Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.092
Filter
Add more filters

Coleção CLAP
Publication year range
1.
Nat Immunol ; 20(2): 152-162, 2019 02.
Article in English | MEDLINE | ID: mdl-30643259

ABSTRACT

Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER) signaling adaptor that is essential for the type I interferon response to DNA pathogens. Aberrant activation of STING is linked to the pathology of autoimmune and autoinflammatory diseases. The rate-limiting step for the activation of STING is its translocation from the ER to the ER-Golgi intermediate compartment. Here, we found that deficiency in the Ca2+ sensor stromal interaction molecule 1 (STIM1) caused spontaneous activation of STING and enhanced expression of type I interferons under resting conditions in mice and a patient with combined immunodeficiency. Mechanistically, STIM1 associated with STING to retain it in the ER membrane, and coexpression of full-length STIM1 or a STING-interacting fragment of STIM1 suppressed the function of dominant STING mutants that cause autoinflammatory diseases. Furthermore, deficiency in STIM1 strongly enhanced the expression of type I interferons after viral infection and prevented the lethality of infection with a DNA virus in vivo. This work delineates a STIM1-STING circuit that maintains the resting state of the STING pathway.


Subject(s)
Interferon Type I/immunology , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Stromal Interaction Molecule 1/metabolism , Animals , Child, Preschool , Chlorocebus aethiops , DNA, Viral/immunology , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Fibroblasts , Gene Knockout Techniques , HEK293 Cells , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Humans , Immunity, Innate , Jurkat Cells , Macrophages , Male , Membrane Proteins/immunology , Mice , Mice, Knockout , NIH 3T3 Cells , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Primary Cell Culture , Severe Combined Immunodeficiency/blood , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/immunology , Vero Cells
2.
Immunity ; 54(8): 1728-1744.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34343498

ABSTRACT

Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.


Subject(s)
Antioxidants/pharmacology , Crohn Disease/drug therapy , Crohn Disease/immunology , Selenium/pharmacology , Selenoprotein W/metabolism , Th1 Cells/cytology , Cell Differentiation/immunology , Cell Polarity , Colon/immunology , Colon/pathology , Glycine Hydroxymethyltransferase/metabolism , Humans , Reactive Oxygen Species/metabolism , Ribonucleoproteins/metabolism , Th1 Cells/immunology , Ubiquitin-Protein Ligases/metabolism
3.
Cell ; 163(4): 1026-36, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26544945

ABSTRACT

The magnitude of cardiomyocyte generation in the adult heart has been heavily debated. A recent report suggests that during mouse preadolescence, cardiomyocyte proliferation leads to a 40% increase in the number of cardiomyocytes. Such an expansion would change our understanding of heart growth and have far-reaching implications for cardiac regeneration. Here, using design-based stereology, we found that cardiomyocyte proliferation accounted for 30% of postnatal DNA synthesis; however, we were unable to detect any changes in cardiomyocyte number after postnatal day 11. (15)N-thymidine and BrdU analyses provided no evidence for a proliferative peak in preadolescent mice. By contrast, cardiomyocyte multinucleation comprises 57% of postnatal DNA synthesis, followed by cardiomyocyte nuclear polyploidisation, contributing with 13% to DNA synthesis within the second and third postnatal weeks. We conclude that the majority of cardiomyocytes is set within the first postnatal week and that this event is followed by two waves of non-replicative DNA synthesis. This Matters Arising paper is in response to Naqvi et al. (2014), published in Cell. See also the associated Correspondence by Soonpaa et al. (2015), and the response by Naqvi et al. (2015), published in this issue.


Subject(s)
Cell Differentiation , Cell Proliferation , Heart/growth & development , Myocytes, Cardiac/cytology , Animals , Male
4.
Cell ; 163(7): 1716-29, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26686653

ABSTRACT

Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.


Subject(s)
Cholesterol/metabolism , Immunity, Innate , Interferon-gamma/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Humans , Interferon beta-1b , Membrane Proteins/metabolism , Mevalonic Acid/metabolism , Mice , Mice, Inbred C57BL , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism
5.
Nature ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776962

ABSTRACT

AMPylation is a post-translational modification in which AMP is added to the amino acid side chains of proteins1,2. Here we show that, with ATP as the ligand and actin as the host activator, the effector protein LnaB of Legionella pneumophila exhibits AMPylase activity towards the phosphoryl group of phosphoribose on PRR42-Ub that is generated by the SidE family of effectors, and deubiquitinases DupA and DupB in an E1- and E2-independent ubiquitination process3-7. The product of LnaB is further hydrolysed by an ADP-ribosylhydrolase, MavL, to Ub, thereby preventing the accumulation of PRR42-Ub and ADPRR42-Ub and protecting canonical ubiquitination in host cells. LnaB represents a large family of AMPylases that adopt a common structural fold, distinct from those of the previously known AMPylases, and LnaB homologues are found in more than 20 species of bacterial pathogens. Moreover, LnaB also exhibits robust phosphoryl AMPylase activity towards phosphorylated residues and produces unique ADPylation modifications in proteins. During infection, LnaB AMPylates the conserved phosphorylated tyrosine residues in the activation loop of the Src family of kinases8,9, which dampens downstream phosphorylation signalling in the host. Structural studies reveal the actin-dependent activation and catalytic mechanisms of the LnaB family of AMPylases. This study identifies, to our knowledge, an unprecedented molecular regulation mechanism in bacterial pathogenesis and protein phosphorylation.

6.
Nature ; 617(7960): 386-394, 2023 May.
Article in English | MEDLINE | ID: mdl-37100912

ABSTRACT

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Subject(s)
Cell Plasticity , Copper , Inflammation , Signal Transduction , Animals , Mice , Copper/metabolism , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , NAD/metabolism , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Hydrogen Peroxide/metabolism , Epigenesis, Genetic/drug effects , Metformin/analogs & derivatives , Oxidation-Reduction , Cell Plasticity/drug effects , Cell Plasticity/genetics , Macrophage Activation/drug effects , Macrophage Activation/genetics
7.
Genome Res ; 34(2): 272-285, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38479836

ABSTRACT

mRNA translation relies on identifying translation initiation sites (TISs) in mRNAs. Alternative TISs are prevalent across plant transcriptomes, but the mechanisms for their recognition are unclear. Using ribosome profiling and machine learning, we developed models for predicting alternative TISs in the tomato (Solanum lycopersicum). Distinct feature sets were predictive of AUG and nonAUG TISs in 5' untranslated regions and coding sequences, including a novel CU-rich sequence that promoted plant TIS activity, a translational enhancer found across dicots and monocots, and humans and viruses. Our results elucidate the mechanistic and evolutionary basis of TIS recognition, whereby cis-regulatory RNA signatures affect start site selection. The TIS prediction model provides global estimates of TISs to discover neglected protein-coding genes across plant genomes. The prevalence of cis-regulatory signatures across plant species, humans, and viruses suggests their broad and critical roles in reprogramming the translational landscape.


Subject(s)
Eukaryota , Peptide Chain Initiation, Translational , Humans , Peptide Chain Initiation, Translational/genetics , Eukaryota/genetics , Plants/genetics , 5' Untranslated Regions , RNA, Messenger/genetics , Codon, Initiator
8.
Nat Methods ; 20(9): 1368-1378, 2023 09.
Article in English | MEDLINE | ID: mdl-37537351

ABSTRACT

Gene regulatory networks (GRNs) are key determinants of cell function and identity and are dynamically rewired during development and disease. Despite decades of advancement, challenges remain in GRN inference, including dynamic rewiring, causal inference, feedback loop modeling and context specificity. To address these challenges, we develop Dictys, a dynamic GRN inference and analysis method that leverages multiomic single-cell assays of chromatin accessibility and gene expression, context-specific transcription factor footprinting, stochastic process network and efficient probabilistic modeling of single-cell RNA-sequencing read counts. Dictys improves GRN reconstruction accuracy and reproducibility and enables the inference and comparative analysis of context-specific and dynamic GRNs across developmental contexts. Dictys' network analyses recover unique insights in human blood and mouse skin development with cell-type-specific and dynamic GRNs. Its dynamic network visualizations enable time-resolved discovery and investigation of developmental driver transcription factors and their regulated targets. Dictys is available as a free, open-source and user-friendly Python package.


Subject(s)
Gene Regulatory Networks , Multiomics , Animals , Mice , Humans , Reproducibility of Results , Transcription Factors/genetics , Algorithms
9.
Plant Cell ; 35(9): 3604-3625, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37325884

ABSTRACT

Catalase (CAT) is often phosphorylated and activated by protein kinases to maintain hydrogen peroxide (H2O2) homeostasis and protect cells against stresses, but whether and how CAT is switched off by protein phosphatases remains inconclusive. Here, we identified a manganese (Mn2+)-dependent protein phosphatase, which we named PHOSPHATASE OF CATALASE 1 (PC1), from rice (Oryza sativa L.) that negatively regulates salt and oxidative stress tolerance. PC1 specifically dephosphorylates CatC at Ser-9 to inhibit its tetramerization and thus activity in the peroxisome. PC1 overexpressing lines exhibited hypersensitivity to salt and oxidative stresses with a lower phospho-serine level of CATs. Phosphatase activity and seminal root growth assays indicated that PC1 promotes growth and plays a vital role during the transition from salt stress to normal growth conditions. Our findings demonstrate that PC1 acts as a molecular switch to dephosphorylate and deactivate CatC and negatively regulate H2O2 homeostasis and salt tolerance in rice. Moreover, knockout of PC1 not only improved H2O2-scavenging capacity and salt tolerance but also limited rice grain yield loss under salt stress conditions. Together, these results shed light on the mechanisms that switch off CAT and provide a strategy for breeding highly salt-tolerant rice.


Subject(s)
Oryza , Catalase/genetics , Catalase/metabolism , Oryza/metabolism , Hydrogen Peroxide/metabolism , Protein Phosphatase 1/metabolism , Salt Tolerance/genetics , Homeostasis , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Plant J ; 118(5): 1327-1342, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38319946

ABSTRACT

Anthocyanin generation in apples (Malus domestica) and the pigmentation that results from it may be caused by irradiation and through administration of methyl jasmonate (MeJA). However, their regulatory interrelationships associated with fruit coloration are not well defined. To determine whether MdERF109, a transcription factor (TF) involved in light-mediated coloration and anthocyanin biosynthesis, has synergistic effects with other proteins, we performed a yeast two-hybrid assessment and identified another TF, MdWER. MdWER was induced by MeJA treatment, and although overexpression of MdWER alone did not promote anthocyanin accumulation co-overexpression with MdERF109 resulted in significantly increase in anthocyanin biosynthesis. MdWER may form a protein complex with MdERF109 to promote anthocyanin accumulation by enhancing combinations between the proteins and their corresponding genes. In addition, MdWER, as a MeJA responsive protein, interacts with the anthocyanin repressor MdJAZ2. Transient co-expression in apple fruit and protein interaction assays allowed us to conclude that MdERF109 and MdJAZ2 interact with MdWER and take part in the production of anthocyanins upon MeJA treatment and irradiation. Our findings validate a role for the MdERF109-MdWER-MdJAZ2 module in anthocyanin biosynthesis and uncover a novel mechanism for how light and MeJA signals are coordinated anthocyanin biosynthesis in apple fruit.


Subject(s)
Acetates , Anthocyanins , Cyclopentanes , Fruit , Gene Expression Regulation, Plant , Light , Malus , Oxylipins , Plant Proteins , Cyclopentanes/metabolism , Oxylipins/metabolism , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Acetates/pharmacology , Acetates/metabolism , Malus/metabolism , Malus/genetics , Malus/radiation effects , Plant Proteins/metabolism , Plant Proteins/genetics , Fruit/metabolism , Fruit/genetics , Fruit/radiation effects , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Growth Regulators/metabolism
11.
Plant J ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924231

ABSTRACT

Due to the chelation of phosphorus in the soil, it becomes unavailable for plant growth and development. The mechanisms by which phosphorus-solubilizing bacteria activate immobilized phosphorus to promote the growth and development of woody plants, as well as the intrinsic molecular mechanisms, are not clear. Through the analysis of microbial communities in the rhizosphere 16S V3-V4 and a homologous gene encoding microbial alkaline phosphomonoesterase (phoD) in phosphate-efficient (PE) and phosphate-inefficient apple rootstocks, it was found that PE significantly enriched beneficial rhizobacteria. The best phosphorus-solubilizing bacteria, Bacillus sp. strain 7DB1 (B2), was isolated, purified, and identified from the rhizosphere soil of PE rootstocks. Incubating with Bacillus B2 into the rhizosphere of apple rootstocks significantly increased the soluble phosphorus and flavonoid content in the rhizosphere soil. Simultaneously, this process stimulates the root development of the rootstocks and enhances plant phosphorus uptake. After root transcriptome sequencing, candidate transcription factor MhMYB15, responsive to Bacillus B2, was identified through heatmap and co-expression network analysis. Yeast one-hybrid, electrophoretic mobility shift assay, and LUC assay confirmed that MhMYB15 can directly bind to the promoter regions of downstream functional genes, including chalcone synthase MhCHS2 and phosphate transporter MhPHT1;15. Transgenic experiments with MhMYB15 revealed that RNAi-MhMYB15 silenced lines failed to induce an increase in flavonoid content and phosphorus levels in the roots under the treatment of Bacillus B2, and plant growth was slower than the control. In conclusion, MhMYB15 actively responds to Bacillus B2, regulating the accumulation of flavonoids and the uptake of phosphorus, thereby influencing plant growth and development.

