Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
RNA ; 30(3): 189-199, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38164624

ABSTRACT

Aptamers have emerged as research hotspots of the next generation due to excellent performance benefits and application potentials in pharmacology, medicine, and analytical chemistry. Despite the numerous aptamer investigations, the lack of comprehensive data integration has hindered the development of computational methods for aptamers and the reuse of aptamers. A public access database named AptaDB, derived from experimentally validated data manually collected from the literature, was hence developed, integrating comprehensive aptamer-related data, which include six key components: (i) experimentally validated aptamer-target interaction information, (ii) aptamer property information, (iii) structure information of aptamer, (iv) target information, (v) experimental activity information, and (vi) algorithmically calculated similar aptamers. AptaDB currently contains 1350 experimentally validated aptamer-target interactions, 1230 binding affinity constants, 1293 aptamer sequences, and more. Compared to other aptamer databases, it contains twice the number of entries found in available databases. The collection and integration of the above information categories is unique among available aptamer databases and provides a user-friendly interface. AptaDB will also be continuously updated as aptamer research evolves. We expect that AptaDB will become a powerful source for aptamer rational design and a valuable tool for aptamer screening in the future. For access to AptaDB, please visit http://lmmd.ecust.edu.cn/aptadb/.


Subject(s)
Aptamers, Nucleotide , Oligonucleotides , Databases, Factual , Aptamers, Nucleotide/chemistry , SELEX Aptamer Technique
2.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36537081

ABSTRACT

Qualitative or quantitative prediction models of structure-activity relationships based on graph neural networks (GNNs) are prevalent in drug discovery applications and commonly have excellently predictive power. However, the network information flows of GNNs are highly complex and accompanied by poor interpretability. Unfortunately, there are relatively less studies on GNN attributions, and their developments in drug research are still at the early stages. In this work, we adopted several advanced attribution techniques for different GNN frameworks and applied them to explain multiple drug molecule property prediction tasks, enabling the identification and visualization of vital chemical information in the networks. Additionally, we evaluated them quantitatively with attribution metrics such as accuracy, sparsity, fidelity and infidelity, stability and sensitivity; discussed their applicability and limitations; and provided an open-source benchmark platform for researchers. The results showed that all attribution techniques were effective, while those directly related to the predicted labels, such as integrated gradient, preferred to have better attribution performance. These attribution techniques we have implemented could be directly used for the vast majority of chemical GNN interpretation tasks.


Subject(s)
Benchmarking , Drug Discovery , Humans , Neural Networks, Computer , Research Personnel , Structure-Activity Relationship
3.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35039845

ABSTRACT

Identification of adverse drug events (ADEs) is crucial to reduce human health risks and improve drug safety assessment. With an increasing number of biological and medical data, computational methods such as network-based methods were proposed for ADE prediction with high efficiency and low cost. However, previous network-based methods rely on the topological information of known drug-ADE networks, and hence cannot make predictions for novel compounds without any known ADE. In this study, we introduced chemical substructures to bridge the gap between the drug-ADE network and novel compounds, and developed a novel network-based method named ADENet, which can predict potential ADEs for not only drugs within the drug-ADE network, but also novel compounds outside the network. To show the performance of ADENet, we collected drug-ADE associations from a comprehensive database named MetaADEDB and constructed a series of network-based prediction models. These models obtained high area under the receiver operating characteristic curve values ranging from 0.871 to 0.947 in 10-fold cross-validation. The best model further showed high performance in external validation, which outperformed a previous network-based and a recent deep learning-based method. Using several approved drugs as case studies, we found that 32-54% of the predicted ADEs can be validated by the literature, indicating the practical value of ADENet. Moreover, ADENet is freely available at our web server named NetInfer (http://lmmd.ecust.edu.cn/netinfer). In summary, our method would provide a promising tool for ADE prediction and drug safety assessment in drug discovery and development.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Databases, Factual , Drug Discovery , Humans , ROC Curve , Research Design
4.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35998896

ABSTRACT

Nuclear receptors (NRs) are ligand-activated transcription factors, which constitute one of the most important targets for drug discovery. Current computational strategies mainly focus on a single target, and the transfer of learned knowledge among NRs was not considered yet. Herein we proposed a novel computational framework named NR-Profiler for prediction of potential NR modulators with high affinity and specificity. First, we built a comprehensive NR data set including 42 684 interactions to connect 42 NRs and 31 033 compounds. Then, we used multi-task deep neural network and multi-task graph convolutional neural network architectures to construct multi-task multi-classification models. To improve the predictive capability and robustness, we built a consensus model with an area under the receiver operating characteristic curve (AUC) = 0.883. Compared with conventional machine learning and structure-based approaches, the consensus model showed better performance in external validation. Using this consensus model, we demonstrated the practical value of NR-Profiler in virtual screening for NRs. In addition, we designed a selectivity score to quantitatively measure the specificity of NR modulators. Finally, we developed a freely available standalone software for users to make profiling predictions for their compounds of interest. In summary, our NR-Profiler provides a useful tool for NR-profiling prediction and is expected to facilitate NR-based drug discovery.


Subject(s)
Deep Learning , Receptors, Artificial , Receptors, Gastrointestinal Hormone , Receptors, Polymeric Immunoglobulin , B-Cell Activation Factor Receptor , Calcitonin Receptor-Like Protein , Cytokine Receptor gp130 , Histamine H2 Antagonists , Ligands , Neurokinin-1 Receptor Antagonists , Proto-Oncogene Proteins c-met , Receptor, Metabotropic Glutamate 5 , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Receptors, Aryl Hydrocarbon , Receptors, Calcitriol , Receptors, Cytoplasmic and Nuclear , Receptors, Muscarinic
5.
J Chem Inf Model ; 64(1): 57-75, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38150548

ABSTRACT

Drug discovery is time-consuming, expensive, and predominantly follows the "one drug → one target → one disease" paradigm. With the rapid development of systems biology and network pharmacology, a novel drug discovery paradigm, "multidrug → multitarget → multidisease", has emerged. This new holistic paradigm of drug discovery aligns well with the essence of networks, leading to the emergence of network-based methods in the field of drug discovery. In this Perspective, we initially introduce the concept and data sources of networks and highlight classical methodologies employed in network-based methods. Subsequently, we focus on the practical applications of network-based methods across various areas of drug discovery, such as target prediction, virtual screening, prediction of drug therapeutic effects or adverse drug events, and elucidation of molecular mechanisms. In addition, we provide representative web servers for researchers to use network-based methods in specific applications. Finally, we discuss several challenges of network-based methods and the directions for future development. In a word, network-based methods could serve as powerful tools to accelerate drug discovery.


Subject(s)
Drug Discovery , Drug-Related Side Effects and Adverse Reactions , Humans , Drug Discovery/methods , Systems Biology/methods
6.
Acta Pharmacol Sin ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902503

ABSTRACT

Identification of compounds to modulate NADPH metabolism is crucial for understanding complex diseases and developing effective therapies. However, the complex nature of NADPH metabolism poses challenges in achieving this goal. In this study, we proposed a novel strategy named NADPHnet to predict key proteins and drug-target interactions related to NADPH metabolism via network-based methods. Different from traditional approaches only focusing on one single protein, NADPHnet could screen compounds to modulate NADPH metabolism from a comprehensive view. Specifically, NADPHnet identified key proteins involved in regulation of NADPH metabolism using network-based methods, and characterized the impact of natural products on NADPH metabolism using a combined score, NADPH-Score. NADPHnet demonstrated a broader applicability domain and improved accuracy in the external validation set. This approach was further employed along with molecular docking to identify 27 compounds from a natural product library, 6 of which exhibited concentration-dependent changes of cellular NADPH level within 100 µM, with Oxyberberine showing promising effects even at 10 µM. Mechanistic and pathological analyses of Oxyberberine suggest potential novel mechanisms to affect diabetes and cancer. Overall, NADPHnet offers a promising method for prediction of NADPH metabolism modulation and advances drug discovery for complex diseases.

7.
Brief Bioinform ; 22(2): 2058-2072, 2021 03 22.
Article in English | MEDLINE | ID: mdl-32221552

ABSTRACT

Drug discovery and development is a time-consuming and costly process. Therefore, drug repositioning has become an effective approach to address the issues by identifying new therapeutic or pharmacological actions for existing drugs. The drug's anatomical therapeutic chemical (ATC) code is a hierarchical classification system categorized as five levels according to the organs or systems that drugs act and the pharmacology, therapeutic and chemical properties of drugs. The 2nd-, 3rd- and 4th-level ATC codes reserved the therapeutic and pharmacological information of drugs. With the hypothesis that drugs with similar structures or targets would possess similar ATC codes, we exploited a network-based approach to predict the 2nd-, 3rd- and 4th-level ATC codes by constructing substructure drug-ATC (SD-ATC), target drug-ATC (TD-ATC) and Substructure&Target drug-ATC (STD-ATC) networks. After 10-fold cross validation and two external validations, the STD-ATC models outperformed the SD-ATC and TD-ATC ones. Furthermore, with KR as fingerprint, the STD-ATC model was identified as the optimal model with AUC values at 0.899 ± 0.015, 0.916 and 0.893 for 10-fold cross validation, external validation set 1 and external validation set 2, respectively. To illustrate the predictive capability of the STD-ATC model with KR fingerprint, as a case study, we predicted 25 FDA-approved drugs (22 drugs were actually purchased) to have potential activities on heart failure using that model. Experiments in vitro confirmed that 8 of the 22 old drugs have shown mild to potent cardioprotective activities on both hypoxia model and oxygen-glucose deprivation model, which demonstrated that our STD-ATC prediction model would be an effective tool for drug repositioning.


Subject(s)
Drug Repositioning , Pharmaceutical Preparations , Cell Line , Drug Delivery Systems , Heart Failure/drug therapy , Humans , Reproducibility of Results
8.
Mol Pharm ; 20(1): 194-205, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36458739

ABSTRACT

Cytochrome P450 3A4 (CYP3A4) is one of the major drug metabolizing enzymes in the human body and metabolizes ∼30-50% of clinically used drugs. Inhibition of CYP3A4 must always be considered in the development of new drugs. Time-dependent inhibition (TDI) is an important P450 inhibition type that could cause undesired drug-drug interactions. Therefore, identification of CYP3A4 TDI by a rapid convenient way is of great importance to any new drug discovery effort. Here, we report the development of in silico classification models for prediction of potential CYP3A4 time-dependent inhibitors. On the basis of the CYP3A4 TDI data set that we manually collected from literature and databases, both conventional machine learning and deep learning models were constructed. The comparisons of different sampling strategies, molecular representations, and machine-learning algorithms showed the benefits of a balanced data set and the deep-learning model featured by GraphConv. The generalization ability of the best model was tested by screening an external data set, and the prediction results were validated by biological experiments. In addition, several structural alerts that are relevant to CYP3A4 time-dependent inhibitors were identified via information gain and frequency analysis. We anticipate that our effort would be useful for identification of potential CYP3A4 time-dependent inhibitors in drug discovery and design.


Subject(s)
Cytochrome P-450 CYP3A , Enzyme Inhibitors , Humans , Cytochrome P-450 CYP3A/metabolism , Enzyme Inhibitors/pharmacology , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Interactions , Computer Simulation
9.
J Chem Inf Model ; 63(9): 2881-2894, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37104820

ABSTRACT

Alzheimer's disease (AD), a neurodegenerative disease with no cure, affects millions of people worldwide and has become one of the biggest healthcare challenges. Some investigated compounds play anti-AD roles at the cellular or the animal level, but their molecular mechanisms remain unclear. In this study, we designed a strategy combining network-based and structure-based methods together to identify targets for anti-AD sarsasapogenin derivatives (AAs). First, we collected drug-target interactions (DTIs) data from public databases, constructed a global DTI network, and generated drug-substructure associations. After network construction, network-based models were built for DTI prediction. The best bSDTNBI-FCFP_4 model was further used to predict DTIs for AAs. Second, a structure-based molecular docking method was employed for rescreening the prediction results to obtain more credible target proteins. Finally, in vitro experiments were conducted for validation of the predicted targets, and Nrf2 showed significant evidence as the target of anti-AD compound AA13. Moreover, we analyzed the potential mechanisms of AA13 for the treatment of AD. Generally, our combined strategy could be applied to other novel drugs or compounds and become a useful tool in identification of new targets and elucidation of disease mechanisms. Our model was deployed on our NetInfer web server (http://lmmd.ecust.edu.cn/netinfer/).


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Spirostans , Animals , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Spirostans/chemistry , Spirostans/therapeutic use
10.
J Chem Inf Model ; 63(14): 4301-4311, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37399241

ABSTRACT

Cocrystals have significant potential in various fields such as chemistry, material, and medicine. For instance, pharmaceutical cocrystals have the ability to address issues associated with physicochemical and biopharmaceutical properties. However, it can be challenging to find proper coformers to form cocrystals with drugs of interest. Herein, a new in silico tool called 3D substructure-molecular-interaction network-based recommendation (3D-SMINBR) has been developed to address this problem. This tool first integrated 3D molecular conformations with a weighted network-based recommendation model to prioritize potential coformers for target drugs. In cross-validation, the performance of 3D-SMINBR surpassed the 2D substructure-based predictive model SMINBR in our previous study. Additionally, the generalization capability of 3D-SMINBR was confirmed by testing on unseen cocrystal data. The practicality of this tool was further demonstrated by case studies on cocrystal screening of armillarisin A (Arm) and isoimperatorin (iIM). The obtained Arm-piperazine and iIM-salicylamide cocrystals present improved solubility and dissolution rate compared to their parent drugs. Overall, 3D-SMINBR augmented by 3D molecular conformations would be a useful network-based tool for cocrystal discovery. A free web server for 3D-SMINBR can be freely accessed at http://lmmd.ecust.edu.cn/netcorecsys/.


Subject(s)
Drug Delivery Systems , Crystallization , Solubility , Molecular Conformation , Pharmaceutical Preparations
11.
Environ Sci Technol ; 57(46): 18013-18025, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37053516

ABSTRACT

Identification of endocrine-disrupting chemicals (EDCs) is crucial in the reduction of human health risks. However, it is hard to do so because of the complex mechanisms of the EDCs. In this study, we propose a novel strategy named EDC-Predictor to integrate pharmacological and toxicological profiles for the prediction of EDCs. Different from conventional methods that only focus on a few nuclear receptors (NRs), EDC-Predictor considers more targets. It uses computational target profiles from network-based and machine learning-based methods to characterize compounds, including both EDCs and non-EDCs. The best model constructed by these target profiles outperformed those models by molecular fingerprints. In a case study to predict NR-related EDCs, EDC-Predictor showed a wider applicability domain and higher accuracy than four previous tools. Another case study further demonstrated that EDC-Predictor could predict EDCs targeting other proteins rather than NRs. Finally, a free web server was developed to make EDC prediction easier (http://lmmd.ecust.edu.cn/edcpred/). In summary, EDC-Predictor would be a powerful tool in EDC prediction and drug safety assessment.


Subject(s)
Endocrine Disruptors , Models, Chemical , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Software
12.
Bioinformatics ; 37(15): 2221-2222, 2021 08 09.
Article in English | MEDLINE | ID: mdl-33306787

ABSTRACT

SUMMARY: MetaADEDB is an online database we developed to integrate comprehensive information on adverse drug events (ADEs). The first version of MetaADEDB was released in 2013 and has been widely used by researchers. However, it has not been updated for more than seven years. Here, we reported its second version by collecting more and newer data from the U.S. FDA Adverse Event Reporting System (FAERS) and Canada Vigilance Adverse Reaction Online Database, in addition to the original three sources. The new version consists of 744 709 drug-ADE associations between 8498 drugs and 13 193 ADEs, which has an over 40% increase in drug-ADE associations compared to the previous version. Meanwhile, we developed a new and user-friendly web interface for data search and analysis. We hope that MetaADEDB 2.0 could provide a useful tool for drug safety assessment and related studies in drug discovery and development. AVAILABILITY AND IMPLEMENTATION: The database is freely available at: http://lmmd.ecust.edu.cn/metaadedb/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Adverse Drug Reaction Reporting Systems , Canada , Databases, Factual , Drug Discovery , Humans
13.
J Chem Inf Model ; 62(3): 486-497, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35041411

ABSTRACT

Estrogen-related receptor α (ERRα), a member of nuclear receptors (NRs), plays a role in the regulation of cellular energy metabolism and is reported to be a novel potential target for type 2 diabetes therapy. To date, only a few agonists of ERRα have been identified to improve insulin sensitivity and decrease blood glucose levels. Herein, the discovery of novel potent agonists of ERRα determined using a combined virtual screening approach is described. Molecular dynamics (MD) simulations were used to obtain structural ensembles that can consider receptor flexibility. Then, an efficient virtual screening strategy with a combination of similarity search and ensemble docking was performed against the Enamine, SPECS, and Drugbank databases to identify potent ERRα agonists. Finally, a total of 66 compounds were purchased for experimental testing. Biological investigation of promising candidates identified seven compounds that have activity against ERRα with EC50 values ranging from 1.11 to 21.70 µM, with novel scaffolds different from known ERRα agonists until now. Additionally, the molecule GX66 showed micromolar inverse activity against ERRα with an IC50 of 0.82 µM. The predicted binding modes showed that these compounds were anchored in ERRα-LBP via interactions with several residues of ERRα. Overall, this study not only identified the novel potent ERRα agonists or an inverse agonist that would be the promising starting point for further exploration but also demonstrated a successful molecular dynamics-guided approach applicable in virtual screening for ERRα agonists.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Molecular Dynamics Simulation , Receptors, Estrogen/metabolism , ERRalpha Estrogen-Related Receptor
14.
J Appl Toxicol ; 42(10): 1639-1650, 2022 10.
Article in English | MEDLINE | ID: mdl-35429013

ABSTRACT

In recent years, drug-induced nephrotoxicity has been one of the main reasons for the failure of drug development. Early prediction of the nephrotoxicity for drug candidates is critical to the success of clinical trials. Therefore, it is very important to construct an effective model that can predict the potential nephrotoxicity of compounds. Machine learning methods have been widely used to predict the physicochemical properties, biological activities, and safety assessment of compounds. In this study, we manually collected 777 valid drug data and constructed a total of 72 classification models using nine types of molecular fingerprints combined with different machine learning algorithms. From experimental literature and the US FDA Drugs Database, some marketed drugs were screened for external validation of the models. Finally, three models exhibited good performance in the prediction of nephrotoxicity of both chemical drugs and Chinese herbal medicines. The best model was the support vector machine algorithm combined with CDK graph only fingerprint. Furthermore, the applicability domain of the models was analyzed according to the OECD principles, and we also used the SARpy and information gain methods to find eight substructures that might cause nephrotoxicity, so as to attract attention in the future drug discovery.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Machine Learning , Algorithms , Computer Simulation , Drug Discovery , Humans , Support Vector Machine
15.
Chem Res Toxicol ; 34(1): 91-102, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33332098

ABSTRACT

The traditional Chinese medicines (TCMs) have been used to treat diseases over a long history, but it is still a great challenge to uncover the underlying mechanisms for their therapeutic effects due to the complexity of their ingredients. Based on a novel network pharmacology-based approach, we explored in this study the potential therapeutic targets of Liuwei Dihuang (LWDH) decoction in its neuroendocrine immunomodulation (NIM) function. We not only collected the known targets of the compounds in LWDH but also predicted the targets for these compounds using the balanced substructure-drug-target network-based inference (bSDTNBI), which is a target prediction method based on network inferring developed by our laboratory. A "target-(pathway)-target" (TPT) network, in which targets of LWDH were connected by relevant pathways, was constructed and divided into several separate modules with strong internal connections. Then the target module that contributes the most to NIM function was determined through a contribution scoring algorithm. Finally, the targets with the highest contribution score to NIM-related diseases in this target module were recommended as potential therapeutic targets of LWDH.


Subject(s)
Drugs, Chinese Herbal/analysis , Algorithms , Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional
16.
J Chem Inf Model ; 61(5): 2475-2485, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33900090

ABSTRACT

Identification of drug-pathway associations plays an important role in pathway-based drug repurposing. However, it is time-consuming and costly to uncover new drug-pathway associations experimentally. The drug-induced transcriptomics data provide a global view of cellular pathways and tell how these pathways change under different treatments. These data enable computational approaches for large-scale prediction of drug-pathway associations. Here we introduced DPNetinfer, a novel computational method to predict potential drug-pathway associations based on substructure-drug-pathway networks via network-based approaches. The results demonstrated that DPNetinfer performed well in a pan-cancer network with an AUC (area under curve) = 0.9358. Meanwhile, DPNetinfer was shown to have a good capability of generalization on two external validation sets (AUC = 0.8519 and 0.7494, respectively). As a case study, DPNetinfer was used in pathway-based drug repurposing for cancer therapy. Unexpected anticancer activities of some nononcology drugs were then identified on the PI3K-Akt pathway. Considering tumor heterogeneity, seven primary site-based models were constructed by DPNetinfer in different drug-pathway networks. In a word, DPNetinfer provides a powerful tool for large-scale prediction of drug-pathway associations in pathway-based drug repurposing. A web tool for DPNetinfer is freely available at http://lmmd.ecust.edu.cn/netinfer/.


Subject(s)
Neoplasms , Pharmaceutical Preparations , Computational Biology , Drug Repositioning , Humans , Phosphatidylinositol 3-Kinases
17.
J Chem Inf Model ; 61(9): 4290-4302, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34436889

ABSTRACT

Two-component crystals such as pharmaceutical cocrystals and salts have been proven as an effective strategy to improve physicochemical and biopharmaceutical properties of drugs. It is not easy to select proper molecular combinations to form two-component crystals. The network-based models have been successfully utilized to guide cocrystal design. Yet, the traditional social network-derived methods based on molecular-interaction topology information cannot directly predict interaction partners for new chemical entities (NCEs) that have not been observed to form two-component crystals. Herein, we proposed an effective tool, namely substructure-molecular-interaction network-based recommendation (SMINBR), to prioritize potential interaction partners for NCEs. This in silico tool incorporates network and chemoinformatics methods to bridge the gap between NCEs and known molecular-interaction network. The high performance of 10-fold cross validation and external validation shows the high accuracy and good generalization capability of the model. As a case study, top 10 recommended coformers for apatinib were all experimentally confirmed and a new apatinib cocrystal with paradioxybenzene was obtained. The predictive capability of the model attributes to its accordance with complementary patterns driving the formation of intermolecular interactions. SMINBR could automatically recommend new interaction partners for a target molecule, and would be an effective tool to guide cocrystal design. A free web server for SMINBR is available at http://lmmd.ecust.edu.cn/sminbr/.


Subject(s)
Cheminformatics , Pharmaceutical Preparations , Computer Simulation , Computers , Salts
18.
J Chem Inf Model ; 61(5): 2486-2498, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33955748

ABSTRACT

NAD(P)H:quinone oxidoreductase 1 (NQO1) has been shown to be a potential therapeutic target for various human diseases, such as cancer and neurodegenerative disorders. Recent advances in computational methods, especially network-based methods, have made it possible to identify novel compounds for a target with high efficiency and low cost. In this study, we designed a workflow combining network-based methods and identification of privileged substructures to discover new compounds targeting NQO1 from a natural product library. According to the prediction results, we purchased 56 compounds for experimental validation. Without the assistance of privileged substructures, 31 compounds (31/56 = 55.4%) showed IC50 < 100 µM, and 11 compounds (11/56 = 19.6%) showed IC50 < 10 µM. With the assistance of privileged substructures, the two success rates were increased to 61.8 and 26.5%, respectively. Seven natural products further showed inhibitory activity on NQO1 at the cellular level, which may serve as lead compounds for further development. Moreover, network analysis revealed that osthole may exert anticancer effects against multiple cancer types by inhibiting not only carbonic anhydrases IX and XII but also NQO1. Our workflow and computational methods can be easily applied in other targets and become useful tools in drug discovery and development.


Subject(s)
Biological Products , Neoplasms , Biological Products/pharmacology , Drug Discovery , Humans , NAD(P)H Dehydrogenase (Quinone) , Neoplasms/drug therapy , Quinones
19.
J Appl Toxicol ; 41(10): 1518-1526, 2021 10.
Article in English | MEDLINE | ID: mdl-33469990

ABSTRACT

Mitochondria are important organelles in human cells, providing more than 95% of the energy. However, some drugs and environmental chemicals could induce mitochondrial dysfunction, which might cause complex diseases and even worsen the condition of patients with mitochondrial damage. Some drugs have been withdrawn from the market due to their severe mitochondrial toxicity, such as troglitazone. Therefore, there is an urgent need to develop models that could accurately predict the mitochondrial toxicity of chemicals. In this paper, suitable data were obtained from literature and databases first. Then nine types of fingerprints were used to characterize these compounds. Finally, different algorithms were used to build models. Meanwhile, the applicability domain of the prediction models was defined. We have also explored the structural alerts of mitochondrial toxicity, which would be helpful for medicinal chemists to better predict mitochondrial toxicity and further optimize lead compounds.


Subject(s)
Computer Simulation , Diagnosis, Computer-Assisted , Forecasting , Hazardous Substances/toxicity , Mitochondria/drug effects , Risk Assessment/statistics & numerical data , Toxicity Tests/statistics & numerical data , Algorithms , Humans , Machine Learning
20.
Chem Res Toxicol ; 33(2): 640-650, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31957435

ABSTRACT

Renal clearance (CLr) plays an essential role in the elimination of drugs. In this study, 636 compounds were obtained from various sources to develop in silico models for the prediction of CLr. Stepwise multiple linear regression and random forest regression methods were employed to build global models and local models according to ionization state or net elimination pathways. The local models toward compounds undergoing different net elimination pathways showed good predictive power: the geometric mean fold error was close to 2, indicating the clearance of most compounds could be predicted within a 2-fold error range. Six classification methods were used to construct classification models. However, the performance of these classification models was less than satisfactory, and the mean accuracy of the top five models in test sets was 0.65. Moreover, qualitative analysis of physicochemical profiles between compounds undergoing different net elimination pathways revealed that compounds with higher lipophilicity tended to be reabsorbed more easily and showed lower CLr, while compounds with higher values of polar descriptors tended to secrete more easily and showed higher CLr.


Subject(s)
Computer Simulation , Models, Biological , Quantitative Structure-Activity Relationship , Renal Elimination , Humans
SELECTION OF CITATIONS
SEARCH DETAIL