
Environ Sci Technol ; 55(12): 8097-8107, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34033479

ABSTRACT

NCl3 is formed as a disinfection byproduct in chlorinated swimming pools and can partition between the liquid and gas phases. Exposure to gas-phase NCl3 has been linked to asthma and can irritate the eyes and respiratory airways, thereby affecting the health and athletic performance of swimmers. This study involved an investigation of the spatiotemporal dynamics of gas-phase NCl3 in an aquatic center during a collegiate swim meet. Real-time (up to 1 Hz) measurements of gas-phase NCl3 were made via a novel on-line derivatization cavity ring-down spectrometer and a proton transfer reaction time-of-flight mass spectrometer. Significant temporal variations in gas-phase NCl3 and CO2 concentrations were observed across varying time scales, from seconds to hours. Gas-phase NCl3 concentrations increased with the number of active swimmers due to swimming-enhanced liquid-to-gas transfer of NCl3, with peak concentrations between 116 and 226 ppb. Strong correlations between concentrations of gas-phase NCl3 with concentrations of CO2 and water (relative humidity) were found and attributed to similar features in their physical transport processes in pool air. A vertical gradient in gas-phase NCl3 concentrations was periodically observed above the water surface, demonstrating that swimmers can be exposed to elevated levels of NCl3 beyond those measured in the bulk air.


Subject(s)
Nitrogen Compounds , Swimming Pools , Chlorides , Disinfection
5.
Build Environ ; 170: 1-16, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-32055099

ABSTRACT

Carpet and rugs currently represent about half of the United States flooring market and offer many benefits as a flooring type. How carpets influence our exposure to both microorganisms and chemicals in indoor environments has important health implications but is not well understood. The goal of this manuscript is to consolidate what is known about how carpet impacts indoor chemistry and microbiology, as well as to identify the important research gaps that remain. After describing the current use of carpet indoors, questions focus on five specific areas: 1) indoor chemistry, 2) indoor microbiology, 3) resuspension and exposure, 4) current practices and future needs, and 5) sustainability. Overall, it is clear that carpet can influence our exposures to particles and volatile compounds in the indoor environment by acting as a direct source, as a reservoir of environmental contaminants, and as a surface supporting chemical and biological transformations. However, the health implications of these processes are not well known, nor how cleaning practices could be optimized to minimize potential negative impacts. Current standards and recommendations focus largely on carpets as a primary source of chemicals and on limiting moisture that would support microbial growth. Future research should consider enhancing knowledge related to the impact of carpet in the indoor environment and how we might improve the design and maintenance of this common material to reduce our exposure to harmful contaminants while retaining the benefits to consumers.

6.
Environ Sci Technol ; 52(1): 237-247, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29144737

ABSTRACT

Human-induced resuspension of floor dust is a dynamic process that can serve as a major indoor source of biological particulate matter (bioPM). Inhalation exposure to the microbial and allergenic content of indoor dust is associated with adverse and protective health effects. This study evaluates infant and adult inhalation exposures and respiratory tract deposited dose rates of resuspended bioPM from carpets. Chamber experiments were conducted with a robotic crawling infant and an adult performing a walking sequence. Breathing zone (BZ) size distributions of resuspended fluorescent biological aerosol particles (FBAPs), a bioPM proxy, were monitored in real-time. FBAP exposures were highly transient during periods of locomotion. Both crawling and walking delivered a significant number of resuspended FBAPs to the BZ, with concentrations ranging from 0.5 to 2 cm-3 (mass range: ∼50 to 600 µg/m3). Infants and adults are primarily exposed to a unimodal FBAP size distribution between 2 and 6 µm, with infants receiving greater exposures to super-10 µm FBAPs. In just 1 min of crawling or walking, 103-104 resuspended FBAPs can deposit in the respiratory tract, with an infant receiving much of their respiratory tract deposited dose in their lower airways. Per kg body mass, an infant will receive a nearly four times greater respiratory tract deposited dose of resuspended FBAPs compared to an adult.


Subject(s)
Air Pollution, Indoor , Inhalation Exposure , Dust , Humans , Infant , Particle Size , Particulate Matter
SELECTION OF CITATIONS
SEARCH DETAIL