12.
Lancet ; 403(10429): 813-823, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38387470

ABSTRACT

BACKGROUND: Hepatitis E virus (HEV) is a frequently overlooked causative agent of acute hepatitis. Evaluating the long-term durability of hepatitis E vaccine efficacy holds crucial importance. METHODS: This study was an extension to a randomised, double-blind, placebo-controlled, phase-3 clinical trial of the hepatitis E vaccine conducted in Dontai County, Jiangsu, China. Participants were recruited from 11 townships in Dongtai County. In the initial trial, a total of 112 604 healthy adults aged 16-65 years were enrolled, stratified according to age and sex, and randomly assigned in a 1:1 ratio to receive three doses of hepatitis E vaccine or placebo intramuscularly at month 0, month 1, and month 6. A sensitive hepatitis E surveillance system including 205 clinical sentinels, covering the entire study region, was established and maintained for 10 years after vaccination. The primary outcome was the per-protocol efficacy of hepatitis E virus vaccine to prevent confirmed hepatitis E occurring at least 30 days after administration of the third dose. Throughout the study, the participants, site investigators, and laboratory staff remained blinded to the treatment assignments. This study is registered with ClinicalTrials.gov (NCT01014845). FINDINGS: During the 10-year study period from Aug 22, 2007, to Oct 31, 2017, 90 people with hepatitis E were identified; 13 in the vaccine group (0·2 per 10 000 person-years) and 77 in the placebo group (1·4 per 10 000 person-years), corresponding to a vaccine efficacy of 83·1% (95% CI 69·4-91·4) in the modified intention-to-treat analysis and 86·6% (73·0 to 94·1) in the per-protocol analysis. In the subsets of participants assessed for immunogenicity persistence, of those who were seronegative at baseline and received three doses of hepatitis E vaccine, 254 (87·3%) of 291 vaccinees in Qindong at the 8·5-year mark and 1270 (73·0%) of 1740 vaccinees in Anfeng at the 7·5-year mark maintained detectable concentrations of antibodies. INTERPRETATION: Immunisation with this hepatitis E vaccine offers durable protection against hepatitis E for up to 10 years, with vaccine-induced antibodies against HEV persisting for at least 8·5 years. FUNDING: National Natural Science Foundation of China, Fujian Provincial Natural Science Foundation, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and the Fundamental Research Funds for the Central Universities.


Subject(s)
Hepatitis E , Viral Hepatitis Vaccines , Adult , Humans , Antibodies, Viral , Hepatitis E/prevention & control , Vaccination
13.
Plant Cell ; 34(10): 3557-3576, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35849348

ABSTRACT

The copy numbers of many plant transcription factor (TF) genes substantially increased during terrestrialization. This allowed TFs to acquire new specificities and thus create gene regulatory networks (GRNs) with new biological functions to help plants adapt to terrestrial environments. Through characterizing heat shock factor (HSF) genes MpHSFA1 and MpHSFB1 in the liverwort Marchantia polymorpha, we explored how heat-responsive GRNs widened their functions in M. polymorpha and Arabidopsis thaliana. An interspecies comparison of heat-induced transcriptomes and the evolutionary rates of HSFs demonstrated the emergence and subsequent rapid evolution of HSFB prior to terrestrialization. Transcriptome and metabolome analyses of M. polymorpha HSF-null mutants revealed that MpHSFA1 controls canonical heat responses such as thermotolerance and metabolic changes. MpHSFB1 also plays essential roles in heat responses, as well as regulating developmental processes including meristem branching and antheridiophore formation. Analysis of cis-regulatory elements revealed development- and stress-related TFs that function directly or indirectly downstream of HSFB. Male gametophytes of M. polymorpha showed higher levels of thermotolerance than female gametophytes, which could be explained by different expression levels of MpHSFA1U and MpHSFA1V on sex chromosome. We propose that the diversification of HSFs is linked to the expansion of HS responses, which enabled coordinated multicellular reactions in land plants.


Subject(s)
Arabidopsis , Marchantia , Arabidopsis/metabolism , Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks , Heat Shock Transcription Factors/metabolism , Heat-Shock Response/genetics , Marchantia/genetics , Marchantia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
14.
Plant Cell ; 34(5): 1980-2000, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35166845

ABSTRACT

As apple fruits (Malus domestica) mature, they accumulate anthocyanins concomitantly with losing chlorophyll (Chl); however, the molecular pathways and events that coordinate Chl degradation and fruit coloration have not been elucidated. We showed previously that the transcription factor ETHYLENE RESPONSE FACTOR17 (MdERF17) modulates Chl degradation in apple fruit peels and that variation in the pattern of MdERF17 serine (Ser) residues is responsible for differences in its transcriptional regulatory activity. Here, we report that MdERF17 interacts with and is phosphorylated by MAP KINASE4 (MdMPK4-14G). Phosphorylation of MdERF17 at residue Thr67 by MdMPK4-14G is necessary for its transcriptional regulatory activity and its regulation of Chl degradation. We also show that MdERF17 mutants with different numbers of Ser repeat insertions exhibit altered phosphorylation profiles, with more repeats increasing its interaction with MdMPK4. MdMPK4-14G can be activated by exposure to darkness and is involved in the dark-induced degreening of fruit peels. We also demonstrate that greater phosphorylation of MdERF17 by MdMPK4-14G is responsible for the regulation of Chl degradation during light/dark transitions. Overall, our findings reveal the mechanism by which MdMPK4 controls fruit peel coloration.


Subject(s)
Malus , Anthocyanins/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Malus/genetics , Malus/metabolism , Phosphorylation , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Mol Ther ; 32(5): 1311-1327, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38449314

ABSTRACT

While studying transgene expression after systemic administration of lentiviral vectors, we found that splenic B cells are robustly transduced, regardless of the types of pseudotyped envelope proteins. However, the administration of two different pseudotypes resulted in transduction of two distinct B cell populations, suggesting that each pseudotype uses unique and specific receptors for its attachment and entry into splenic B cells. Single-cell RNA sequencing analysis of the transduced cells demonstrated that different pseudotypes transduce distinct B cell subpopulations characterized by specific B cell receptor (BCR) genotypes. Functional analysis of the BCRs of the transduced cells demonstrated that BCRs specific to the pseudotyping envelope proteins mediate viral entry, enabling the vectors to selectively transduce the B cell populations that are capable of producing antibodies specific to their envelope proteins. Lentiviral vector entry via the BCR activated the transduced B cells and induced proliferation and differentiation into mature effectors, such as memory B and plasma cells. BCR-mediated viral entry into clonally specific B cell subpopulations raises new concepts for understanding the biodistribution of transgene expression after systemic administration of lentiviral vectors and offers new opportunities for BCR-targeted gene delivery by pseudotyped lentiviral vectors.


Subject(s)
B-Lymphocytes , Genetic Vectors , Lentivirus , Receptors, Antigen, B-Cell , Transduction, Genetic , Transgenes , Viral Envelope Proteins , Lentivirus/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Animals , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Tropism , Humans , Virus Internalization
16.
Plant J ; 116(1): 69-86, 2023 10.
Article in English | MEDLINE | ID: mdl-37340905

ABSTRACT

Iron (Fe) deficiency significantly affects the growth and development, fruit yield and quality of apples. Apple roots respond to Fe deficiency stress by promoting H+ secretion, which acidifies the soil. In this study, the plasma membrane (PM) H+ -ATPase MxHA2 promoted H+ secretion and root acidification of apple rootstocks under Fe deficiency stress. H+ -ATPase MxHA2 is upregulated in Fe-efficient apple rootstock of Malus xiaojinensis at the transcription level. Fe deficiency also induced kinase MxMPK6-2, a positive regulator in Fe absorption that can interact with MxHA2. However, the mechanism involving these two factors under Fe deficiency stress is unclear. MxMPK6-2 overexpression in apple roots positively regulated PM H+ -ATPase activity, thus enhancing root acidification under Fe deficiency stress. Moreover, co-expression of MxMPK6-2 and MxHA2 in apple rootstocks further enhanced PM H+ -ATPase activity under Fe deficiency. MxMPK6-2 phosphorylated MxHA2 at the Ser909 site of C terminus, Thr320 and Thr412 sites of the Central loop region. Phosphorylation at the Ser909 and Thr320 promoted PM H+ -ATPase activity, while phosphorylation at Thr412 inhibited PM H+ -ATPase activity. MxMPK6-2 also phosphorylated the Fe deficiency-induced transcription factor MxbHLH104 at the Ser169 site, which then could bind to the promoter of MxHA2, thus enhancing MxHA2 upregulation. In conclusion, the MAP kinase MxMPK6-2-mediated phosphorylation directly and indirectly regulates PM H+ -ATPase MxHA2 activity at the protein post-translation and transcription levels, thus synergistically enhancing root acidification under Fe deficiency stress.


Subject(s)
Malus , Malus/metabolism , Phosphorylation , Iron/metabolism , Cell Membrane/metabolism , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
17.
J Cell Biochem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780165

ABSTRACT

Nucleocytoplasmic transport of macromolecules is essential in eukaryotic cells. In this process, the karyopherins play a central role when they transport cargoes across the nuclear pore complex. Importin 4 belongs to the karyopherin ß family. Many studies have focused on finding substrates for importin 4, but no direct mechanism studies of its precise transport function have been reported. Therefore, this paper mainly aimed to study the mechanism of nucleoporins in mediating nuclear import and export of importin 4. To address this question, we constructed shRNAs targeting Nup358, Nup153, Nup98, and Nup50. We found that depletion of Nup98 resulted in a shift in the subcellular localization of importin 4 from the cytoplasm to the nucleus. Mutational analysis demonstrated that Nup98 physically and functionally interacts with importin 4 through its N-terminal phenylalanine-glycine (FG) repeat region. Mutation of nine of these FG motifs to SG motifs significantly attenuated the binding of Nup98 to importin 4, and we further confirmed the essential role of the six FG motifs in amino acids 121-360 of Nup98 in binding with importin 4. In vitro transport assay also confirmed that VDR, the substrate of importin 4, could not be transported into the nucleus after Nup98 knockdown. Overall, our results showed that Nup98 is required for efficient importin 4-mediated transport. This is the first study to reveal the mechanism of importin 4 in transporting substrates into the nucleus.

18.
Br J Cancer ; 130(3): 504-510, 2024 02.
Article in English | MEDLINE | ID: mdl-38129526

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is associated with higher risk of pancreatic cancer (PC), but the underlying mechanisms are not fully understood. METHODS: We conducted a case-subcohort study involving 610 PC cases and 623 subcohort participants with 92 protein biomarkers measured in baseline plasma samples. Genetically-instrumented T2D was derived using 86 single-nucleotide polymorphisms (SNPs), including insulin resistance (IR) SNPs. RESULTS: In observational analyses of 623 subcohort participants (mean age, 52 years; 61% women), T2D was positively associated with 13 proteins (SD difference: IL6: 0.52 [0.23-0.81]; IL10: 0.41 [0.12-0.70]), of which 8 were nominally associated with incident PC. The 8 proteins potentially mediated 36.9% (18.7-75.0%) of the association between T2D and PC. In MR, no associations were observed for genetically-determined T2D with proteins, but there were positive associations of genetically-determined IR with IL6 and IL10 (SD difference: 1.23 [0.05-2.41] and 1.28 [0.31-2.24]). In two-sample MR, fasting insulin was associated with both IL6 and PC, but no association was observed between IL6 and PC. CONCLUSIONS: Proteomics were likely to explain the association between T2D and PC, but were not causal mediators. Elevated fasting insulin driven by insulin resistance might explain the associations of T2D, proteomics, and PC.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Pancreatic Neoplasms , Humans , Female , Middle Aged , Male , Risk Factors , Interleukin-10/genetics , Interleukin-6/genetics , Insulin , Biomarkers , Pancreatic Neoplasms/genetics
19.
J Antimicrob Chemother ; 79(3): 648-655, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38319833

ABSTRACT

OBJECTIVE: We aimed to assess the efficacy of cefoperazone/sulbactam (CPZ/SUL) in extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales infections and identify factors influencing outcomes. METHODS: This retrospective multicentre study was conducted in Taiwan (January 2015 to December 2020) and examined the efficacy of CPZ/SUL treatment in ESBL-producing Enterobacterales bacteraemia. The minimum inhibitory concentrations (MICs) were determined using agar dilution; ESBL/AmpC genes were detected using polymerase chain reaction. The primary outcome was clinical success, whereas the secondary outcome was 30-day mortality. Clinical success was defined as the complete resolution of clinical signs and symptoms of K. pneumoniae or E. coli infection, with no evidence of persistent or recurrent bacteraemia. The factors influencing outcomes were identified using a multivariate analysis. RESULTS: CPZ/SUL demonstrated a clinical success rate of 82.7% (91/110) in treating ESBL-producing Enterobacterales bacteraemia, with a 30-day mortality rate of 9.1% (10/110). Among 110 ESBL-producing isolates, a high clinical success rate was observed at an MIC of ≤32/32 mg/L. Multivariate analysis revealed that a Charlson comorbidity index (CCI) of ≥6 was associated with lower clinical success [odds ratio (OR): 5.80, 95% confidence interval (CI): 1.15-29.14, P = 0.033]. High Sequential Organ Failure Assessment scores (≥6) were significantly associated with increased 30-day mortality (OR: 14.34, 95% CI: 1.45-141.82, P = 0.023). DISCUSSION: CPZ/SUL demonstrated a clinical success rate of 82.7% (91/110) in treating ESBL-producing Enterobacterales bacteraemia. Treatment success was evident when the CPZ and SUL MIC was ≤32/32 mg/L. Comorbidities (CCI ≥6) were associated with lower clinical success, while disease severity (Sequential Organ Failure Assessment score ≥6) correlated with higher mortality.


Subject(s)
Bacteremia , Escherichia coli Infections , Gammaproteobacteria , Humans , Escherichia coli , Cefoperazone/therapeutic use , Sulbactam/therapeutic use , Klebsiella pneumoniae , Escherichia coli Infections/drug therapy , Bacteremia/drug therapy
20.
J Virol ; 97(2): e0160022, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36757205

ABSTRACT

Infection by Kaposi sarcoma-associated herpesvirus (KSHV) can cause severe consequences, such as cancers and lymphoproliferative diseases. Whole inactivated viruses (WIV) with chemically destroyed genetic materials have been used as antigens in several licensed vaccines. During KSHV productive replication, virus-like vesicles (VLVs) that lack capsids and viral genomes are generated along with virions. Here, we investigated the immunogenicity of KSHV VLVs produced from a viral mutant that was defective in capsid formation and DNA packaging. Mice immunized with adjuvanted VLVs generated KSHV-specific T cell and antibody responses. Neutralization of KSHV infection by the VLV immune serum was low but was markedly enhanced in the presence of the complement system. Complement-enhanced neutralization and complement deposition on KSHV-infected cells was dependent on antibodies targeting viral open reading frame 4 (ORF4). However, limited complement-mediated enhancement was detected in the sera of a small cohort of KSHV-infected humans which contained few neutralizing antibodies. Therefore, vaccination that induces antibody effector functions can potentially improve infection-induced humoral immunity. Overall, our study highlights a potential benefit of engaging complement-mediated antibody functions in future KSHV vaccine development. IMPORTANCE KSHV is a virus that can lead to cancer after infection. A vaccine that prevents KSHV infection or transmission would be helpful in preventing the development of these cancers. We investigated KSHV VLV as an immunogen for vaccination. We determined that antibodies targeting the viral protein ORF4 induced by VLV immunization could engage the complement system and neutralize viral infection. However, ORF4-specific antibodies were seldom detected in the sera of KSHV-infected humans. Moreover, these human sera did not potently trigger complement-mediated neutralization, indicating an improvement that immunization can confer. Our study suggests a new antibody-mediated mechanism to control KSHV infection and underscores the benefit of activating the complement system in a future KSHV vaccine.


Subject(s)
Antibodies, Neutralizing , Herpesvirus 8, Human , Animals , Humans , Mice , Antibodies, Neutralizing/immunology , Herpesviridae Infections , Herpesvirus 8, Human/immunology , Open Reading Frames/immunology , Vaccination , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL