Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nature ; 619(7968): 160-166, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37258666

ABSTRACT

KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Animals , Mice , Body Weight , Enzyme Activation , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Nucleotides/metabolism , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects , Cell Division/drug effects , Substrate Specificity
2.
Arch Pharm (Weinheim) ; 357(6): e2300649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38396281

ABSTRACT

Transcription factors are generally considered challenging, if not "undruggable", targets but they promise new therapeutic options due to their fundamental involvement in many diseases. In this study, we aim to assess the ligandability of the C-terminal Rel-homology domain of nuclear factor of activated T cells 1 (NFAT1), a TF implicated in T-cell regulation. Using a combination of experimental and computational approaches, we demonstrate that small molecule fragments can indeed bind to this protein domain. The newly identified binder is the first small molecule binder to NFAT1 validated with biophysical methods and an elucidated binding mode by X-ray crystallography. The reported eutomer/distomer pair provides a strong basis for potential exploration of higher potency binders on the path toward degrader or glue modalities.


Subject(s)
NFATC Transcription Factors , Binding Sites , Crystallography, X-Ray , Ligands , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/chemistry , Protein Binding , Protein Domains , Structure-Activity Relationship
3.
Nat Chem Biol ; 15(8): 822-829, 2019 08.
Article in English | MEDLINE | ID: mdl-31285596

ABSTRACT

Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.


Subject(s)
Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , CRISPR-Cas Systems , Cell Line , Cell Proliferation/drug effects , Cell Survival , Gene Expression Regulation/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Domains , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
4.
J Med Chem ; 65(21): 14614-14629, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36300829

ABSTRACT

Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding. We report on the discovery of the in vivo active KRASG12C inhibitor BI-0474 using a different approach, in which small molecules that bind reversibly to the switch II pocket were identified and then optimized for non-covalent binding using structure-based design. Finally, the Michael acceptor containing warhead was attached. Our approach offers not only an alternative approach to discovering KRASG12C inhibitors but also provides a starting point for the discovery of inhibitors against other oncogenic KRAS mutants.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Genes, ras , Mutation , Neoplasms/genetics , Cysteine
5.
J Med Chem ; 64(10): 6569-6580, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33719426

ABSTRACT

KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.


Subject(s)
Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/metabolism , Afatinib/chemistry , Afatinib/metabolism , Afatinib/therapeutic use , Allosteric Regulation/drug effects , Binding Sites , Catalytic Domain , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/chemistry , Quinazolines/metabolism , Quinazolines/pharmacology , Quinazolines/therapeutic use , SOS1 Protein/agonists , SOS1 Protein/antagonists & inhibitors , SOS1 Protein/genetics
6.
Cancer Discov ; 11(1): 142-157, 2021 01.
Article in English | MEDLINE | ID: mdl-32816843

ABSTRACT

KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Cell Line, Tumor , Humans , Mitogen-Activated Protein Kinase Kinases , Mutation , Nucleotides , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics
7.
Antimicrob Agents Chemother ; 54(3): 1290-7, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20047911

ABSTRACT

Human cytomegalovirus (HCMV) remains a serious threat for immunocompromised individuals, including transplant recipients and newborns. To date, all drugs licensed for the treatment of HCMV infection and disease target the viral DNA polymerase. Although these drugs are effective, several drawbacks are associated with their use, including toxicity and emergence of drug resistance. Hence, new and improved antivirals with novel molecular targets are urgently needed. Here we report on the antiviral properties of AIC246, a representative of a novel class of low-molecular-weight compounds that is currently undergoing clinical phase II studies. The anti-HCMV activity of AIC246 was evaluated in vitro and in vivo using various cell culture assays and an engineered mouse xenograft model. In addition, antiviral properties of the drug were characterized in comparison to the current gold standard ganciclovir. We demonstrate that AIC246 exhibits excellent in vitro inhibitory activity against HCMV laboratory strains and clinical isolates, retains activity against ganciclovir-resistant viruses, is well tolerated in different cell types (median selectivity index, 18,000), and exerts a potent in vivo efficacy in a mouse xenograft model. Moreover, we show that the antiviral block induced by AIC246 is reversible and the efficacy of the drug is not significantly affected by cell culture variations such as cell type or multiplicity of infection. Finally, initial mode-of-action analyses reveal that AIC246 targets a process in the viral replication cycle that occurs later than DNA synthesis. Thus, AIC246 acts via a mode of action that differs from that of polymerase inhibitors like ganciclovir.


Subject(s)
Acetic Acid/pharmacology , Antiviral Agents/pharmacology , Cytomegalovirus Infections/drug therapy , Cytomegalovirus/drug effects , Quinazolines/pharmacology , Acetic Acid/administration & dosage , Acetic Acid/chemistry , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Cell Line , Cells, Cultured , Cytomegalovirus/physiology , Cytomegalovirus Infections/virology , Cytopathogenic Effect, Viral , Dermis/cytology , Disease Models, Animal , Fibroblasts/virology , Humans , Lung/cytology , Mice , Mice, SCID , Quinazolines/administration & dosage , Quinazolines/chemistry , Transplantation, Heterologous , Treatment Outcome , Virus Replication/drug effects
8.
J Med Chem ; 62(22): 10272-10293, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31689114

ABSTRACT

The epidermal growth factor receptor (EGFR), when carrying an activating mutation like del19 or L858R, acts as an oncogenic driver in a subset of lung tumors. While tumor responses to tyrosine kinase inhibitors (TKIs) are accompanied by marked tumor shrinkage, the response is usually not durable. Most patients relapse within two years of therapy often due to acquisition of an additional mutation in EGFR kinase domain that confers resistance to TKIs. Crucially, oncogenic EGFR harboring both resistance mutations, T790M and C797S, can no longer be inhibited by currently approved EGFR TKIs. Here, we describe the discovery of BI-4020, which is a noncovalent, wild-type EGFR sparing, macrocyclic TKI. BI-4020 potently inhibits the above-described EGFR variants and induces tumor regressions in a cross-resistant EGFRdel19 T790M C797S xenograft model. Key was the identification of a highly selective but moderately potent benzimidazole followed by complete rigidification of the molecule through macrocyclization.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Benzimidazoles/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Crystallography, X-Ray , Cyclization , Entropy , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/genetics , Female , Hepatocytes , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Transgenic , Mutation , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
Drug Discov Today ; 11(3-4): 175-80, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16533716

ABSTRACT

Drug-like and lead-like hits derived from HTS campaigns provide good starting points for lead optimization. However, too strong emphasis on potency as hit-selection parameter might hamper the success of such projects. A detailed absorption, distribution, metabolism, excretion and toxicology (ADME-Tox) profiling is needed to help identify hits with a minimum number of (known) liabilities. This is particularly true for drug-like hits. Herein, we describe how to break down large numbers of screening hits and we provide a comprehensive overview of the strengths and weaknesses for each structural class. The overall profile (e.g. ligand efficiency, selectivity and ADME-Tox) is the distinctive feature that will define the priority for follow-up.


Subject(s)
Drug Design , Administration, Oral , Pharmacokinetics , Toxicology
10.
J Med Chem ; 59(22): 10147-10162, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27775892

ABSTRACT

Scaffold modification based on Wang's pioneering MDM2-p53 inhibitors led to novel, chemically stable spiro-oxindole compounds bearing a spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one scaffold that are not prone to epimerization as observed for the initial spiro[3H-indole-3,3'-pyrrolidin]-2(1H)-one scaffold. Further structure-based optimization inspired by natural product architectures led to a complex fused ring system ideally suited to bind to the MDM2 protein and to interrupt its protein-protein interaction (PPI) with TP53. The compounds are highly selective and show in vivo efficacy in a SJSA-1 xenograft model even when given as a single dose as demonstrated for 4-[(3S,3'S,3'aS,5'R,6'aS)-6-chloro-3'-(3-chloro-2-fluorophenyl)-1'-(cyclopropylmethyl)-2-oxo-1,2,3',3'a,4',5',6',6'a-octahydro-1'H-spiro[indole-3,2'-pyrrolo[3,2-b]pyrrole]-5'-yl]benzoic acid (BI-0252).


Subject(s)
Drug Discovery , Indoles/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrrolidinones/pharmacology , Spiro Compounds/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , Administration, Oral , Dose-Response Relationship, Drug , Humans , Indoles/administration & dosage , Indoles/chemistry , Models, Molecular , Molecular Structure , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidinones/administration & dosage , Pyrrolidinones/chemistry , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
11.
Carbohydr Res ; 337(21-23): 2089-110, 2002 Nov 19.
Article in English | MEDLINE | ID: mdl-12433474

ABSTRACT

Due to their high density of functional groups and their availability in a variety of diastereomeric forms, monosaccharides are considered attractive scaffolds for combinatorial chemistry that allow the attachment and defined spatial alignment of up to five different pharmacophoric groups. For their application in combinatorial syntheses on solid phase, a set of selectively removable hydroxy protecting groups in combination with a cleavable anchor is required. Herein, we report on the construction and use of a versatile multivalent glucose building block for parallel synthesis on the solid phase.


Subject(s)
Combinatorial Chemistry Techniques , Glucose/chemistry , Alkylation , Chromatography, High Pressure Liquid , Cross-Linking Reagents , Crystallography, X-Ray , Molecular Structure , Spectrometry, Mass, Electrospray Ionization , Thioglycosides/chemistry
12.
Angew Chem Int Ed Engl ; 37(18): 2503-2505, 1998 Oct 02.
Article in English | MEDLINE | ID: mdl-29711363

ABSTRACT

Four orthogonally stable protecting groups and a selectively cleavable anchor that are stable under basic conditions are required in order that carbohydrates can be employed as chiral polyfunctional scaffolds in combinatorial solid-phase syntheses of high diversity. The schematic representation shows the combinatorial synthesis with a carbohydrate scaffold (SG=protecting group, A=anchor, P=polymer carrier), which proceeds by sequential selective deprotection, functionalization, washing of the solid phase, and cleavage of the anchor.

13.
ChemMedChem ; 1(11): 1229-36, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16991174

ABSTRACT

The need for in silico characterization of HTS hit structures as part of a data-driven hit-selection process is demonstrated. A solution is described in the form of an in silico ADMET traffic light and PhysChem scoring system. This has been extensively validated with in-house data at Bayer, published data, and a collection of launched small-molecule oral drugs.


Subject(s)
Molecular Structure , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL