Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Stress Chaperones ; 27(4): 449-460, 2022 07.
Article in English | MEDLINE | ID: mdl-35543864

ABSTRACT

This study aimed to investigate the mechanism by which camel whey protein (CWP) inhibits the release of high-mobility group box 1 (HMGB1) in heat stress (HS)-stimulated rat liver. Administration of CWP by gavage prior to HS inhibited the cytoplasmic translocation of HMGB1 and consequently reduced the inflammatory response in the rat liver, and downregulated the levels of the NLR pyrin domain containing 3 (NLRP3) inflammasome, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-α. The use of N-acetyl-L-cysteine (NAC), an inhibitor of reactive oxygen species (ROS) production, indicated that this downregulation effect may be attributed to the antioxidant activity of CWP. We observed that CWP enhanced nuclear factor erythroid 2-related factor (Nrf)2 and heme-oxygenase (HO)-1 expression, which inhibited ROS production, nicotinamide adenine dinucleotide phosphate oxidase (NOX) activity, and malondialdehyde (MDA) levels, and increased superoxide dismutase 1 (SOD1) activity and reduced glutathione (GSH) content in the HS-treated liver, ultimately increasing the total antioxidant capacity (TAC) in the liver. Administration of Nrf2 or HO-1 inhibitors before HS abolished the protective effects of CWP against oxidative damage in the liver of HS-treated rats, accompanied by increased levels of HMGB1 in the cytoplasm and IL-1ß and TNF-α in the serum. In conclusion, our study demonstrated that CWP enhanced the TAC of the rat liver after HS by activating Nrf2/HO-1 signaling, which in turn reduced HMGB1 release from hepatocytes and the subsequent inflammatory response and damage. Furthermore, the combination of CWP and NAC abolished the adverse effects of HS in the rat liver. Therefore, dietary CWP could be an effective adjuvant treatment for HS-induced liver damage.


Subject(s)
HMGB1 Protein , Heat-Shock Response , Heme Oxygenase-1 , Liver Diseases , NF-E2-Related Factor 2 , Whey Proteins , Animals , Camelus , HMGB1 Protein/metabolism , Heme Oxygenase-1/metabolism , Liver Diseases/drug therapy , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Whey Proteins/pharmacology
2.
Animals (Basel) ; 12(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35405881

ABSTRACT

Gastrointestinal nematodes (GINs), such as Trichostrongylidae, are important pathogens in small ruminants, causing significant losses in these livestock species. Despite their veterinary importance, GINs have not been studied in certain regions of the world. Therefore, much of their epidemiology and economic impact on production remain unknown. In the present study, a systematic epidemiological survey based on the modified McMaster technique was conducted to investigate the type and infection of GINs in sheep and cattle. In 9622 fecal samples from 491 sampling sites in the four main banner districts of Ordos, the prevalence of GIN infection was found to be 38.84% and 4.48% in sheep and cattle, respectively. At the same time, the effects of four pasture types on the distribution of GINs were analyzed. This study also found severe resistance to ivermectin and albendazole in GINs and suspected anthelmintic resistance in nitroxynil, levamisole and closantel. We report the type and infection of GINs in Ordos, with the aim to help the prevention and control of GINs. Based on the results of the questionnaire survey and GIN resistance test, we found several reasons for the anthelmintic resistance of GINs, consequently providing new ideas for controlling the occurrence of anthelmintic resistance.

SELECTION OF CITATIONS
SEARCH DETAIL