ABSTRACT
BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.
Subject(s)
Carboxy-Lyases , Endothelial Cells , Lung , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , Succinates , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Obesity/metabolism , Obesity/complications , Male , Succinates/pharmacology , Lung/metabolism , Lung/drug effects , Lung/pathology , Lung/blood supply , Cells, Cultured , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Diet, High-Fat/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Hydro-LyasesABSTRACT
Pyrroindomycins (PYRs) represent the only spirotetramate natural products discovered in nature, and possess potent activities against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Their unique structure and impressive biological activities make them attractive targets for synthesis and biosynthesis; however, the discovery and generation of new PYRs remains challenging. To date, only the initial components A and B have been reported. Herein, we report a mutasynthesis approach for the generation of nine new PYRs with varying acyl modifications on their deoxy-trisaccharide moieties. This was achieved by blocking the formation of the acyl group 1,8-dihydropyrrolo[2,3-b]indole (DHPI) via gene pyrK1 inactivation and supplying chemical acyl precursors. The gene pyrK1 encodes a DUF1864 family protein that probably catalyzes the oxidative transformation of L-tryptophan to DHPI, and its deletion results in the abolishment of DHPI-containing PYRs and the accumulation of three new PYRs either without acyl modification or with DHPI replaced by benzoic acid and pyrrole-2-carboxylic acid. Capitalizing on the capacity of the ΔpyrK1 mutant to produce new PYRs, we have successfully developed a mutasynthesis strategy for the generation of six novel PYR analogs with various aromatic acid modifications on their deoxy-trisaccharide moieties, showcasing the potential for generating structurally diverse PYRs. Overall, this research contributes significantly to understanding the biosynthesis of PYRs and offers valuable perspectives on their structural diversity.
Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , TrisaccharidesABSTRACT
Guangdong Province, China's largest economy, has a high incidence of tuberculosis (TB). At present, there are few reports on the distribution, transmission and drug resistance of Mycobacterium tuberculosis (Mtb) strains in this region. In this study, we performed minimum inhibitory concentration testing for 14 anti-TB drugs and whole-genome sequencing of 713 clinical Mtb isolates from 20,662 sputum culture-positive tuberculosis patients registered at 31 tuberculosis drug resistance surveillance sites covering 20 cities in Guangdong Province from 2016 to 2018. Moreover, we evaluated genome-wide associations between mutations and drug resistance, and further investigated the differences in the MICs of mutations. The epidemiology, drug-resistant phenotypes and whole genome sequencing data of 713 clinical Mtb isolates were analyzed, revealing the lineage distribution and drug-resistant gene profiles in Guangdong Province. WGS combined with quantitative MIC measurements identified several novel loci associated with resistance, of which 16 loci were found to be related to resistance to more than one drug. This study analyzed the lineage distribution, prevalence characteristics and resistance-corresponding gene profiles of Mtb isolates in Guangdong province, and provided a theoretical basis for the formulation of tuberculosis prevention and control policy in the province. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01236-3.
ABSTRACT
BACKGROUND: It is established that pulmonary disorders are comorbid with metabolic disorders such as obesity. Previous studies show that the stimulator of interferon genes (STING) signaling plays crucial roles in obesity-induced chronic inflammation via TANK-binding kinase 1 (TBK1) pathways. However, it remains unknown whether and how the STING signaling is implicated in the inflammatory processes in the lung in obesity. METHODS: Human lung tissues were obtained from obese patients (n = 3) and controls (n = 3). Mice were fed with the high-fat diet or regular control diet to establish the diet-induced obese (DIO) and lean mice, and were treated with C-176 (a specific STING inhibitor) or vehicle respectively. The lung macrophages were exposed to palmitic acid (PA) in vitro. The levels of STING singaling and metabolic inflammation factors were detected and anlyzed. RESULTS: We find that STING+/CD68+ macrophages are increased in lung tissues in patients with obesity. Our data also show that the expressions of STING and the levels of proinflammatory cytokines are increased both in lung tissues and bronchoalveolar lavage fluid (BALF) in obesity compared to controls, and inhibition of the STING blunted the obesity-induced lung inflammation. Mechanistically, our data demonstrate that the STING signaling pathway is involved in the PA-induced inflammation through the STING-TBK1-IRF3 (interferon regulatory factor 3)/NF-κB (nuclear factor kappa B) pathways in the lung macrophages. CONCLUSIONS: Our results collectively suggest that the STING signaling contributes to obesity-associated inflammation by stimulating proinflammatory processes in lung macrophages, one that may serve as a therapeutic target in ameliorating obesity-related lung dysfunctions.
Subject(s)
Pneumonia , Signal Transduction , Animals , Humans , Mice , Inflammation/metabolism , NF-kappa B/metabolism , Obesity/complicationsABSTRACT
BACKGROUND: Pulmonary hypertension (PH), an infrequent disease, is characterized by excessive pulmonary vascular remodeling and proliferation of pulmonary artery smooth muscle cells (PASMCs). However, its underlying molecular mechanisms remain unclear. Uncovering its molecular mechanisms will be beneficial to the treatment of PH. METHODS: Differently expressed genes (DEGs) in the lung tissues of PH patients were analyzed with a GEO dataset GSE113439. From these DEGs, we focused on TRIM59 which was highly expressed in PH patients. Subsequently, the expression of TRIM59 in the pulmonary arteries of PH patients, lung tissues of PH rat model and PASMCs cultured in a hypoxic condition was verified by quantitative real-time PCR (qPCR), western blot and immunohistochemistry. Furthermore, the role of TRIM59 in PAMSC proliferation and pathological changes in PH rats was assessed via gain-of-function and loss-of-function experiments. In addition, the transcriptional regulation of YAP1/TEAD4 on TRIM59 was confirmed by qPCR, western blot, luciferase reporter assay, ChIP and DNA pull-down. In order to uncover the underlying mechanisms of TRIM59, a protein ubiquitomics and a CoIP- HPLC-MS/MS were companied to identify the direct targets of TRIM59. RESULTS: TRIM59 was highly expressed in the pulmonary arteries of PH patients and lung tissues of PH rats. Over-expression of TRIM59 accelerated the proliferation of PASMCs, while TRIM59 silencing resulted in the opposite results. Moreover, TRIM59 silencing mitigated the injuries in heart and lung and attenuated pulmonary vascular remodeling during PH. In addition, its transcription was positively regulated by YAP1/TEAD4. Then we further explored the underlying mechanisms of TRIM59 and found that TRIM59 overexpression resulted in an altered ubiquitylation of proteins. Accompanied with the results of CoIP- HPLC-MS/MS, 34 proteins were identified as the direct targets of TRIM59. CONCLUSION: TRIM59 was highly expressed in PH patients and promoted the proliferation of PASMCs and pulmonary vascular remodeling, thus contributing to the pathogenesis of PH. It is indicated that TRIM59 may become a potential target for PH treatment.
Subject(s)
Hypertension, Pulmonary , Humans , Rats , Animals , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Vascular Remodeling/genetics , Tandem Mass Spectrometry , Signal Transduction , Cell Proliferation/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Hypoxia/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitination , Myocytes, Smooth Muscle/metabolism , Cells, Cultured , TEA Domain Transcription Factors , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolismABSTRACT
BACKGROUND: Obesity has been identified as a risk factor for acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the underlying mechanisms remain elusive. This study aimed to investigate the role of fatty acid synthase (FASN) in lipopolysaccharide (LPS)-induced ALI under obesity. METHODS: A high-fat diet-induced obese (DIO) mouse model was established and lean mice fed with regular chow diet were served as controls. LPS was intratracheally instilled to reproduce ALI in mice. In vitro, primary mouse lung endothelial cells (MLECs), treated by palmitic acid (PA) or co-cultured with 3T3-L1 adipocytes, were exposed to LPS. Chemical inhibitor C75 or shRNA targeting FASN was used for in vivo and in vitro loss-of-function studies for FASN. RESULTS: After LPS instillation, the protein levels of FASN in freshly isolated lung endothelial cells from DIO mice were significantly higher than those from lean mice. MLECs undergoing metabolic stress exhibited increased levels of FASN, decreased levels of VE-cadherin with increased p38 MAPK phosphorylation and NLRP3 expression, mitochondrial dysfunction, and impaired endothelial barrier compared with the control MLECs when exposed to LPS. However, these effects were attenuated by FASN inhibition with C75 or corresponding shRNA. In vivo, LPS-induced ALI, C75 pretreatment remarkably alleviated LPS-induced overproduction of lung inflammatory cytokines TNF-α, IL-6, and IL-1ß, and lung vascular hyperpermeability in DIO mice as evidenced by increased VE-cadherin expression in lung endothelial cells and decreased lung vascular leakage. CONCLUSIONS: Taken together, FASN inhibition alleviated the exacerbation of LPS-induced lung injury under obesity via rescuing lung endothelial dysfunction. Therefore, targeting FASN may be a potential therapeutic target for ameliorating LPS-induced ALI in obese individuals.
Subject(s)
Acute Lung Injury , Fatty Acid Synthases , Respiratory Distress Syndrome , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/drug therapy , Endothelial Cells/metabolism , Fatty Acid Synthases/antagonists & inhibitors , Lipopolysaccharides , Lung/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Respiratory Distress Syndrome/metabolismABSTRACT
Soil microbial communities maintain multiple ecosystem functions in terrestrial ecosystems. The response of soil microbial communities to vegetation restoration in desertification environments is still poorly understood. Therefore, the purpose of our study was to evaluate the dynamic changes of the soil microbial community during the growth of Pinus sylvestris var. mongolic (P. sylvestris) plantations. We collected soil samples from five P. sylvestris plantations with different stand age. High-throughput sequencing was performed to determine the microbial community structure. The dynamic relationship between soil microbial community and edaphic factors was analyzed using the co-occurrence network, mantel test and partial least squares path modeling. The results showed that the soil microbial alpha diversity and community structure were significantly various among the plantations (P < 0.001). The number of nodes and edges in microbial co-occurrence network gradually decreased and the interrelationships between species became weak with stand age. The Available phosphorus was the most significant factor affecting the structure of bacterial community (R2 = 0.952), while the total phosphorus was the most significant factor affecting the structure of fungal community (R2 = 0.745). However, soil moisture had no significant effect on the microbial community. pH (0.73) and available nitrogen (0.91) had the largest positive total effects on bacterial and fungal community, respectively. Stand age (-0.65) was an indirect factor with the largest negative total effects on the bacterial community. Therefore, we concluded that the soil microbial community was not limited by soil moisture during the natural restoration process of P. sylvestris plantations in the desertification environment and the phosphorus utilization efficiency played a leading role in shaping the soil microbial community.
Subject(s)
Microbiota , Pinus sylvestris , Pinus , China , Phosphorus , Sand , Soil , Soil MicrobiologyABSTRACT
Drug-resistant Mycobacterium tuberculosis (M. tuberculosis) has become an increasingly serious public health problem and has complicated tuberculosis (TB) treatment. Levofloxacin (LOF) is an ideal anti-tuberculosis drug in clinical applications. However, the detailed molecular mechanisms of LOF-resistant M. tuberculosis in TB treatment have not been revealed. Our study performed transcriptome and methylome sequencing to investigate the potential biological characteristics of LOF resistance in M. tuberculosis H37Rv. In the transcriptome analysis, 953 differentially expressed genes (DEGs) were identified; 514 and 439 DEGs were significantly downregulated and upregulated in the LOF-resistant group and control group, respectively. The KEGG pathway analysis revealed that 97 pathways were enriched in this study. In the methylome analysis, 239 differentially methylated genes (DMGs) were identified; 150 and 89 DMGs were hypomethylated and hypermethylated in the LOF-resistant group and control group, respectively. The KEGG pathway analysis revealed that 74 pathways were enriched in this study. The overlap study suggested that 25 genes were obtained. It was notable that nine genes expressed downregulated mRNA and upregulated methylated levels, including pgi, fadE4, php, cyp132, pckA, rpmB1, pfkB, acg, and ctpF, especially cyp132, pckA, and pfkB, which were vital in LOF-resistant M. tuberculosis H37Rv. The overlapping genes between transcriptome and methylome could be essential for studying the molecular mechanisms of LOF-resistant M. tuberculosis H37Rv. These results may provide informative evidence for TB treatment with LOF.
Subject(s)
Drug Resistance, Bacterial/genetics , Epigenome , Levofloxacin/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Transcriptome , Anti-Bacterial Agents/pharmacology , DNA Methylation , Genes, BacterialABSTRACT
The [4+2] cycloaddition remains one of the most intriguing transformations in synthetic and natural products chemistry. In nature, however, there are remarkably few enzymes known to have this activity. We herein report an unprecedented enzymatic [4+2] cyclization cascade that has a central role in the biosynthesis of pyrroindomycins, which are pentacyclic spirotetramate natural products. Beginning with a linear intermediate that contains two pairs of 1,3-diene and alkene groups, the dedicated cyclases PyrE3 and PyrI4 act in tandem to catalyze the formation of two cyclohexene rings in the dialkyldecalin system and the tetramate spiro-conjugate of the molecules. The two cyclizations are completely enzyme dependent and proceed in a regio- and stereoselective manner to establish the enantiomerically pure pentacyclic core. Analysis of a related spirotetronate pathway confirms that homologs are functionally exchangeable, establishing the generality of these findings and explaining how nature creates diverse active molecules with similar rigid scaffolds.
Subject(s)
Chemistry/methods , Intramolecular Lyases/chemistry , Macrolides/chemical synthesis , Pyrrolidinones/chemistry , Alkenes/chemistry , Biological Products/chemistry , Catalysis , Cyclization , Cyclohexenes/chemistry , DNA, Bacterial/chemistry , Intramolecular Lyases/chemical synthesis , Macrolides/chemistry , Models, Chemical , Molecular Structure , Mutation , Plasmids/metabolism , Pyrrolidinones/chemical synthesis , Recombinant Proteins/chemistry , Stereoisomerism , Streptomyces/metabolismABSTRACT
We herein report the isolation and characterization of a key linear intermediate in the biosynthetic pathway of pyrroindomycins, the potent spirotetramate natural products produced by Streptomyces rugosporus. This polyene intermediate bears a γ-hydroxymethyl group that is exocyclic to the tetramate moiety, indicating that a serine residue serves as the three-carbon unit for tetramate formation and chain-elongation termination. The further conversion involves an acetylation-elimination of the exocyclic γ-hydroxymethyl group to generate a γ-methylene group, which is indispensable for intramolecular [4 + 2] cross-bridging to construct the characteristic pentacyclic core. The findings presented in this study provide new insights into the biosynthesis of pyrroindomycins, and thus suggest a common paradigm for both spirotetramates and spirotetronates in processing the exocyclic γ-hydroxymethyl group of the five-membered heterocycle.
Subject(s)
Macrolides/metabolism , Streptomyces/metabolism , Acetylation , Biological Products/metabolism , Biosynthetic Pathways , Methane/analogs & derivatives , Methane/metabolism , MethylationABSTRACT
Three new 1,19-seco-avermectin (AVE) analogues were isolated from the ΔaveCDE mutant Streptomyces avermectinius strain. Their structures were elucidated by detailed spectroscopic analysis. This is the first report of 1,19-seco-AVE analogues. In an in vitro assay these compounds displayed cytotoxicity against Saos-2, MG-63, and B16 cell lines.
Subject(s)
Antineoplastic Agents/isolation & purification , Ivermectin/analogs & derivatives , Streptomyces/chemistry , Streptomyces/genetics , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Humans , Ivermectin/chemistry , Ivermectin/isolation & purification , Ivermectin/pharmacology , Mice , Molecular Structure , MutationABSTRACT
Streptomycin-resistant (SM-resistant) Mycobacterium tuberculosis (M. tuberculosis) is a major concern in tuberculosis (TB) treatment. However, the mechanisms underlying streptomycin resistance remain unclear. This study primarily aimed to perform preliminary screening of genes associated with streptomycin resistance through conjoint analysis of multiple genomics. Genome-wide methylation, transcriptome, and proteome analyses were used to elucidate the associations between specific genes and streptomycin resistance in M. tuberculosis H37Rv. Methylation analysis revealed that 188 genes were differentially methylated between the SM-resistant and normal groups, with 89 and 99 genes being hypermethylated and hypomethylated, respectively. Furthermore, functional analysis revealed that these 188 differentially methylated genes were enriched in 74 pathways, with most of them being enriched in metabolic pathways. Transcriptome analysis revealed that 516 genes were differentially expressed between the drug-resistant and normal groups, with 263 and 253 genes being significantly upregulated and downregulated, respectively. KEGG analysis indicated that these 516 genes were enriched in 79 pathways, with most of them being enriched in histidine metabolism. The methylation level was negatively related to mRNA abundance. Proteome analysis revealed 56 differentially expressed proteins, including 14 upregulated and 42 downregulated proteins. Moreover, three hub genes (coaE, fadE5, and mprA) were obtained using synthetic analysis. The findings of this study suggest that an integrated DNA methylation, transcriptome, and proteome analysis can provide important resources for epigenetic studies in SM-resistant M. tuberculosis H37Rv.
Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , DNA Methylation , Transcriptome , Proteome/metabolism , Streptomycin/pharmacology , Tuberculosis, Multidrug-Resistant/geneticsABSTRACT
BACKGROUND: Rifampicin (RIF) and multidrug-resistant tuberculosis (TB) are major public health threats. As conventional phenotypic drug susceptibility testing requires two-eight weeks, molecular diagnostic assays are widely used to determine drug resistance. METHODS: Clinical Mycobacterium tuberculosis isolates with consistent drug susceptibility results, tested using microbroth dilution and proportion methods in Löwenstein-Jensen medium from patients with TB in Guangdong province were utilized to evaluate MeltPro TB and whole-genome sequencing (WGS) assays in detecting resistance to RIF, isoniazid (INH), ethambutol (EMB), fluoroquinolones (FQ), and streptomycin (SM). Solid phenotypic drug susceptibility testing was used as the gold standard to evaluate the detection capacity of MeltPro TB on clinical sputum samples of patients with TB. RESULTS: Similar to WGS, MeltPro TB successfully detected RIF, INH, and SM resistance with sensitivities of 86.3, 84.8, and 86.6 %, respectively. However, the resistant isolate detection rates were only 58.1 and 69.6 % for EMB and FQ-resistant strains. For clinical specimens, MeltPro TB still showed good detectable rates of RIF and INH resistance, with sensitivities of 82.4 % and 95.2 %, respectively. Detectable rates of FQ and EMB resistance were low: 77.8 % and 35.3 %, respectively. CONCLUSIONS: MeltPro TB can detect known DNA mutations associated with drug resistance in Mycobacterium tuberculosis strains with comparable efficacy to WGS. For FQ and EMB resistance testing, MeltPro TB requires optimization and is unsuitable for general use. MeltPro TB can be used for diagnosis of RIF and multidrug-resistant tuberculosis to rapidly initiate appropriate anti-TB drug therapy.
Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/genetics , Microbial Sensitivity Tests , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/microbiology , Isoniazid , Ethambutol , Rifampin/pharmacology , Rifampin/therapeutic use , Fluoroquinolones/therapeutic use , Mutation , China/epidemiologyABSTRACT
Background: microRNAs (miRNAs) were recognized as a promising source of diagnostic biomarker. Herein, we aim to evaluate the performance of an ultrasensitive method for detecting serum miRNAs using single molecule arrays (Simoa). Methods: In this study, candidate miRNAs were trained and tested by RT-qPCR in a cohort of PTB patients. Besides that, ultrasensitive serum miRNA detection were developed using the Single Molecule Array (Simoa) platform. In this ultra-sensitive sandwich assay, two target-specific LNA-modified oligonucleotide probes can be simply designed to be complementary to the half-sequence of the target miRNA respectively. We characterized its analytical performance and measured miRNAs in the serum of patients with pulmonary tuberculosis and healthy individuals. Results: We identified a five signature including three upregulated (miR-101, miR-196b, miR-29a) and two downregulated (miR-320b, miR-99b) miRNAs for distinguishing PTB patients from HCs, and validated in our 104 PTB patients. On the basis of Simoa technology, we developed a novel, fully automated digital analyser, which can be used to directly detect miRNAs in serum samples without pre-amplification. We successfully detected miRNAs at femtomolar concentrations (with limits of detection [LODs] ranging from 0.449 to 1.889 fM). Simoa-determined serum miR-29a and miR-99b concentrations in patients with PTB ((median 6.06 fM [range 0.00-75.22]), (median 2.53 fM [range 0.00-24.95]), respectively) were significantly higher than those in HCs ((median 2.42 fM [range 0.00-28.64]) (P < 0.05), (median 0.54 fM [range 0.00-9.12] (P < 0.0001), respectively). Serum levels of miR-320b were significantly reduced in patients with PTB (median 2.11 fM [range 0.00-39.30]) compared with those in the HCs (median 4.76 fM [range 0.00-25.10]) (P < 0.001). A combination of three miRNAs (miR-29a, miR-99b, and miR-320b) exhibited a good capacity to distinguish PTB from HCs, with an area under the curve (AUC) of 0.818 (sensitivity: 83.9%; specificity: 79.7%). Conclusions: This study benchmarks the role of Simoa as a promising tool for monitoring miRNAs in serum and offers considerable potential as a non-invasive platform for the early diagnosis of PTB.
Subject(s)
Biomarkers , MicroRNAs , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/genetics , Male , Female , MicroRNAs/blood , MicroRNAs/genetics , Middle Aged , Adult , Biomarkers/blood , Aged , Circulating MicroRNA/blood , Circulating MicroRNA/geneticsABSTRACT
Avermectins (AVEs), which are widely used for the treatment of agricultural parasitic diseases, belong to a family of 6,6-spiroketal moiety-containing, macrolide natural products. AVE biosynthesis is known to employ a type I polyketide synthase (PKS) system to assemble the molecular skeleton for further functionalization. It remains unknown how and when spiroketal formation proceeds, particularly regarding the role of AveC, a unique protein in the pathway that shares no sequence homology to any enzyme of known function. Here, we report the unprecedented, dual function of AveC by correlating its activity with spiroketal formation and modification during the AVE biosynthetic process. The findings in this study were supported by characterizing extremely unstable intermediates, products and their spontaneous derivative products from the simplified chemical profile and by comparative analysis of in vitro biotransformations and in vivo complementations mediated by AveC and MeiC (the counterpart in biosynthesizing the naturally occurring, AVE-like meilingmycins). AveC catalyzes the stereospecific spiroketalization of a dihydroxy-ketone polyketide intermediate and the optional dehydration to determine the regiospecific saturation characteristics of spiroketal diversity. These reactions take place between the closures of the hexene ring and 16-membered macrolide and the formation of the hexahydrobenzofuran unit. MeiC can replace the spirocyclase activity of AveC, but it lacks the independent dehydratase activity. Elucidation of the generality and specificity of AveC-type proteins allows for the rationalization of previously published results that were not completely understood, suggesting that enzyme-mediated spiroketal formation was initially underestimated, but is, in fact, widespread in nature for the control of stereoselectivity.
Subject(s)
Biological Products/metabolism , Ivermectin/analogs & derivatives , Spiro Compounds/metabolism , Biological Products/chemistry , Crystallography, X-Ray , Ivermectin/chemistry , Ivermectin/metabolism , Models, Molecular , Molecular Structure , Mutation , Spiro Compounds/chemistryABSTRACT
Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disease characterized by pulmonary vascular remodeling. Excessive growth and migration of pulmonary artery smooth muscle cells (PASMCs) are believed to be major contributors to pulmonary vascular remodeling. Ubiquitin-specific protease 15 (USP15) is a vital deubiquitinase that has been shown to be critically involved in many pathologies. However, the effect of USP15 on PH has not yet been explored. In this study, the upregulation of USP15 was identified in the lungs of PH patients, mice with SU5416/hypoxia (SuHx)-induced PH and rats with monocrotaline (MCT)-induced PH. Moreover, adeno-associated virus-mediated functional loss of USP15 markedly alleviated PH exacerbation in SuHx-induced mice and MCT-induced rats. In addition, the abnormal upregulation and nuclear translocation of YAP1/TAZ was validated after PH modeling. Human pulmonary artery smooth muscle cells (hPASMCs) were exposed to hypoxia to mimic PH in vitro, and USP15 knockdown significantly inhibited cell proliferation, migration, and YAP1/TAZ signaling in hypoxic hPASMCs. Rescue assays further suggested that USP15 promoted hPASMC proliferation and migration in a YAP1/TAZ-dependent manner. Coimmunoprecipitation assays indicated that USP15 could interact with YAP1, while TAZ bound to USP15 after hypoxia treatment. We further determined that USP15 stabilized YAP1 by inhibiting the K48-linked ubiquitination of YAP1. In summary, our findings reveal the regulatory role of USP15 in PH progression and provide novel insights into the pathogenesis of PH.
Subject(s)
Hypertension, Pulmonary , Animals , Humans , Mice , Rats , Cell Proliferation , Hypertension, Pulmonary/genetics , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Lung/pathology , Myocytes, Smooth Muscle/metabolism , Signal Transduction , Ubiquitin-Specific Proteases/metabolism , Vascular Remodeling/geneticsABSTRACT
Endothelial dysfunction is essential in pulmonary arterial hypertension (PAH) pathogenesis and is considered to be a therapeutic target of PAH. Curcumol is a bioactive sesquiterpenoid with pharmacological properties including restoring endothelial cells damage. This study aimed to evaluate the effect of curcumol on PAH rats and investigate its possible mechanisms. PAH was induced by subcutaneous injection of 60 mg/kg monocrotaline (MCT) in male Sprague Dawley rats. Curcumol (12.5, 25, and 50 mg/kg/day) were administered by intragastric administration for 3 weeks. The results demonstrated that curcumol dose-dependently alleviated MCT-induced right ventricular hypertrophy and pulmonary arterial wall thickness. In addition, endothelial-to-mesenchymal transition (EndMT) in the pulmonary arteries of MCT-challenged rats was inhibited after curcumol treatment, as evidenced by the restored expressions of endothelial and myofibroblast markers. The possible pharmacological mechanisms of curcumol were analyzed using network pharmacology. After screening the common therapeutic targets of PAH and curcumol by searching related databases and comparison, pathway enrichment was performed and AKT/GSK3ß was screened out as a possible signaling pathway which was relevant to the therapeutic mechanism of curcumol on PAH. Western blot analysis verified this in lung tissues. Moreover, combination of TNF-α, TGF-ß1 and IL-1ß-induced EndMT in primary rat pulmonary arterial endothelial cells were blocked by curcumol, and this effect was resembled by PI3K/AKT inhibitor LY294002. Above all, our study suggested that curcumol inhibited EndMT via inhibiting the AKT/GSK3ß signaling pathway, which may contribute to its alleviated effect on PAH. Curcumol may be developed as a therapeutic for PAH in the future.
Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Sesquiterpenes , Animals , Male , Rats , Disease Models, Animal , Endothelial Cells , Familial Primary Pulmonary Hypertension/pathology , Glycogen Synthase Kinase 3 beta/metabolism , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Monocrotaline/adverse effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Sesquiterpenes/metabolism , Signal Transduction , Cell TransdifferentiationABSTRACT
Antibiotic resistance of Mycobacterium tuberculosis (Mtb) is a major public health concern worldwide. Therefore, it is of great significance to characterize the mutational pathways by which susceptible Mtb evolves into drug resistance. In this study, we used laboratory evolution to explore the mutational pathways of aminoglycoside resistance. The level of resistance in amikacin inducing Mtb was also associated with changes in susceptibility to other anti-tuberculosis drugs such as isoniazid, levofloxacin and capreomycin. Whole-genome sequencing (WGS) revealed that the induced resistant Mtb strains had accumulated diverse mutations. We found that rrs A1401G was the predominant mutation in aminoglycoside-resistant clinical Mtb isolates from Guangdong. In addition, this study provided global insight into the characteristics of the transcriptome in four representative induced strains and revealed that rrs mutated and unmutated aminoglycoside-resistant Mtb strains have different transcriptional profiles. WGS analysis and transcriptional profiling of Mtb strains during evolution revealed that Mtb strains harbouring rrs A1401G have an evolutionary advantage over other drug-resistant strains under the pressure of aminoglycosides because of their ultra-high resistance level and low physiological impact on the strain. The results of this study should advance our understanding of aminoglycoside resistance mechanisms.
Subject(s)
Aminoglycosides , Mycobacterium tuberculosis , Aminoglycosides/pharmacology , Mycobacterium tuberculosis/genetics , Transcriptome , Antitubercular Agents/pharmacology , LevofloxacinABSTRACT
The natural products pyrroindomycins (PYRs), active against various drug-resistant pathogens, possess a characteristic, cyclohexene ring spiro-linked tetramate moiety. In this study, investigation into PYR biosynthesis revealed two new proteins, both of which, phylogenetically distinct from but functionally substitutable to each other in vivo, individually catalyze a Dieckmann cyclization in vitro for converting an N-acetoacetyl-l-alanyl thioester into a tetramate. Their counterparts are commonly present in the biosynthetic pathways of spiro and polyether tetronates, supporting a uniform paradigm for tetronate/tetramate formation, which features an enzymatic way to generate the C-X (X = O or N) bond first and the C-C bond next in building of the 5-membered heterocycle.
Subject(s)
Biological Products/metabolism , Lactams, Macrocyclic/metabolism , Macrolides/metabolism , Biocatalysis , Biological Products/chemistry , Cyclization , Lactams, Macrocyclic/chemistry , Macrolides/chemistry , Molecular Conformation , Peptide Synthases/genetics , Peptide Synthases/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , StereoisomerismABSTRACT
Caerulomycins (CAEs) and collismycins (COLs), which mainly differ in sulfur decoration, are two groups of structurally similar natural products containing a 2,2'-bipyridine (2,2'-BP) core, derivatives of which have been widely used in chemistry. The biosynthetic pathways of CAEs and COLs remain elusive. In this work, cloning of the CAE biosynthetic gene cluster allowed us to mine a highly conserved gene cluster encoding COL biosynthesis in a Streptomyces strain that was previously unknown as a 2,2'-BP producer. In vitro and in vivo investigations into the biosynthesis revealed that CAEs and COLs share a common paradigm featuring an atypical hybrid polyketide synthase/nonribosomal peptide synthetase system that programs the 2,2'-BP formation. This likely involves an unusual intramolecular cyclization/rearrangement sequence, and a difference in processing of the sulfhydryl group derived from the same precursor cysteine drives the biosynthetic route toward CAEs or COLs.