Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ACS Energy Lett ; 9(6): 3027-3035, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38911531

ABSTRACT

Disordered rocksalt oxide (DRX) cathodes are promising candidates for next-generation Co- and Ni-free Li-ion batteries. While fluorine substitution for oxygen has been explored as an avenue to enhance their performance, the amount of fluorine incorporated into the DRX structure is particularly challenging to quantify and impedes our ability to relate fluorination to electrochemical performance. Herein, an experimental-computational method combining 7Li and 19F solid-state nuclear magnetic resonance, and ab initio cluster expansion Monte Carlo simulations, is developed to determine the composition of DRX oxyfluorides. Using this method, the synthesis of Mn- and Ti-containing DRX via standard high temperature sintering and microwave heating is optimized. Further, the upper fluorination limit attainable using each of these two synthesis routes is established for various Mn-rich DRX compounds. A comparison of their electrochemical performance reveals that the capacity and capacity retention mostly depend on the Mn content, while fluorination plays a secondary role.

2.
Chem Mater ; 36(8): 3643-3654, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38681087

ABSTRACT

Disordered rock salt oxides (DRX) have shown great promise as high-energy-density and sustainable Li-ion cathodes. While partial substitution of oxygen for fluorine in the rock salt framework has been related to increased capacity, lower charge-discharge hysteresis, and longer cycle life, fluorination is poorly characterized and controlled. This work presents a multistep method aimed at assessing fluorine incorporation into DRX cathodes, a challenging task due to the difficulty in distinguishing oxygen from fluorine using X-ray and neutron-based techniques and the presence of partially amorphous impurities in all DRX samples. This method is applied to "Li1.25Mn0.25Ti0.5O1.75F0.25" prepared by solid-state synthesis and reveals that the presence of LiF impurities in the sample and F content in the DRX phase is well below the target. Those results are used for compositional optimization, and a synthesis product with drastically reduced LiF content and a DRX stoichiometry close to the new target composition (Li1.25Mn0.225Ti0.525O1.85F0.15) is obtained, demonstrating the effectiveness of the strategy. The analytical method is also applied to "Li1.33Mn0.33Ti0.33O1.33F0.66" obtained via mechanochemical synthesis, and the results confirm that much higher fluorination levels can be achieved via ball-milling. Finally, a simple and rapid water washing procedure is developed to reduce the impurity content in as-prepared DRX samples: this procedure results in a ca. 10% increase in initial discharge capacity and a ca. 11% increase in capacity retention after 25 cycles for Li1.25Mn0.25Ti0.50O1.75F0.25. Overall, this work establishes new analytical and material processing methods that enable the development of more robust design rules for high-energy-density DRX cathodes.

3.
Adv Mater ; 36(24): e2311559, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520395

ABSTRACT

It is shown that structural disorder-in the form of anisotropic, picoscale atomic displacements-modulates the refractive index tensor and results in the giant optical anisotropy observed in BaTiS3, a quasi-1D hexagonal chalcogenide. Single-crystal X-ray diffraction studies reveal the presence of antipolar displacements of Ti atoms within adjacent TiS6 chains along the c-axis, and threefold degenerate Ti displacements in the a-b plane. 47/49Ti solid-state NMR provides additional evidence for those Ti displacements in the form of a three-horned NMR lineshape resulting from a low symmetry local environment around Ti atoms. Scanning transmission electron microscopy is used to directly observe the globally disordered Ti a-b plane displacements and find them to be ordered locally over a few unit cells. First-principles calculations show that the Ti a-b plane displacements selectively reduce the refractive index along the ab-plane, while having minimal impact on the refractive index along the chain direction, thus resulting in a giant enhancement in the optical anisotropy. By showing a strong connection between structural disorder with picoscale displacements and the optical response in BaTiS3, this study opens a pathway for designing optical materials with high refractive index and functionalities such as large optical anisotropy and nonlinearity.

4.
Chem Mater ; 35(9): 3614-3627, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37181671

ABSTRACT

Weberite-type sodium transition metal fluorides (Na2M2+M'3+F7) have emerged as potential high-performance sodium intercalation cathodes, with predicted energy densities in the 600-800 W h/kg range and fast Na-ion transport. One of the few weberites that have been electrochemically tested is Na2Fe2F7, yet inconsistencies in its reported structure and electrochemical properties have hampered the establishment of clear structure-property relationships. In this study, we reconcile structural characteristics and electrochemical behavior using a combined experimental-computational approach. First-principles calculations reveal the inherent metastability of weberite-type phases, the close energetics of several Na2Fe2F7 weberite polymorphs, and their predicted (de)intercalation behavior. We find that the as-prepared Na2Fe2F7 samples inevitably contain a mixture of polymorphs, with local probes such as solid-state nuclear magnetic resonance (NMR) and Mössbauer spectroscopy providing unique insights into the distribution of Na and Fe local environments. Polymorphic Na2Fe2F7 exhibits a respectable initial capacity yet steady capacity fade, a consequence of the transformation of the Na2Fe2F7 weberite phases to the more stable perovskite-type NaFeF3 phase upon cycling, as revealed by ex situ synchrotron X-ray diffraction and solid-state NMR. Overall, these findings highlight the need for greater control over weberite polymorphism and phase stability through compositional tuning and synthesis optimization.

5.
ACS Appl Mater Interfaces ; 15(15): 18747-18762, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37014990

ABSTRACT

Lithium-excess, cation-disordered rocksalt (DRX) materials have been subject to intense scrutiny and development in recent years as potential cathode materials for Li-ion batteries. Despite their compositional flexibility and high initial capacity, they suffer from poorly understood parasitic degradation reactions at the cathode-electrolyte interface. These interfacial degradation reactions deteriorate both the DRX material and electrolyte, ultimately leading to capacity fade and voltage hysteresis during cycling. In this work, differential electrochemical mass spectrometry (DEMS) and titration mass spectrometry are combined to quantify the extent of bulk redox and surface degradation reactions for a set of Mn2+/4+-based DRX oxyfluorides during initial cycling with a high-voltage charging cutoff (4.8 V vs Li/Li+). Increasing the fluorine content from 7.5 to 33.75% is shown to diminish oxygen redox and suppresses high-voltage O2 evolution from the DRX surface. Additionally, electrolyte degradation processes resulting in the formation of both gaseous species and electrolyte-soluble protic species are observed. Subsequently, DEMS is paired with a fluoride-scavenging additive to demonstrate that increasing fluorine content leads to increased dissolution of fluorine from the DRX material into the electrolyte. Finally, a suite of ex situ spectroscopy techniques (X-ray photoelectron spectroscopy, inductively coupled plasma optical emission spectroscopy, and solid-state nuclear magnetic resonance spectroscopy) are employed to study the change in DRX composition during charging, revealing the dissolution of manganese and fluorine from the DRX material at high voltages. This work provides insight into the degradation processes occurring at the DRX-electrolyte interface and points toward potential routes of interfacial stabilization.

SELECTION OF CITATIONS
SEARCH DETAIL