Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Publication year range
1.
Cell ; 169(4): 597-609.e11, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28475892

ABSTRACT

Antibodies to Zika virus (ZIKV) can be protective. To examine the antibody response in individuals who develop high titers of anti-ZIKV antibodies, we screened cohorts in Brazil and Mexico for ZIKV envelope domain III (ZEDIII) binding and neutralization. We find that serologic reactivity to dengue 1 virus (DENV1) EDIII before ZIKV exposure is associated with increased ZIKV neutralizing titers after exposure. Antibody cloning shows that donors with high ZIKV neutralizing antibody titers have expanded clones of memory B cells that express the same immunoglobulin VH3-23/VK1-5 genes. These recurring antibodies cross-react with DENV1, but not other flaviviruses, neutralize both DENV1 and ZIKV, and protect mice against ZIKV challenge. Structural analyses reveal the mechanism of recognition of the ZEDIII lateral ridge by VH3-23/VK1-5 antibodies. Serologic testing shows that antibodies to this region correlate with serum neutralizing activity to ZIKV. Thus, high neutralizing responses to ZIKV are associated with pre-existing reactivity to DENV1 in humans.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Zika Virus Infection/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Brazil , Female , Humans , Immunologic Memory , Leukocytes, Mononuclear/immunology , Male , Mexico , Mice , Zika Virus Infection/blood
2.
PLoS Pathog ; 19(7): e1011313, 2023 07.
Article in English | MEDLINE | ID: mdl-37486929

ABSTRACT

Leptospirosis, a zoonosis with worldwide distribution, is caused by pathogenic spirochetes belonging to the genus Leptospira. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in pathogen dissemination and virulence mechanisms. Here we characterized the leptospiral Membrane Protein L36 (MPL36), a rare lipoprotein A (RlpA) homolog with a C-terminal Sporulation related (SPOR) domain, as an important virulence factor in pathogenic Leptospira. Our results confirmed that MPL36 is surface exposed and expressed during infection. Using recombinant MPL36 (rMPL36) we also confirmed previous findings of its high plasminogen (PLG)-binding ability determined by lysine residues of the C-terminal region of the protein, with ability to convert bound-PLG to active plasmin. Using Koch's molecular postulates, we determined that a mutant of mpl36 has a reduced PLG-binding ability, leading to a decreased capacity to adhere and translocate MDCK cell monolayers. Using recombinant protein and mutant strains, we determined that the MPL36-bound plasmin (PLA) can degrade fibrinogen. Finally, our mpl36 mutant had a significant attenuated phenotype in the hamster model for acute leptospirosis. Our data indicates that MPL36 is the major PLG binding protein in pathogenic Leptospira, and crucial to the pathogen's ability to attach and interact with host tissues during infection. The MPL36 characterization contributes to the expanding field of bacterial pathogens that explore PLG for their virulence, advancing the goal to close the knowledge gap regarding leptospiral pathogenesis while offering a novel potential candidate to improve diagnostic and prevention of this important zoonotic neglected disease.


Subject(s)
Leptospira interrogans , Leptospira , Leptospirosis , Cricetinae , Animals , Leptospira/genetics , Plasminogen/metabolism , Fibrinolysin/metabolism , Leptospira interrogans/genetics , Protein Binding , Leptospirosis/microbiology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Hum Genomics ; 17(1): 80, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37641126

ABSTRACT

Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and length of hospitalization for COVID-19, which can be utilized as a platform for future unknown viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID-19 patients (n = 111) during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error (R2 = 0.9765) and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were intubated. Furthermore, 5-hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID-19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly identify which patients will develop life-threatening illness would allow the efficient allocation of medical resources and implementation of the most effective medical interventions. We would advocate that the same approach could be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes while optimizing healthcare resources.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Triage , Allantoin , Disease Outbreaks , Machine Learning
4.
J Infect Dis ; 225(1): 130-134, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34139761

ABSTRACT

In this study, we genotyped samples from environmental reservoirs (surface water and soil), colonized rat specimens, and cases of human severe leptospirosis from an endemic urban slum in Brazil, to determine the molecular epidemiology of pathogenic Leptospira and identify pathways of leptospirosis infection. We identified a well-established population of Leptospira interrogans serovar Copenhageni common to human leptospirosis cases, and animal and environmental reservoirs. This finding provides genetic evidence for a potential environmental spillover pathway for rat-borne leptospirosis through the environment in this urban community and highlights the importance of environmental and social interventions to reduce spillover infections.


Subject(s)
Environment , Leptospira/isolation & purification , Leptospirosis/epidemiology , Soil Microbiology , Water Microbiology , Amplified Fragment Length Polymorphism Analysis , Animals , Brazil/epidemiology , Humans , Leptospira/genetics , Leptospira interrogans/genetics , Leptospirosis/diagnosis , Molecular Epidemiology , Phylogeny , Rats , Sequence Analysis, DNA
5.
Emerg Infect Dis ; 28(10): 2132-2134, 2022 10.
Article in English | MEDLINE | ID: mdl-36148970

ABSTRACT

We conducted enhanced acute febrile illness surveillance in an urban slum community in Salvador, Brazil. We found that rickettsial infection accounted for 3.5% of urgent care visits for acute fever. Our results suggest that rickettsiae might be an underrecognized, treatable cause of acute febrile illness in impoverished urban populations in Brazil.


Subject(s)
Rickettsia Infections , Rickettsia , Antibodies, Bacterial , Brazil/epidemiology , Fever/epidemiology , Humans , Poverty Areas , Rickettsia Infections/diagnosis , Rickettsia Infections/epidemiology
6.
PLoS Med ; 19(9): e1004093, 2022 09.
Article in English | MEDLINE | ID: mdl-36074784

ABSTRACT

BACKGROUND: The structural environment of urban slums, including physical, demographic, and socioeconomic attributes, renders inhabitants more vulnerable to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Yet, little is known about the specific determinants that contribute to high transmission within these communities. We therefore aimed to investigate SARS-CoV-2 seroprevalence in an urban slum in Brazil. METHODS AND FINDINGS: We performed a cross-sectional serosurvey of an established cohort of 2,041 urban slum residents from the city of Salvador, Brazil between November 2020 and February 2021, following the first Coronavirus Disease 2019 (COVID-19) pandemic wave in the country and during the onset of the second wave. The median age in this population was 29 years (interquartile range [IQR] 16 to 44); most participants reported their ethnicity as Black (51.5%) or Brown (41.7%), and 58.5% were female. The median size of participating households was 3 (IQR 2 to 4), with a median daily per capita income of 2.32 (IQR 0.33-5.15) US Dollars. The main outcome measure was presence of IgG against the SARS-CoV-2 spike protein. We implemented multilevel models with random intercepts for each household to estimate seroprevalence and associated risk factors, adjusting for the sensitivity and specificity of the assay, and the age and gender distribution of our study population. We identified high seroprevalence (47.9%, 95% confidence interval [CI] 44.2% to 52.1%), particularly among female residents (50.3% [95% CI 46.3% to 54.8%] versus 44.6% [95% CI 40.1% to 49.4%] among male residents, p < 0.01) and among children (54.4% [95% CI 49.6% to 59.3%] versus 45.4% [95% CI 41.5% to 49.7%] among adults, p < 0.01). Adults residing in households with children were more likely to be seropositive (48.6% [95% CI 44.8% to 52.3%] versus 40.7% [95% CI 37.2% to 44.3%], p < 0.01). Women who were unemployed and living below the poverty threshold (daily per capita household income <$1.25) were more likely to be seropositive compared to men with the same employment and income status (53.9% [95% CI 47.0% to 60.6%] versus 32.9% [95% CI 23.2% to 44.3%], p < 0.01). Participation in the study was voluntary, which may limit the generalizability of our findings. CONCLUSIONS: Prior to the peak of the second wave of the COVID-19 pandemic, cumulative incidence as assessed by serology approached 50% in a Brazilian urban slum population. In contrast to observations from industrialized countries, SARS-CoV-2 incidence was highest among children, as well as women living in extreme poverty. These findings emphasize the need for targeted interventions that provide safe environments for children and mitigate the structural risks posed by crowding and poverty for the most vulnerable residents of urban slum communities.


Subject(s)
COVID-19 , Adult , Brazil/epidemiology , COVID-19/epidemiology , Child , Cross-Sectional Studies , Female , Humans , Immunoglobulin G , Male , Pandemics , Poverty Areas , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
7.
J Infect Dis ; 224(5): 860-864, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33395487

ABSTRACT

To understand the disease burden of sexually transmitted Zika virus (ZIKV), we prospectively followed a cohort of 359 adult and adolescent residents of an urban community in Salvador, Brazil, through the 2015 ZIKV epidemic. Later, in 2017, we used a retrospective survey to associate sexual behavior during the epidemic with ZIKV infection as defined by immunoglobulin G3 NS1 enzyme-linked immunosorbent assay. We found that males who engaged in casual sexual encounters during the epidemic were more likely (adjusted odds ratio, 6.2 [95% confidence interval, 1.2-64.1]) to be ZIKV positive, suggesting that specific groups may be at increased risk of sexually transmitted infections.


Subject(s)
Poverty Areas , Sexual Behavior , Sexually Transmitted Diseases, Viral/epidemiology , Zika Virus Infection/epidemiology , Zika Virus/isolation & purification , Adolescent , Adult , Female , Humans , Male , Retrospective Studies , Urban Population
8.
Mol Ecol ; 30(9): 2145-2161, 2021 05.
Article in English | MEDLINE | ID: mdl-33107122

ABSTRACT

Land use change can elevate disease risk by creating conditions beneficial to species that carry zoonotic pathogens. Observations of concordant global trends in increased pathogen prevalence or disease incidence and landscape change have generated concerns that urbanization could increase transmission risk of some pathogens. Yet host-pathogen relationships underlying transmission risk have not been well characterized within cities, even where contact between humans and species capable of transmitting pathogens of concern occurs. We addressed this deficit by testing the hypothesis that areas in cities experiencing greater population loss and infrastructure decline (i.e., counter-urbanization) can support a greater diversity of host species and a larger and more diverse pool of pathogens. We did so by characterizing pathogenic Leptospira infection relative to rodent host richness and abundance across a mosaic of abandonment in post-Katrina New Orleans (Louisiana, USA). We found that Leptospira infection loads were highest in areas that harboured increased rodent species richness (which ranged from one to four rodent species detected). Areas with greater host co-occurrence also harboured a greater abundance of hosts, including the host species most likely to carry high infection loads, indicating that Leptospira infection can be amplified by increases in overall and relative host abundance. Evidence of shared infection among rodent host species indicates that cross-species transmission of Leptospira probably increases infection at sites with greater host richness. Additionally, evidence that rodent co-occurrence and abundance and Leptospira infection load parallel abandonment suggests that counter-urbanization can elevate zoonotic disease risk within cities, particularly in underserved communities that are burdened with disproportionate concentrations of derelict properties.


Subject(s)
Leptospira , Leptospirosis , Animals , Cities , Leptospira/genetics , Leptospirosis/epidemiology , Louisiana , Rodentia , Zoonoses/epidemiology
9.
Microb Pathog ; 150: 104704, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33347965

ABSTRACT

Leptospires are aerobic, Gram-negative spirochetes with a high invasive capacity. Pathogenic leptospires secrete proteases that inactivate a variety of host's proteins including molecules of the extracellular matrix and of the human complement system. This strategy, used by several pathogens of medical importance, contributes to bacterial invasion and immune evasion. In the current work we present evidence that Leptospira proteases also target human cathelicidin (LL-37), an antimicrobial peptide that plays an important role in the innate immune response. By using six Leptospira strains, four pathogenic and two saprophytic, we demonstrated that proteases present in the supernatants of pathogenic strains were capable of degrading LL-37 in a time-dependent manner, whereas proteolytic degradation was not observed with the supernatants of the two saprophytic strains. Inactivation of LL-37 was prevented by using the 1,10-phenanthroline inhibitor, thus suggesting the involvement of metalloproteinases in this process. In addition, the antibacterial activity of LL-37 against two Leptospira strains was evaluated. Compared to the saprophytic strain, a greater resistance of the pathogenic strain to the action of the peptide was observed. Our data suggest that the capacity to inactivate the host defense peptide LL-37 may be part of the virulence arsenal of pathogenic Leptospira, and we hypothesize that its inactivation by the bacteria may influence the outcome of the disease.


Subject(s)
Leptospira , Leptospirosis , Antimicrobial Cationic Peptides , Humans , Immune Evasion , Pore Forming Cytotoxic Proteins , Cathelicidins
10.
Environ Sci Technol ; 55(23): 15882-15890, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34767339

ABSTRACT

Leptospirosis is an environmentally transmitted zoonotic disease caused by pathogenic Leptospira spp. that affects poor communities worldwide. In urban slums, leptospirosis is associated with deficient sanitary infrastructure. Yet, the role of sewerage in the reduction of the environmental contamination with pathogenic Leptospira has not been explored. Here, we conducted a survey of the pathogen in soils surrounding open and closed sewer sections in six urban slums in Brazil. We found that soils surrounding conventionally closed sewers (governmental interventions) were 3 times less likely to contain pathogenic Leptospira (inverse OR 3.44, 95% CI = 1.66-8.33; p < 0.001) and contained a 6 times lower load of the pathogen (0.82 log10 units difference, p < 0.01) when compared to their open counterparts. However, no differences were observed in community-closed sewers (poor-quality closings performed by the slum dwellers). Human fecal markers (BacHum) were positively associated with pathogenic Leptospira even in closed sewers, and rat presence was not predictive of the presence of the pathogen in soils, suggesting that site-specific rodent control may not be sufficient to reduce the environmental contamination with Leptospira. Overall, our results indicate that sewerage expansion to urban slums may help reduce the environmental contamination with the pathogen and therefore reduce the risk of human leptospirosis.


Subject(s)
Leptospira , Leptospirosis , Animals , Brazil , Leptospirosis/epidemiology , Poverty Areas , Rats , Soil
11.
Emerg Infect Dis ; 26(2): 311-314, 2020 02.
Article in English | MEDLINE | ID: mdl-31961288

ABSTRACT

The incidence of hospitalized leptospirosis patients was positively associated with increased precipitation in Salvador, Brazil. However, Leptospira infection risk among a cohort of city residents was inversely associated with rainfall. These findings indicate that, although heavy rainfall may increase severe illness, Leptospira exposures can occur year-round.


Subject(s)
Hospitalization , Leptospirosis/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , Child , Child, Preschool , Female , Humans , Incidence , Leptospirosis/etiology , Male , Middle Aged , Poverty , Rain , Risk Factors , Seasons , Young Adult
12.
Int J Syst Evol Microbiol ; 70(3): 1450-1456, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31184568

ABSTRACT

Four spirochetes (F1T, B21, YaleT and AMB6-RJ) were isolated from environmental sources: F1T and B21 from soils of an urban slum community in Salvador (Brazil), YaleT from river water in New Haven, Connecticut (USA) and AMB6-RJ from a pond in a horse farm in Rio de Janeiro (Brazil). Isolates were helix-shaped, aerobic, highly motile and non-virulent in a hamster model of infection. Draft genomes of the strains were obtained and analysed to determine the relatedness to other species of the genus Leptospira. The analysis of 498 core genes showed that strains F1T/B21 and YaleT/AMB6-RJ formed two distinct phylogenetic clades within the 'Pathogens' group (group I). The average nucleotide identity (ANI) values of strains F1T/B21 and YaleT/AMB6-RJ to other previously described Leptospira species were below <84 % and <82 %, respectively, which confirmed that these isolates should be classified as representatives of two novel species. Therefore, we propose Leptospirayasudae sp. nov. and Leptospirastimsonii sp. nov. as new species in the genus Leptospira. The type strains are F1T (=ATCC-TSD-163=KIT0259=CLEP00287) and YaleT (=ATCC-TDS-162=KIT0258=CLEP00288), respectively.


Subject(s)
Leptospira/classification , Phylogeny , Ponds/microbiology , Rivers/microbiology , Soil Microbiology , Animals , Bacterial Typing Techniques , Base Composition , Brazil , Cities , Connecticut , DNA, Bacterial/genetics , Farms , Horses , Leptospira/isolation & purification , Nucleic Acid Hybridization , Poverty Areas , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
J Infect Dis ; 220(9): 1489-1497, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31342075

ABSTRACT

BACKGROUND: The burden of leptospirosis in Puerto Rico remains unclear due to underreporting. METHODS: A cross-sectional survey and rodent trapping was performed in a community within San Juan, Puerto Rico to determine the seroprevalence and risk factors for Leptospira infection. The microscopic agglutination test was used to detect anti-Leptospira antibodies as a marker of previous infection. We evaluated Leptospira carriage by quantitative polymerase chain reaction among rodents trapped at the community site. RESULTS: Of 202 study participants, 55 (27.2%) had Leptospira agglutinating antibodies. Among the 55 seropositive individuals, antibodies were directed most frequently against serogroups Icterohaemorrhagiae (22.0%) and Autumnalis (10.6%). Of 18 captured rodents, 11 (61.1%) carried pathogenic Leptospira (Leptospira borgpetersenii, 7 and Leptospira interrogans, 2). Four participants showed their highest titer against an isolate obtained from a rodent (serogroup Ballum). Increasing household distance to the canal that runs through the community was associated with decreased risk of infection (odds ratio = 0.934 per 10-meter increase; 95% confidence interval, .952-.992). CONCLUSIONS: There are high levels of Leptospira exposure in an urban setting in Puerto Rico, for which rodents may be an important reservoir for transmission. Our findings indicate that prevention should focus on mitigating risk posed by infrastructure deficiencies such as the canal.


Subject(s)
Disease Reservoirs , Leptospira interrogans/isolation & purification , Leptospira/isolation & purification , Leptospirosis/epidemiology , Rodentia/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Puerto Rico/epidemiology , Risk Factors , Seroepidemiologic Studies , Urban Population , Young Adult
15.
Article in English | MEDLINE | ID: mdl-33620308

ABSTRACT

Leptospira dzianensis and Leptospira putramalaysiae were recently described as novel species and published almost concurrently with Leptospira yasudae and Leptospira stimsonii. Genome comparisons based on average nucleotide identity of the type strain genomes indicate that L. dzianensis and L. putramalaysiae are conspecific with L. yasudae and L. stimsonii, respectively. Based on the rules of priority, L. dzianensis should be reclassified as a later heterotypic synonym of L. yasudae, and L. putramalaysiae should be reclassified as a later heterotypic synonym of L. stimsonii.

16.
PLoS Pathog ; 12(11): e1005943, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27812211

ABSTRACT

Leptospirosis causes significant morbidity and mortality worldwide; however, the role of the host immune response in disease progression and high case fatality (>10-50%) is poorly understood. We conducted a multi-parameter investigation of patients with acute leptospirosis to identify mechanisms associated with case fatality. Whole blood transcriptional profiling of 16 hospitalized Brazilian patients with acute leptospirosis (13 survivors, 3 deceased) revealed fatal cases had lower expression of the antimicrobial peptide, cathelicidin, and chemokines, but more abundant pro-inflammatory cytokine receptors. In contrast, survivors generated strong adaptive immune signatures, including transcripts relevant to antigen presentation and immunoglobulin production. In an independent cohort (23 survivors, 22 deceased), fatal cases had higher bacterial loads (P = 0.0004) and lower anti-Leptospira antibody titers (P = 0.02) at the time of hospitalization, independent of the duration of illness. Low serum cathelicidin and RANTES levels during acute illness were independent risk factors for higher bacterial loads (P = 0.005) and death (P = 0.04), respectively. To investigate the mechanism of cathelicidin in patients surviving acute disease, we administered LL-37, the active peptide of cathelicidin, in a hamster model of lethal leptospirosis and found it significantly decreased bacterial loads and increased survival. Our findings indicate that the host immune response plays a central role in severe leptospirosis disease progression. While drawn from a limited study size, significant conclusions include that poor clinical outcomes are associated with high systemic bacterial loads, and a decreased antibody response. Furthermore, our data identified a key role for the antimicrobial peptide, cathelicidin, in mounting an effective bactericidal response against the pathogen, which represents a valuable new therapeutic approach for leptospirosis.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/metabolism , Leptospirosis/immunology , Animals , Brazil , Cluster Analysis , Cricetinae , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Mesocricetus , Oligonucleotide Array Sequence Analysis , Risk Factors , Cathelicidins
17.
Appl Environ Microbiol ; 84(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29703737

ABSTRACT

Leptospira interrogans is the etiological agent of leptospirosis, a globally distributed zoonotic disease. Human infection usually occurs through skin exposure with water and soil contaminated with the urine of chronically infected animals. In this study, we aimed to quantitatively characterize the survival of Leptospira interrogans serovar Copenhageni in environmental matrices. We constructed laboratory microcosms to simulate natural conditions and determined the persistence of DNA markers in soil, mud, spring water and sewage using a quantitative PCR (qPCR) and a propidium monoazide (PMA)-qPCR assay. We found that L. interrogans does not survive at high concentrations in the tested matrices. No net growth was detected in any of the experimental conditions and in all cases the concentration of the DNA markers targeted decreased from the beginning of the experiment following an exponential decay with a decreasing decay rate over time. After 12 and 21 days of incubation the spiked concentration of 106L. interrogans cells/ml or g decreased to approximately 100 cells/ml or g in soil and spring water microcosms, respectively. Furthermore, culturable L. interrogans persisted at concentrations under the limit of detection by PMA-qPCR or qPCR for at least 16 days in soil and 28 days in spring water. Altogether, our findings suggest that the environment is not a multiplication reservoir but a temporary carrier of L. interrogans Copenhageni, although the observed prolonged persistence at low concentrations may still enable the transmission of the disease.IMPORTANCE Leptospirosis is a zoonotic disease caused by spirochetes of the genus Leptospira that primarily affects impoverished populations worldwide. Although leptospirosis is transmitted by contact with water and soil, little is known about the ability of the pathogen to survive in the environment. In this study, we quantitatively characterized the survival of L. interrogans in environmental microcosms and found that although it cannot multiply in water, soil or sewage, it survives for extended time periods (days to weeks depending on the matrix). The survival parameters obtained here may help to better understand the distribution of pathogenic Leptospira in the environment and improve the predictions of human infection risks in areas where such infections are endemic.


Subject(s)
Leptospira interrogans/growth & development , Leptospira interrogans/isolation & purification , Microbial Viability , Soil Microbiology , Water Microbiology , Animals , DNA, Bacterial/analysis , Genetic Markers , Humans , Leptospira , Leptospira interrogans/genetics , Leptospira interrogans/pathogenicity , Leptospirosis/microbiology , Leptospirosis/transmission , Real-Time Polymerase Chain Reaction , Sewage/microbiology , Soil , Time Factors , Urine , Water , Waterborne Diseases/microbiology , Waterborne Diseases/transmission , Zoonoses
18.
Mol Microbiol ; 101(3): 457-70, 2016 08.
Article in English | MEDLINE | ID: mdl-27113476

ABSTRACT

Leptospira are unique among bacteria based on their helical cell morphology with hook-shaped ends and the presence of periplasmic flagella (PF) with pronounced spontaneous supercoiling. The factors that provoke such supercoiling, as well as the role that PF coiling plays in generating the characteristic hook-end cell morphology and motility, have not been elucidated. We have now identified an abundant protein from the pathogen L. interrogans, exposed on the PF surface, and named it Flagellar-coiling protein A (FcpA). The gene encoding FcpA is highly conserved among Leptospira and was not found in other bacteria. fcpA(-) mutants, obtained from clinical isolates or by allelic exchange, had relatively straight, smaller-diameter PF, and were not able to produce translational motility. These mutants lost their ability to cause disease in the standard hamster model of leptospirosis. Complementation of fcpA restored the wild-type morphology, motility and virulence phenotypes. In summary, we identified a novel Leptospira 36-kDa protein, the main component of the spirochete's PF sheath, and a key determinant of the flagella's coiled structure. FcpA is essential for bacterial translational motility and to enable the spirochete to penetrate the host, traverse tissue barriers, disseminate to cause systemic infection and reach target organs.


Subject(s)
Flagella/physiology , Leptospira/physiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cricetinae , Dogs , Flagella/genetics , Flagella/metabolism , Flagellin/genetics , Flagellin/metabolism , Genetic Complementation Test , Leptospira/genetics , Leptospira/metabolism , Leptospira/pathogenicity , Leptospirosis/microbiology , Madin Darby Canine Kidney Cells , Male , Mesocricetus , Mutation , Periplasm/metabolism , Protein Structural Elements , Virulence
19.
Infect Immun ; 84(7): 2105-2115, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27141082

ABSTRACT

The pathogen Leptospira interrogans is a highly motile spirochete that causes acute and fulminant infections in humans and other accidental hosts. Hematogenous dissemination is important for infection by the pathogen but remains poorly understood because few animal model studies have used sensitive tools to quantify the bacteria. We evaluated the kinetics of leptospiral infection in Golden Syrian hamsters by a sensitive quantitative real-time PCR (TaqMan) with lipl32 as the target gene. The dissemination and bacterial burden were measured after intraperitoneal infection with a high dose (10(8)) or low dose (2.5 × 10(2)) of leptospires. We also examined the conjunctival challenge route to mimic the natural history of infection. Quantification of leptospires in perfused animals revealed that pathogens were detected in all organs of intraperitoneally infected hamsters, including the eye and brain, within 1 h after inoculation of 10(8) virulent L. interrogans bacteria. Peaks of 10(5) to 10(8) leptospires per gram or per milliliter were achieved in blood and all tissues between day 4 and day 8 after intraperitoneal inoculation of high- and low-dose challenges, respectively, coinciding with macroscopic and histological changes. The conjunctival route resulted in a delay in the time to peak organ burden in comparison to intraperitoneal infection, indicating that although infection could be established, penetration efficiency was low across this epithelial barrier. Surprisingly, infection with a large inoculum of high-passage-number attenuated L. interrogans strains resulted in dissemination to all organs in the first 4 days postinfection, albeit with a lower burden, followed by clearance from the blood and organs 7 days postinfection and survival of all animals. These results demonstrate that leptospiral dissemination and tissue invasion occur. In contrast, development of a critical level of tissue burden and pathology are dependent on the virulence of the infecting strain.


Subject(s)
Leptospira interrogans/physiology , Leptospirosis/microbiology , Animals , Bacterial Load , Conjunctiva/microbiology , Cricetinae , Disease Models, Animal , Leptospirosis/diagnosis , Leptospirosis/mortality , Male , Peritoneal Cavity/microbiology , Real-Time Polymerase Chain Reaction
20.
J Proteome Res ; 14(1): 549-56, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25358092

ABSTRACT

With increasing efficiency, accuracy, and speed we can access complete genome sequences from thousands of infectious microorganisms; however, the ability to predict antigenic targets of the immune system based on amino acid sequence alone is still needed. Here we use a Leptospira interrogans microarray expressing 91% (3359) of all leptospiral predicted ORFs (3667) and make an empirical accounting of all antibody reactive antigens recognized in sera from naturally infected humans; 191 antigens elicited an IgM or IgG response, representing 5% of the whole proteome. We classified the reactive antigens into 26 annotated COGs (clusters of orthologous groups), 26 JCVI Mainrole annotations, and 11 computationally predicted proteomic features. Altogether, 14 significantly enriched categories were identified, which are associated with immune recognition including mass spectrometry evidence of in vitro expression and in vivo mRNA up-regulation. Together, this group of 14 enriched categories accounts for just 25% of the leptospiral proteome but contains 50% of the immunoreactive antigens. These findings are consistent with our previous studies of other Gram-negative bacteria. This genome-wide approach provides an empirical basis to predict and classify antibody reactive antigens based on structural, physical-chemical, and functional proteomic features and a framework for understanding the breadth and specificity of the immune response to L. interrogans.


Subject(s)
Antigens, Bacterial/blood , Leptospira interrogans/immunology , Leptospira interrogans/metabolism , Leptospirosis/blood , Proteome/metabolism , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Humans , Leptospira interrogans/genetics , Mass Spectrometry , Microarray Analysis , Molecular Sequence Annotation , Molecular Sequence Data , Proteome/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL