Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474448

ABSTRACT

Prosthetic infections are associated with high morbidity, mortality, and relapse rates, making them still a serious problem for implantology. Staphylococcus aureus is one of the most common bacterial pathogens causing prosthetic infections. In response to the increasing rate of bacterial resistance to commonly used antibiotics, this work proposes a method for combating pathogenic microorganisms by modifying the surfaces of synthetic polymeric biomaterials using proteolytic enzyme inhibitors (serine protease inhibitors-4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride and puromycin). While using techniques based on the immobilization of biologically active molecules, it is important to monitor the changes occurring on the surface of the modified biomaterial, where spectroscopic techniques (e.g., FTIR) are ideal. ATR-FTIR measurements demonstrated that the immobilization of both inhibitors caused large structural changes on the surface of the tested vascular prostheses (polyester or polytetrafluoroethylene) and showed that they were covalently bonded to the surfaces of the biomaterials. Next, the bactericidal and antibiofilm activities of the tested serine protease inhibitors were determined using the CLSM microscopic technique with fluorescent staining. During LIVE/DEAD analyses, a significant decrease in the formation of Staphylococcus aureus biofilm after exposure to selected concentrations of native inhibitors (0.02-0.06 mg/mL for puromycin and 0.2-1 mg/mL for 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride) was demonstrated.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Sulfones , Humans , Blood Vessel Prosthesis , Anti-Bacterial Agents/pharmacology , Biofilms , Serine Proteinase Inhibitors/pharmacology , Staphylococcus aureus , Biocompatible Materials , Puromycin , Peptide Hydrolases
2.
Int J Mol Sci ; 22(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802057

ABSTRACT

Heavy metals polluting the 100-year-old waste heap in Boleslaw (Poland) are acting as a natural selection factor and may contribute to adaptations of organisms living in this area, including Trifolium repens and its root nodule microsymbionts-rhizobia. Exopolysaccharides (EPS), exuded extracellularly and associated with bacterial cell walls, possess variable structures depending on environmental conditions; they can bind metals and are involved in biofilm formation. In order to examine the effects of long-term exposure to metal pollution on EPS structure and biofilm formation of rhizobia, Rhizobium leguminosarum bv. trifolii strains originating from the waste heap area and a non-polluted reference site were investigated for the characteristics of the sugar fraction of their EPS using gas chromatography mass-spectrometry and also for biofilm formation and structural characteristics using confocal laser scanning microscopy under control conditions as well as when exposed to toxic concentrations of zinc, lead, and cadmium. Significant differences in EPS structure, biofilm thickness, and ratio of living/dead bacteria in the biofilm were found between strains originating from the waste heap and from the reference site, both without exposure to metals and under metal exposure. Received results indicate that studied rhizobia can be assumed as potentially useful in remediation processes.


Subject(s)
Biofilms , Metals, Heavy/metabolism , Polysaccharides, Bacterial/metabolism , Rhizobium leguminosarum/physiology , Soil Pollutants/metabolism , Trifolium/microbiology , Biofilms/drug effects , Biofilms/growth & development
3.
Mol Plant Microbe Interact ; 32(7): 899-911, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30681888

ABSTRACT

In this study, functional characterization of the mgl2 gene located near the Pss-I exopolysaccharide biosynthesis region in Rhizobium leguminosarum bv. trifolii TA1 is described. The hypothetical protein encoded by the mgl2 gene was found to be similar to methyltransferases (MTases). Protein homology and template-based modeling facilitated prediction of the Mgl2 structure, which greatly resembled class I MTases with a S-adenosyl-L-methionine-binding cleft. The Mgl2 protein was engaged in exopolysaccharide, but not lipopolysaccharide, synthesis. The mgl2 deletion mutant produced exopolysaccharide comprised of only low molecular weight fractions, while overexpression of mgl2 caused overproduction of exopolysaccharide with a normal low to high molecular weight ratio. The deletion of the mgl2 gene resulted in disturbances in biofilm formation and a slight increase in motility in minimal medium. Red clover (Trifolium pratense) inoculated with the mgl2 mutant formed effective nodules, and the appearance of the plants indicated active nitrogen fixation. The mgl2 gene was preceded by an active and strong promoter. Mgl2 was defined as an integral membrane protein and formed homodimers in vivo; however, it did not interact with Pss proteins encoded within the Pss-I region. The results are discussed in the context of the possible involvement of the newly described potential MTase in various metabolic traits, such as the exopolysaccharide synthesis and motility that are important for rhizobial saprophytic and symbiotic relationships.


Subject(s)
Biofilms , Methyltransferases , Rhizobium leguminosarum , Biofilms/growth & development , Methyltransferases/metabolism , Nitrogen Fixation , Polysaccharides, Bacterial/genetics , Rhizobium leguminosarum/enzymology , Rhizobium leguminosarum/genetics
4.
Amino Acids ; 51(2): 175-191, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30167962

ABSTRACT

Cecropins constitute an important family of insect antimicrobial peptides involved in humoral innate immune response. In comparison with the highly basic cecropins A and B, cecropins D are less cationic and more hydrophobic. Interestingly, cecropins D were described only in lepidopteran insects, e.g., the greater wax moth Galleria mellonella. In the present study, interactions of neutral cecropin D (pI 6.47) purified from hemolymph of G. mellonella with living Escherichia coli cells were investigated. Fluorescence lifetime imaging microscopy using fluorescein isothiocyanate-labeled cecropin D revealed very fast binding of the peptide to E. coli cells. Fourier transform infrared spectroscopy analyses showed that G. mellonella cecropin D interacted especially with E. coli LPS and probably other lipid components of the bacterial cell envelope and exhibited an ordering effect with regard to lipid chains. This effect is consistent with the peptide binding mechanism based upon its incorporation into the lipid phase of the cell membrane. The interaction resulted in permeabilization of the bacterial cell membrane. Upon cecropin D binding, the cells lost characteristic surface topography, which was accompanied by altered nanomechanical properties, as revealed by atomic force microscopy. The interaction of the peptide with the bacterial cells also led to intracellular damage, i.e., loss of the cell envelope multilayer structure, formation of membrane vesicles, and enlargement of periplasmic space, which eventually caused death of the bacteria. In summary, it can be concluded that amphipathic character of α-helices, exposure of small positively charged patches on their polar surfaces and hydrophobic interactions are important physicochemical characteristics related to effective binding to E. coli cells and antibacterial activity of neutral G. mellonella cecropin D.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cecropins/chemistry , Cecropins/pharmacology , Escherichia coli/drug effects , Insect Proteins/chemistry , Insect Proteins/pharmacology , Moths/chemistry , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Bacterial Adhesion/physiology , Cecropins/isolation & purification , Cell Membrane/metabolism , Cell Membrane Permeability/physiology , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Hemolymph/chemistry , Insect Proteins/isolation & purification , Insect Proteins/metabolism , Lipopolysaccharides/metabolism , Membrane Fluidity/physiology , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Periplasm/metabolism , Protein Binding , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared
5.
Bioprocess Biosyst Eng ; 41(7): 973-989, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29582151

ABSTRACT

Four bacterial EPSs extracted from Rhizobium leguminosarum bv. trifolii Rt24.2, Sinorhizobium meliloti Rm1021, Bradyrhizobium japonicum USDA110, and Bradyrhizobium elkanii USDA76 were determined towards their metal ion adsorption properties and possible modification of Cerrena unicolor laccase properties. The highest magnesium and iron ion-sorption capacity (~ 42 and ~ 14.5%, respectively) was observed for EPS isolated from B. japonicum USDA110. An evident influence of EPSs on the stability of laccase compared to the control values (without EPSs) was shown after 30-day incubation at 25 °C. The residual activity of laccases was obtained in the presence of Rh76EPS and Rh1021EPS, i.e., 49.5 and 41.5% of the initial catalytic activity, respectively. This result was confirmed by native PAGE electrophoresis. The EPS effect on laccase stability at different pH (from 3.8 to 7.0) was also estimated. The most significant changes at the optimum pH value (pH 5.8) was observed in samples of laccase stabilized by Rh76EPS and Rh1021EPS. Cyclic voltamperometry was used for analysis of electrochemical parameters of laccase stabilized by bacterial EPS and immobilized on single-walled carbon nanotubes (SWCNTs) with aryl residues. Laccases with Rh76EPS and Rh1021EPS had an evident shift of the value of the redox potential compared to the control without EPS addition. In conclusion, the results obtained in this work present a new potential use of bacterial EPSs as a metal-binding component and a modulator of laccase properties especially stability of enzyme activity, which can be a very effective tool in biotechnology and industrial applications.


Subject(s)
Bacteria/chemistry , Basidiomycota/enzymology , Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Laccase/chemistry , Metals/chemistry , Polysaccharides, Bacterial/chemistry , Enzyme Stability , Hydrogen-Ion Concentration
6.
Int J Mol Sci ; 19(11)2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30413017

ABSTRACT

In our previous report, we had shown that the free-living amoeba Acanthamoeba castellanii influenced the abundance, competiveness, and virulence of Mesorhizobium loti NZP2213, the microsymbiont of agriculturally important plants of the genus Lotus. The molecular basis of this phenomenon; however, had not been explored. In the present study, we demonstrated that oatB, the O-acetyltransferase encoding gene located in the lipopolysaccharide (LPS) synthesis cluster of M. loti, was responsible for maintaining the protective capacity of the bacterial cell envelope, necessary for the bacteria to fight environmental stress and survive inside amoeba cells. Using co-culture assays combined with fluorescence and electron microscopy, we showed that an oatB mutant, unlike the parental strain, was efficiently destroyed after rapid internalization by amoebae. Sensitivity and permeability studies of the oatB mutant, together with topography and nanomechanical investigations with the use of atomic force microscopy (AFM), indicated that the incomplete substitution of lipid A-core moieties with O-polysaccharide (O-PS) residues rendered the mutant more sensitive to hydrophobic compounds. Likewise, the truncated LPS moieties, rather than the lack of O-acetyl groups, made the oatB mutant susceptible to the bactericidal mechanisms (nitrosative stress and the action of lytic enzymes) of A. castellanii.


Subject(s)
Acanthamoeba castellanii/microbiology , Acetyltransferases/genetics , Bacterial Proteins/genetics , Mesorhizobium/genetics , Acanthamoeba castellanii/genetics , Acanthamoeba castellanii/pathogenicity , Cell Wall/microbiology , Mutation
7.
Sci Rep ; 13(1): 2844, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36807384

ABSTRACT

In the present research, the effect of a protein-polysaccharide complex Venetin-1 obtained from the coelomic fluid of Dendrobaena veneta earthworm on Candida albicans cells was characterized. The compound destroyed fungal cells without showing cytotoxicity to human skin fibroblasts, which was demonstrated in earlier studies. Since it had an effect on the fungal cell wall and membrane, this complex was compared with the known antifungal antibiotic fluconazole. Both preparations disturbed the division of yeast cells and resulted in the formation of aggregates and chains of unseparated cells, which was illustrated by staining with fluorochromes. Fluorescent staining of the cell wall with Calcofluor white facilitated comparison of the types of aggregates formed after the action of both substances. The analysis performed with the use of Congo red showed that Venetin-1 exposed deeper layers of the cell wall, whereas no such effect was visible after the use of fluconazole. The FTIR analysis confirmed changes in the mannoprotein layer of the cell wall after the application of the Venetin-1 complex. Staining with Rhodamine 123 and the use of flow cytometry allowed comparison of changes in the mitochondria. Significantly elongated mitochondria were observed after the Venetin-1 application, but not after the application of the classic antibiotic. Phase contrast microscopy revealed vacuole enlargement after the Venetin-1 application. The flow cytometry analysis of C. albicans cells treated with Venetin-1 and fluconazole showed that both substances caused a significant decrease in cell viability.


Subject(s)
Candida albicans , Oligochaeta , Animals , Humans , Fluconazole/pharmacology , Antifungal Agents/pharmacology , Fibroblasts , Microbial Sensitivity Tests
8.
Cells ; 12(3)2023 01 22.
Article in English | MEDLINE | ID: mdl-36766739

ABSTRACT

The current prevalence of such lifestyle diseases as mycobacteriosis and tuberculosis is a result of the growing resistance of microorganisms to the available antibiotics and their significant toxicity. Therefore, plants can successfully become a source of new therapeutic agents. The aim of this study was to investigate the effect of protein extract from Sida hermaphrodita seeds on the morphology, structure, and viability of Mycobacterium smegmatis and to carry out proteomic characterization of the protein extract. The analyses were carried out using fluorescence and transmission microscopy, atomic force microscopy, and spectroscopy. The proteomic studies were performed using liquid chromatography coupled to tandem mass spectrometry. The studies showed that the seed extract applied at concentrations of 50-150 µg/mL exerted a statistically significant effect on M. smegmatis cells, that is, a reduction of the viability of the bacteria and induction of changes in the structure of the mycobacterial cell wall. Additionally, the SEM analysis confirmed that the extract did not have a cytotoxic or cytopathic effect on fibroblast cells. The proteomic analysis revealed the presence of structural, storage, and enzymatic proteins and peptides in the extract, which are typical for seeds. Proteins and peptides with antimicrobial activity identified as vicillins and lipid-transporting proteins were also determined in the protein profile of the extract.


Subject(s)
Malvaceae , Malvaceae/chemistry , Proteomics , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Seeds
9.
Sci Rep ; 13(1): 14228, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37648723

ABSTRACT

The present studies show the effect of the Venetin-1 protein-polysaccharide complex obtained from the coelomic fluid of the earthworm Dendrobaena veneta on Candida albicans cells. They are a continuation of research on the mechanisms of action, cellular targets, and modes of cell death. After the action of Venetin-1, a reduced survival rate of the yeast cells was noted. The cells were observed to be enlarged compared to the controls and deformed. In addition, an increase in the number of cells with clearly enlarged vacuoles was noted. The detected autophagy process was confirmed using differential interference contrast, fluorescence microscopy, and transmission electron microscopy. Autophagic vesicles were best visible after incubation of fungus cells with the Venetin-1 complex at a concentration of 50 and 100 µg mL-1. The changes in the vacuoles were accompanied by changes in the size of mitochondria, which is probably related to the previously documented oxidative stress. The aggregation properties of Venetin-1 were characterized. Based on the results of the zeta potential at the Venetin-1/KCl interface, the pHiep = 4 point was determined, i.e. the zeta potential becomes positive above pH = 4 and is negative below this value, which may affect the electrostatic interactions with other particles surrounding Venetin-1.


Subject(s)
Nanoparticles , Oligochaeta , Animals , Candida albicans , Autophagy , Protease Inhibitors
10.
Saudi J Biol Sci ; 28(3): 1890-1899, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33732075

ABSTRACT

Taking into account that fructophilic lactic acid bacteria (FLAB) can play an important role in the health of honey bees and can be used as probiotics, phenotypic properties of probiotic interest of Lactobacillus kunkeei (12 strains) and Fructobacillus fructossus bacteria (2 strains), isolated from Apis mellifera gastrointestinal tract, have been studied. We have evaluated survival of tested FLAB in honey bee gut, their susceptibility to antibiotics (ampicillin, erythromycin, tylosin), cell surface hydrophobicity, auto-aggregation ability, co-aggregation with model pathogenic bacteria, biofilm formation capacity, and effect of studied FLAB, added to sucrose syrup bee diet, on longevity of honey bees. The tested FLAB exhibited good gastrointestinal tract tolerance and high antibiotic susceptibility, which are important criteria in the screening of probiotic candidates. It was also found that all FLAB studied have high cell surface hydrophobicity and fulfil next selection criterion for their use as probiotics. Symbionts of A. mellifera showed also auto- and co-aggregation capacities regarded as valuable features for biofilm formation and inhibition of pathogens adhesion to the bee gut cells. Biofilm-development ability is a desired characteristic of probiotic lactic acid bacteria. As indicated by quantitative crystal violet-stained microplate assay and confocal laser scanning microscopy imaging, all studied A. mellifera gut isolates exhibit a biofilm positive phenotype. Moreover, it was also documented, on honey bees kept in cages, that supplementation of A. mellifera sucrose diet with FLAB decreases mortality and improves significantly longevity of honey bees. Presented research showed that A. mellifera FLAB symbionts are good candidates for application as probiotics.

11.
PLoS One ; 14(3): e0212869, 2019.
Article in English | MEDLINE | ID: mdl-30856188

ABSTRACT

An antifungal active fraction (AAF) from the coelomic fluid (CF) of the earthworm Dendrobaena veneta was isolated. The aim of the study was to analyze the antifungal activity of the AAF and to carry out chemical characterization of the fraction. The active fraction showed antifungal activity against a clinical C. albicans isolate, C. albicans ATCC 10231, and C. krusei ATCC 6258. It effectively reduced the metabolic activity of C. albicans cells and influenced their morphology after 48 hours of incubation. Scanning electron microscopy (SEM) images revealed loss of integrity of the cell wall induced by the active fraction. Calcofluor White staining showed changes in the structure of the C. albicans cell wall induced by the AAF. The fungal cells died via apoptosis and necrosis after the treatment with the studied fraction. Electrophoresis under native conditions revealed the presence of two compounds in the AAF, while SDS/PAGE gel electrophoresis showed several protein and carbohydrate compounds. The active fraction was analyzed using Raman spectroscopy, MALDI TOF/TOF, and ESI LC-MS. The Raman analysis confirmed the presence of proteins and determined their secondary structure. The MALDI TOF/TOF analysis facilitated detection of four main compounds with a mass of 7694.9 m/z, 12292.3 m/z, 21628.3 m/z, and 42923.2 m/z in the analyzed fraction. The presence of carbohydrate compounds in the preparation was confirmed by nuclear magnetic resonance (NMR) and gas chromatography (GC-MS). The ATR-FTIR spectrum of the AAF exhibited high similarity to the spectrum of egg white lysozyme. The AAF showed no endotoxicity and cytotoxicity towards normal skin fibroblasts (HSF); therefore, it can be used for the treatment of skin and mucous membrane candidiasis in the future. Given its efficient and selective action, the fraction seems to be a promising preparation with antifungal activity against C. albicans.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Cytotoxins/pharmacology , Oligochaeta/chemistry , Animals , Antifungal Agents/isolation & purification , Apoptosis/drug effects , Candidiasis/drug therapy , Candidiasis/microbiology , Cell Wall/drug effects , Cytotoxins/isolation & purification , Drug Evaluation, Preclinical , Fibroblasts , Humans , Microbial Sensitivity Tests , Primary Cell Culture , Skin/cytology , Toxicity Tests
12.
J Insect Physiol ; 105: 18-27, 2018.
Article in English | MEDLINE | ID: mdl-29289504

ABSTRACT

A lipid-binding protein apolipophorin III (apoLp-III), an exchangeable component of lipophorin particles, is involved in lipid transport and immune response in insects. In Galleria mellonella, apoLp-III binding to high-density lipophorins and formation of low-density lipophorin complexes upon immune challenge was reported. However, an unanswered question remains whether apoLp-III could form different complexes in a pathogen-dependent manner. Here we report on pathogen- and time-dependent alterations in the level of apoLp-III free and lipophorin-bound form that occur in the hemolymph and hemocytes shortly after immunization of G. mellonella larvae with different pathogens, i.e. Gram-negative bacterium Escherichia coli, Gram-positive bacterium Micrococcus luteus, yeast-like fungus Candida albicans, and filamentous fungus Fusarium oxysporum. These changes were accompanied by differently persistent re-localization of apoLp-III in the hemocytes. The apoLp-III-interacting proteins were recovered from immune hemolymph by affinity chromatography on a Sepharose bed with immobilized anti-apoLp-III antibodies. ApoLp-I, apoLp-II, hexamerin, and arylphorin were identified as main components that bound to apoLp-III; the N-terminal amino acid sequences of G. mellonella apoLp-I and apoLp-II were determined for the first time. In the recovered complexes, the pathogen-dependent differences in the content of individual apolipophorins were detected. Apolipophorins may thus be postulated as signaling molecules responding in an immunogen-dependent manner in early steps of G. mellonella immune response.


Subject(s)
Apolipoproteins/metabolism , Moths/immunology , Animals , Hemocytes/metabolism , Hemolymph/metabolism , Insect Proteins/analysis , Insect Proteins/metabolism , Moths/metabolism
13.
Microbiol Res ; 193: 121-131, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27825480

ABSTRACT

The greater wax moth Galleria mellonella has been increasingly used as a model host to determine Candida albicans virulence and efficacy of antifungal treatment. The G. mellonella lysozyme, similarly to its human counterpart, is a member of the c-type family of lysozymes that exhibits antibacterial and antifungal activity. However, in contrast to the relatively well explained bactericidal action, the mechanism of fungistatic and/or fungicidal activity of lysozymes is still not clear. In the present study we provide the direct evidences that the G. mellonella lysozyme binds to the protoplasts as well as to the intact C. albicans cells and decreases the survival rate of both these forms in a time-dependent manner. No enzymatic activity of the lysozyme towards typical chitinase and ß-glucanase substrates was detected, indicating that hydrolysis of main fungal cell wall components is not responsible for anti-Candida activity of the lysozyme. On the other hand, pre-treatment of cells with tetraethylammonium, a potassium channel blocker, prevented them from the lysozyme action, suggesting that lysozyme acts by induction of programmed cell death. In fact, the C. albicans cells treated with the lysozyme exhibited typical apoptotic features, i.e. loss of mitochondrial membrane potential, phosphatidylserine exposure in the outer leaflet of the cell membrane, as well as chromatin condensation and DNA fragmentation.


Subject(s)
Antifungal Agents/pharmacology , Apoptosis , Candida albicans/drug effects , Lepidoptera/enzymology , Muramidase/pharmacology , Animals , Candida albicans/physiology , Microbial Viability/drug effects
14.
APMIS ; 123(12): 1069-80, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26547373

ABSTRACT

In this paper, an antimycobacterial component of extracellular metabolites of a gut bacterium Raoultella ornithinolytica from D. veneta earthworms was isolated and its antimycobacterial action was tested using Mycobacterium smegmatis. After incubation with the complex obtained, formation of pores and furrows in cell walls was observed using microscopic techniques. The cells lost their shape, stuck together and formed clusters. Surface-enhanced Raman spectroscopy analysis showed that, after incubation, the complex was attached to the cell walls of the Mycobacterium. Analyses of the component performed with Fourier transform infrared spectroscopy demonstrated high similarity to a bacteriocin nisin, but energy dispersive X-ray spectroscopy analysis revealed differences in the elemental composition of this antimicrobial peptide. The component with antimycobacterial activity was identified using mass spectrometry techniques as a glycolipid-peptide complex. As it exhibits no cytotoxicity on normal human fibroblasts, the glycolipid-peptide complex appears to be a promising compound for investigations of its activity against pathogenic mycobacteria.


Subject(s)
Antibiotics, Antitubercular/pharmacology , Enterobacteriaceae/chemistry , Glycolipids/pharmacology , Mycobacterium smegmatis/drug effects , Oligochaeta/microbiology , Peptides/pharmacology , Animals , Antibiotics, Antitubercular/chemistry , Antibiotics, Antitubercular/isolation & purification , Fibroblasts/drug effects , Glycolipids/chemistry , Glycolipids/isolation & purification , Humans , Microbial Sensitivity Tests , Microscopy, Atomic Force , Molecular Sequence Data , Nisin/chemistry , Nisin/pharmacology , Peptides/chemistry , Peptides/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Peptides ; 53: 194-201, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24472857

ABSTRACT

The lysozymes are well known antimicrobial polypeptides exhibiting antibacterial and antifungal activities. Their antibacterial potential is related to muramidase activity and non-enzymatic activity resembling the mode of action of cationic defense peptides. However, the mechanisms responsible for fungistatic and/or fungicidal activity of lysozyme are still not clear. In the present study, the anti-Candida albicans activity of Galleria mellonella lysozyme and anionic peptide 2 (AP2), defense factors constitutively present in the hemolymph, was examined. The lysozyme inhibited C. albicans growth in a dose-dependent manner. The decrease in the C. albicans survival rate caused by the lysozyme was accompanied by a considerable reduction of the fungus metabolic activity, as revealed by LIVE/DEAD staining. In contrast, although AP2 reduced C. albicans metabolic activity, it did not influence its survival rate. Our results suggest fungicidal action of G. mellonella lysozyme and fungistatic activity of AP2 toward C. albicans cells. In the presence of AP2, the anti-C. albicans activity of G. mellonella lysozyme increased. Moreover, when the fungus was incubated with both defense factors, true hyphae were observed besides pseudohyphae and yeast-like C. albicans cells. Atomic force microscopy analysis of the cells exposed to the lysozyme and/or AP2 revealed alterations in the cell surface topography and properties in comparison with the control cells. The results indicate synergistic action of G. mellonella AP2 and lysozyme toward C. albicans. The presence of both factors in the hemolymph of naive larvae suggests their important role in the early stages of immune response against fungi in G. mellonella.


Subject(s)
Hemolymph/chemistry , Moths/chemistry , Muramidase/pharmacology , Peptides/pharmacology , Animals , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/metabolism , Microscopy, Atomic Force
16.
Biomed Res Int ; 2014: 743812, 2014.
Article in English | MEDLINE | ID: mdl-25114920

ABSTRACT

A new exopolysaccharide preparation isolated from stationary cultures of the white rot fungus Ganoderma applanatum (GpEPS) was tested in terms of its bioactive properties including its cytotoxic and immunostimulatory effect. The results indicate that the tested GpEPS (at concentrations above 22.85 µg/mL and 228.5 µg/mL) may exhibit selective activity against tumor cells (cell lines SiHa) and stimulate production of TNF-α THP-1-derived macrophages at the level of 752.17 pg/mL. The GpEPS showed antibacterial properties against Staphyloccoccus aureus and a toxic effect against Vibrio fischeri cells (82.8% cell damage). High cholesterol-binding capacity and triglycerides-binding capacity (57.9% and 41.6% after 24 h of incubation with the tested substances, resp.) were also detected for the investigated samples of GpEPS.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Cytostatic Agents/pharmacology , Fungal Polysaccharides/pharmacology , Ganoderma/chemistry , Aliivibrio fischeri/drug effects , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cytostatic Agents/chemistry , Fungal Polysaccharides/chemistry , Humans , Immunologic Factors , Microbial Viability/drug effects
17.
Nutrition ; 29(3): 556-61, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23218481

ABSTRACT

OBJECTIVE: Proton-pump inhibitors, such as omeprazole, are widely used in the prevention and treatment of gastroesophageal diseases. However, an association between proton-pump inhibitors and the increased risk of bone fractures has been observed, especially in patients treated for extended periods. Conversely, 2-oxoglutarate, a precursor of hydroxyproline, the most abundant amino acid in bone collagen, counteracts the bone loss. The aim of the present study was to elucidate the influence of omeprazole on bone and investigate whether dietary 2-oxoglutarate supplementation could prevent the effects of omeprazole. METHODS: Eighteen male Sprague-Dawley rats were used. Rats received omeprazole in the diet and 2-oxoglutarate in the drinking water. Body and organ weights and serum concentrations of cholecystokinin and gastrin were measured. The femurs, tibias, and calvarias were collected. Histomorphometric analysis of bone and cartilage tissues was conducted. Bone densitometric and peripheral quantitative computed tomographic analyses of the femur and tibia were performed. RESULTS: Omeprazole decreased the femur and tibia weights, the mechanical properties of the femur, the volumetric bone density and content, the trabecular and cortical bone mineral content, the total, trabecular, and cortical bone areas, the mean cortical thickness, and the periosteal circumference of the femur. Omeprazole had a minor effect on the examined bone morphology and exerted negligible effects on the cartilage. 2-Oxoglutarate lowered the gastrin concentration. CONCLUSIONS: Omeprazole treatment exerts its effects mostly on bone mineralization and cancellous bone, adversely affecting bone properties. This adverse effect of omeprazole was not markedly abolished by 2-oxoglutaric acid, which acted as an anti-hypergastrinemic agent.


Subject(s)
Bone and Bones/drug effects , Ketoglutaric Acids/administration & dosage , Omeprazole/adverse effects , Osteoporosis/chemically induced , Animals , Anti-Ulcer Agents , Biomechanical Phenomena , Bone Density/drug effects , Calcification, Physiologic , Cartilage/drug effects , Cartilage/pathology , Cholecystokinin/blood , Diet , Femur/pathology , Femur/physiopathology , Gastrins/blood , Male , Organ Size/drug effects , Osteoporosis/pathology , Osteoporosis/physiopathology , Rats , Rats, Sprague-Dawley , Tibia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL