Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 116(33): 16479-16488, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31346090

ABSTRACT

Regulation of IFN signaling is critical in host recognition and response to pathogens while its dysregulation underlies the pathogenesis of several chronic diseases. STimulator of IFN Genes (STING) has been identified as a critical mediator of IFN inducing innate immune pathways, but little is known about direct coregulators of this protein. We report here that TMEM203, a conserved putative transmembrane protein, is an intracellular regulator of STING-mediated signaling. We show that TMEM203 interacts, functionally cooperates, and comigrates with STING following cell stimulation, which in turn leads to the activation of the kinase TBK1, and the IRF3 transcription factor. This induces target genes in macrophages, including IFN-ß. Using Tmem203 knockout bone marrow-derived macrophages and transient knockdown of TMEM203 in human monocyte-derived macrophages, we show that TMEM203 protein is required for cGAMP-induced STING activation. Unlike STING, TMEM203 mRNA levels are elevated in T cells from patients with systemic lupus erythematosus, a disease characterized by the overexpression of type I interferons. Moreover, TMEM203 mRNA levels are associated with disease activity, as assessed by serum levels of the complement protein C3. Identification of TMEM203 sheds light into the control of STING-mediated innate immune responses, providing a potential novel mechanism for therapeutic interventions in STING-associated inflammatory diseases.


Subject(s)
Inflammation/metabolism , Macrophages/metabolism , Macrophages/pathology , Membrane Proteins/metabolism , Signal Transduction , Conserved Sequence , Down-Regulation , Evolution, Molecular , HeLa Cells/metabolism , Humans , Inflammation/pathology , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Lysosomes/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Nucleotides, Cyclic/metabolism , Protein Binding , Protein Domains , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stromal Interaction Molecule 1/metabolism
2.
BMC Infect Dis ; 21(1): 151, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33546627

ABSTRACT

BACKGROUND: Joint replacement is an effective intervention and prosthetic joint infection (PJI) is one of the most serious complications of such surgery. Diagnosis of PJI is often complex and requires multiple modalities of investigation. We describe a rare cause of PJI which highlights these challenges and the role of whole-genome sequencing to achieve a rapid microbiological diagnosis to facilitate prompt and appropriate management. CASE PRESENTATION: A 79-year-old man developed chronic hip pain associated with a soft-tissue mass, fluid collection and sinus adjacent to his eight-year-old hip prosthesis. His symptoms started after intravesical Bacillus Calmette-Guerin (BCG) therapy for bladder cancer. Synovasure™ and 16S polymerase chain reaction (PCR) tests were negative, but culture of the periarticular mass and genome sequencing diagnosed BCG infection. He underwent a two-stage joint revision and a prolonged duration of antibiotic therapy which was curative. CONCLUSIONS: BCG PJI after therapeutic exposure can have serious consequences, and awareness of this potential complication, identified from patient history, is essential. In addition, requesting appropriate testing is required, together with recognition that traditional diagnostics may be negative in non-pyogenic PJI. Advanced molecular techniques have a role to enhance the timely management of these infections.


Subject(s)
Arthritis, Infectious/etiology , BCG Vaccine/adverse effects , Prosthesis-Related Infections/etiology , Urinary Bladder Neoplasms/drug therapy , Administration, Intravesical , Aged , Arthritis, Infectious/diagnosis , Arthritis, Infectious/therapy , BCG Vaccine/administration & dosage , BCG Vaccine/genetics , BCG Vaccine/isolation & purification , Genome, Bacterial/genetics , Hip Prosthesis/adverse effects , Hip Prosthesis/microbiology , Humans , Male , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/therapy , Treatment Outcome
3.
Proc Natl Acad Sci U S A ; 113(22): E3101-10, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27185949

ABSTRACT

Staphylococcus aureus is a major bacterial pathogen, which causes severe blood and tissue infections that frequently emerge by autoinfection with asymptomatically carried nose and skin populations. However, recent studies report that bloodstream isolates differ systematically from those found in the nose and skin, exhibiting reduced toxicity toward leukocytes. In two patients, an attenuated toxicity bloodstream infection evolved from an asymptomatically carried high-toxicity nasal strain by loss-of-function mutations in the gene encoding the transcription factor repressor of surface proteins (rsp). Here, we report that rsp knockout mutants lead to global transcriptional and proteomic reprofiling, and they exhibit the greatest signal in a genome-wide screen for genes influencing S. aureus survival in human cells. This effect is likely to be mediated in part via SSR42, a long-noncoding RNA. We show that rsp controls SSR42 expression, is induced by hydrogen peroxide, and is required for normal cytotoxicity and hemolytic activity. Rsp inactivation in laboratory- and bacteremia-derived mutants attenuates toxin production, but up-regulates other immune subversion proteins and reduces lethality during experimental infection. Crucially, inactivation of rsp preserves bacterial dissemination, because it affects neither formation of deep abscesses in mice nor survival in human blood. Thus, we have identified a spontaneously evolving, attenuated-cytotoxicity, nonhemolytic S. aureus phenotype, controlled by a pleiotropic transcriptional regulator/noncoding RNA virulence regulatory system, capable of causing S. aureus bloodstream infections. Such a phenotype could promote deep infection with limited early clinical manifestations, raising concerns that bacterial evolution within the human body may contribute to severe infection.


Subject(s)
Abscess/etiology , Apoptosis , Bacteremia/etiology , Bacterial Proteins/genetics , Mutation/genetics , RNA, Untranslated/genetics , Staphylococcal Infections/complications , Virulence Factors/genetics , Abscess/pathology , Animals , Bacteremia/pathology , Female , Gene Expression Regulation, Bacterial , HeLa Cells , Hemolysis , Humans , Mice , Mice, Inbred BALB C , Proteomics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/pathogenicity , Virulence
4.
Lancet ; 390(10089): 62-72, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28499548

ABSTRACT

BACKGROUND: Weekend hospital admission is associated with increased mortality, but the contributions of varying illness severity and admission time to this weekend effect remain unexplored. METHODS: We analysed unselected emergency admissions to four Oxford University National Health Service hospitals in the UK from Jan 1, 2006, to Dec 31, 2014. The primary outcome was death within 30 days of admission (in or out of hospital), analysed using Cox models measuring time from admission. The primary exposure was day of the week of admission. We adjusted for multiple confounders including demographics, comorbidities, and admission characteristics, incorporating non-linearity and interactions. Models then considered the effect of adjusting for 15 common haematology and biochemistry test results or proxies for hospital workload. FINDINGS: 257 596 individuals underwent 503 938 emergency admissions. 18 313 (4·7%) patients admitted as weekday energency admissions and 6070 (5·1%) patients admitted as weekend emergency admissions died within 30 days (p<0·0001). 9347 individuals underwent 9707 emergency admissions on public holidays. 559 (5·8%) died within 30 days (p<0·0001 vs weekday). 15 routine haematology and biochemistry test results were highly prognostic for mortality. In 271 465 (53·9%) admissions with complete data, adjustment for test results explained 33% (95% CI 21 to 70) of the excess mortality associated with emergency admission on Saturdays compared with Wednesdays, 52% (lower 95% CI 34) on Sundays, and 87% (lower 95% CI 45) on public holidays after adjustment for standard patient characteristics. Excess mortality was predominantly restricted to admissions between 1100 h and 1500 h (pinteraction=0·04). No hospital workload measure was independently associated with mortality (all p values >0·06). INTERPRETATION: Adjustment for routine test results substantially reduced excess mortality associated with emergency admission at weekends and public holidays. Adjustment for patient-level factors not available in our study might further reduce the residual excess mortality, particularly as this clustered around midday at weekends. Hospital workload was not associated with mortality. Together, these findings suggest that the weekend effect arises from patient-level differences at admission rather than reduced hospital staffing or services. FUNDING: NIHR Oxford Biomedical Research Centre.


Subject(s)
After-Hours Care/statistics & numerical data , Hospitalization/statistics & numerical data , Mortality , Patient Admission/statistics & numerical data , Adult , Aged , Aged, 80 and over , Diagnosis-Related Groups/statistics & numerical data , Electronic Health Records , Emergencies , England/epidemiology , Female , Holidays , Hospital Mortality , Humans , Male , Middle Aged , Proportional Hazards Models , Risk Assessment/methods , State Medicine/statistics & numerical data
5.
J Clin Microbiol ; 56(8)2018 08.
Article in English | MEDLINE | ID: mdl-29875188

ABSTRACT

Contact tracing requires reliable identification of closely related bacterial isolates. When we noticed the reporting of artifactual variation between Mycobacterium tuberculosis isolates during routine next-generation sequencing of Mycobacterium spp., we investigated its basis in 2,018 consecutive M. tuberculosis isolates. In the routine process used, clinical samples were decontaminated and inoculated into broth cultures; from positive broth cultures DNA was extracted and sequenced, reads were mapped, and consensus sequences were determined. We investigated the process of consensus sequence determination, which selects the most common nucleotide at each position. Having determined the high-quality read depth and depth of minor variants across 8,006 M. tuberculosis genomic regions, we quantified the relationship between the minor variant depth and the amount of nonmycobacterial bacterial DNA, which originates from commensal microbes killed during sample decontamination. In the presence of nonmycobacterial bacterial DNA, we found significant increases in minor variant frequencies, of more than 1.5-fold, in 242 regions covering 5.1% of the M. tuberculosis genome. Included within these were four high-variation regions strongly influenced by the amount of nonmycobacterial bacterial DNA. Excluding these four regions from pairwise distance comparisons reduced biologically implausible variation from 5.2% to 0% in an independent validation set derived from 226 individuals. Thus, we demonstrated an approach identifying critical genomic regions contributing to clinically relevant artifactual variation in bacterial similarity searches. The approach described monitors the outputs of the complex multistep laboratory and bioinformatics process, allows periodic process adjustments, and will have application to quality control of routine bacterial genomics.


Subject(s)
Genetic Variation/genetics , Genome, Bacterial/genetics , High-Throughput Nucleotide Sequencing/standards , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA/standards , Tuberculosis/microbiology , DNA, Bacterial/genetics , Genomics/standards , Humans , Molecular Epidemiology , Mycobacterium tuberculosis/classification
6.
J Clin Microbiol ; 56(11)2018 11.
Article in English | MEDLINE | ID: mdl-30209183

ABSTRACT

The detection of laboratory cross-contamination and mixed tuberculosis infections is an important goal of clinical mycobacteriology laboratories. The objective of this study was to develop a method to detect mixtures of different Mycobacterium tuberculosis lineages in laboratories performing mycobacterial next-generation sequencing (NGS). The setting was the Public Health England National Mycobacteriology Laboratory Birmingham, which performs Illumina sequencing on DNA extracted from positive mycobacterial growth indicator tubes. We analyzed 4,156 samples yielding M. tuberculosis from 663 MiSeq runs, which were obtained during development and production use of a diagnostic process using NGS. The counts of the most common (major) variant and all other variants (nonmajor variants) were determined from reads mapping to positions defining M. tuberculosis lineages. Expected variation was estimated during process development. For each sample, we determined the nonmajor variant proportions at 55 sets of lineage-defining positions. The nonmajor variant proportion in the two most mixed lineage-defining sets (F2 metric) was compared with that of the 47 least-mixed lineage-defining sets (F47 metric). The following three patterns were observed: (i) not mixed by either metric; (ii) high F47 metric, suggesting mixtures of multiple lineages; and (iii) samples compatible with mixtures of two lineages, detected by differential F2 metric elevations relative to F47. Pattern ii was observed in batches, with similar patterns in the M. tuberculosis H37Rv control present in each run, and is likely to reflect cross-contamination. During production, the proportions of samples in the patterns were 97%, 2.8%, and 0.001%, respectively. The F2 and F47 metrics described could be used for laboratory process control in laboratories sequencing M. tuberculosis genomes.


Subject(s)
Bacteriological Techniques/standards , Coinfection/diagnosis , Diagnostic Tests, Routine/standards , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/diagnosis , Coinfection/microbiology , DNA, Bacterial/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing/standards , Humans , Mycobacterium tuberculosis/genetics , Quality Control , Sequence Analysis, DNA/standards , Tuberculosis/microbiology
7.
J Clin Microbiol ; 56(2)2018 02.
Article in English | MEDLINE | ID: mdl-29167290

ABSTRACT

Use of whole-genome sequencing (WGS) for routine mycobacterial species identification and drug susceptibility testing (DST) is becoming a reality. We compared the performances of WGS and standard laboratory workflows prospectively, by parallel processing at a major mycobacterial reference service over the course of 1 year, for species identification, first-line Mycobacterium tuberculosis resistance prediction, and turnaround time. Among 2,039 isolates with line probe assay results for species identification, 74 (3.6%) failed sequencing or WGS species identification. Excluding these isolates, clinically important species were identified for 1,902 isolates, of which 1,825 (96.0%) were identified as the same species by WGS and the line probe assay. A total of 2,157 line probe test results for detection of resistance to the first-line drugs isoniazid and rifampin were available for 728 M. tuberculosis complex isolates. Excluding 216 (10.0%) cases where there were insufficient sequencing data for WGS to make a prediction, overall concordance was 99.3% (95% confidence interval [CI], 98.9 to 99.6%), sensitivity was 97.6% (91.7 to 99.7%), and specificity was 99.5% (99.0 to 99.7%). A total of 2,982 phenotypic DST results were available for 777 M. tuberculosis complex isolates. Of these, 356 (11.9%) had no WGS comparator due to insufficient sequencing data, and in 154 (5.2%) cases the WGS prediction was indeterminate due to discovery of novel, previously uncharacterized mutations. Excluding these data, overall concordance was 99.2% (98.7 to 99.5%), sensitivity was 94.2% (88.4 to 97.6%), and specificity was 99.4% (99.0 to 99.7%). Median processing times for the routine laboratory tests versus WGS were similar overall, i.e., 20 days (interquartile range [IQR], 15 to 31 days) and 21 days (15 to 29 days), respectively (P = 0.41). In conclusion, WGS predicts species and drug susceptibility with great accuracy, but work is needed to increase the proportion of predictions made.


Subject(s)
Drug Resistance, Bacterial/genetics , Genome, Bacterial/genetics , Molecular Typing/methods , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Humans , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Prospective Studies , Rifampin/pharmacology , Sensitivity and Specificity , Time Factors , Tuberculosis/diagnosis
8.
BMC Bioinformatics ; 18(1): 477, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-29132318

ABSTRACT

BACKGROUND: Large scale bacterial sequencing has made the determination of genetic relationships within large sequence collections of bacterial genomes derived from the same microbial species an increasingly common task. Solutions to the problem have application to public health (for example, in the detection of possible disease transmission), and as part of divide-and-conquer strategies selecting groups of similar isolates for computationally intensive methods of phylogenetic inference using (for example) maximal likelihood methods. However, the generation and maintenance of distance matrices is computationally intensive, and rapid methods of doing so are needed to allow translation of microbial genomics into public health actions. RESULTS: We developed, tested and deployed three solutions. BugMat is a fast C++ application which generates one-off in-memory distance matrices. FindNeighbour and FindNeighbour2 are server-side applications which build, maintain, and persist either complete (for FindNeighbour) or sparse (for FindNeighbour2) distance matrices given a set of sequences. FindNeighbour and BugMat use a variation model to accelerate computation, while FindNeighbour2 uses reference-based compression. Performance metrics show scalability into tens of thousands of sequences, with options for scaling further. CONCLUSION: Three applications, each with distinct strengths and weaknesses, are available for distance-matrix based analysis of large bacterial collections. Deployed as part of the Public Health England solution for M. tuberculosis genomic processing, they will have wide applicability.


Subject(s)
Bacteria/classification , Genome, Bacterial , Genomics/methods , Phylogeny , Software , Likelihood Functions , Mycobacterium tuberculosis/genetics
9.
J Clin Microbiol ; 55(5): 1285-1298, 2017 05.
Article in English | MEDLINE | ID: mdl-28275074

ABSTRACT

Routine full characterization of Mycobacterium tuberculosis is culture based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near the point of care. We demonstrate a low-cost method of DNA extraction directly from patient samples for M. tuberculosis WGS. We initially evaluated the method by using the Illumina MiSeq sequencer (40 smear-positive respiratory samples obtained after routine clinical testing and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction were obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. With Illumina MiSeq/MiniSeq, the workflow from patient sample to results can be completed in 44/16 h at a reagent cost of £96/£198 per sample. We then employed a nonspecific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis strain BCG DNA and to combined culture-negative sputum DNA and BCG DNA. For flow cell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 h, with full susceptibility results 5 h later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis DNA in direct samples.


Subject(s)
Antitubercular Agents/therapeutic use , Genome, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA/methods , Tuberculosis, Pulmonary/diagnosis , High-Throughput Nucleotide Sequencing/economics , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Point-of-Care Systems , Pyrazinamide/therapeutic use , Time Factors , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology
10.
N Engl J Med ; 369(13): 1195-205, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24066741

ABSTRACT

BACKGROUND: It has been thought that Clostridium difficile infection is transmitted predominantly within health care settings. However, endemic spread has hampered identification of precise sources of infection and the assessment of the efficacy of interventions. METHODS: From September 2007 through March 2011, we performed whole-genome sequencing on isolates obtained from all symptomatic patients with C. difficile infection identified in health care settings or in the community in Oxfordshire, United Kingdom. We compared single-nucleotide variants (SNVs) between the isolates, using C. difficile evolution rates estimated on the basis of the first and last samples obtained from each of 145 patients, with 0 to 2 SNVs expected between transmitted isolates obtained less than 124 days apart, on the basis of a 95% prediction interval. We then identified plausible epidemiologic links among genetically related cases from data on hospital admissions and community location. RESULTS: Of 1250 C. difficile cases that were evaluated, 1223 (98%) were successfully sequenced. In a comparison of 957 samples obtained from April 2008 through March 2011 with those obtained from September 2007 onward, a total of 333 isolates (35%) had no more than 2 SNVs from at least 1 earlier case, and 428 isolates (45%) had more than 10 SNVs from all previous cases. Reductions in incidence over time were similar in the two groups, a finding that suggests an effect of interventions targeting the transition from exposure to disease. Of the 333 patients with no more than 2 SNVs (consistent with transmission), 126 patients (38%) had close hospital contact with another patient, and 120 patients (36%) had no hospital or community contact with another patient. Distinct subtypes of infection continued to be identified throughout the study, which suggests a considerable reservoir of C. difficile. CONCLUSIONS: Over a 3-year period, 45% of C. difficile cases in Oxfordshire were genetically distinct from all previous cases. Genetically diverse sources, in addition to symptomatic patients, play a major part in C. difficile transmission. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.).


Subject(s)
Clostridioides difficile/genetics , Clostridium Infections/transmission , Cross Infection/transmission , Aged , Aged, 80 and over , Clostridioides difficile/isolation & purification , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Cross Infection/epidemiology , Cross Infection/microbiology , DNA, Bacterial/analysis , Disease Transmission, Infectious , Female , Genetic Variation , Genome-Wide Association Study , Humans , Incidence , Male , Sequence Analysis, DNA , United Kingdom
11.
J Clin Microbiol ; 53(4): 1137-43, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25631807

ABSTRACT

We developed a low-cost and reliable method of DNA extraction from as little as 1 ml of early positive mycobacterial growth indicator tube (MGIT) cultures that is suitable for whole-genome sequencing to identify mycobacterial species and predict antibiotic resistance in clinical samples. The DNA extraction method is based on ethanol precipitation supplemented by pretreatment steps with a MolYsis kit or saline wash for the removal of human DNA and a final DNA cleanup step with solid-phase reversible immobilization beads. The protocol yielded ≥0.2 ng/µl of DNA for 90% (MolYsis kit) and 83% (saline wash) of positive MGIT cultures. A total of 144 (94%) of the 154 samples sequenced on the MiSeq platform (Illumina) achieved the target of 1 million reads, with <5% of reads derived from human or nasopharyngeal flora for 88% and 91% of samples, respectively. A total of 59 (98%) of 60 samples that were identified by the national mycobacterial reference laboratory (NMRL) as Mycobacterium tuberculosis were successfully mapped to the H37Rv reference, with >90% coverage achieved. The DNA extraction protocol, therefore, will facilitate fast and accurate identification of mycobacterial species and resistance using a range of bioinformatics tools.


Subject(s)
Bacteriological Techniques/methods , DNA, Bacterial/isolation & purification , Genome, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Humans , Molecular Typing/methods , Sequence Analysis, DNA/methods , Tuberculosis/microbiology
12.
BMC Microbiol ; 14: 63, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24621342

ABSTRACT

BACKGROUND: Staphylococcal protein A (spa) is an important virulence factor which enables Staphylococcus aureus to evade host immune responses. Genotypes known as "spa-types", based on highly variable Xr region sequences of the spa-gene, are frequently used to classify strains. A weakness of current spa-typing primers is that rearrangements in the IgG-binding region of the gene cause 1-2% of strains to be designated as "non-typeable". RESULTS: We developed an improved primer which enabled sequencing of all strains, containing any type of genetic rearrangement, in a large study among community carriers and hospital inpatients in Oxfordshire, UK (6110 isolates). We identified eight novel spa-gene variants, plus one previously described. Three of these rearrangements would be designated "non-typeable" using current spa-typing methods; they occurred in 1.8% (72/3905) asymptomatically carried and 0.6% (14/2205) inpatient S. aureus strains. Some individuals were simultaneously colonized by both formerly non-typeable and typeable strains; previously such patients would have been identified as carrying only currently typeable strains, underestimating mixed carriage prevalence and diversity. Formerly non-typeable strains were found in more spa-types associated with multilocus sequence type ST398 (35%), common among livestock, compared to other groups with any non-typeable strains (1-4%), suggesting particular spa-types may have been under-represented in previous human studies. CONCLUSIONS: This improved method allows us to spa-type previously non-typeable strains with rearrangements in the spa-gene and to resolve cases of mixed colonization with deletions in one or more strains, thus accounting for hidden diversity of S. aureus in both community and hospital environments.


Subject(s)
Molecular Typing/methods , Mutation , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Staphylococcal Protein A/genetics , Staphylococcus aureus/classification , Staphylococcus aureus/genetics , DNA Primers/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Hospitals , Humans , Molecular Sequence Data , Prevalence , Sensitivity and Specificity , Sequence Analysis, DNA , Staphylococcus aureus/isolation & purification , United Kingdom
13.
Clin Infect Dis ; 56(11): 1589-600, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23463640

ABSTRACT

BACKGROUND: Despite substantial interest in biomarkers, their impact on clinical outcomes and variation with bacterial strain has rarely been explored using integrated databases. METHODS: From September 2006 to May 2011, strains isolated from Clostridium difficile toxin enzyme immunoassay (EIA)-positive fecal samples from Oxfordshire, United Kingdom (approximately 600,000 people) underwent multilocus sequence typing. Fourteen-day mortality and levels of 15 baseline biomarkers were compared between consecutive C. difficile infections (CDIs) from different clades/sequence types (STs) and EIA-negative controls using Cox and normal regression adjusted for demographic/clinical factors. RESULTS: Fourteen-day mortality was 13% in 2222 adults with 2745 EIA-positive samples (median, 78 years) vs 5% in 20,722 adults with 27,550 EIA-negative samples (median, 74 years) (absolute attributable mortality, 7.7%; 95% CI, 6.4%-9.0%). Mortality was highest in clade 5 CDIs (25% [16 of 63]; polymerase chain reaction (PCR) ribotype 078/ST 11), then clade 2 (20% [111 of 560]; 99% PCR ribotype 027/ST 1) versus clade 1 (12% [137 of 1168]; adjusted P < .0001). Within clade 1, 14-day mortality was only 4% (3 of 84) in ST 44 (PCR ribotype 015) (adjusted P = .05 vs other clade 1). Mean baseline neutrophil counts also varied significantly by genotype: 12.4, 11.6, and 9.5 × 10(9) neutrophils/L for clades 5, 2 and 1, respectively, vs 7.0 × 10(9) neutrophils/L in EIA-negative controls (P < .0001) and 7.9 × 10(9) neutrophils/L in ST 44 (P = .08). There were strong associations between C. difficile-type-specific effects on mortality and neutrophil/white cell counts (rho = 0.48), C-reactive-protein (rho = 0.43), eosinophil counts (rho = -0.45), and serum albumin (rho = -0.47). Biomarkers predicted 30%-40% of clade-specific mortality differences. CONCLUSIONS: C. difficile genotype predicts mortality, and excess mortality correlates with genotype-specific changes in biomarkers, strongly implicating inflammatory pathways as a major influence on poor outcome after CDI. PCR ribotype 078/ST 11 (clade 5) leads to severe CDI; thus ongoing surveillance remains essential.


Subject(s)
Clostridioides difficile/isolation & purification , Clostridium Infections/microbiology , Clostridium Infections/mortality , Aged , Aged, 80 and over , Biomarkers/analysis , Clostridioides difficile/classification , Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Feces/microbiology , Female , Genotype , Humans , Immunoenzyme Techniques , Male , Middle Aged , Multilocus Sequence Typing , United Kingdom/epidemiology
14.
Virol J ; 10: 335, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24220146

ABSTRACT

BACKGROUND: Norovirus is the commonest cause of epidemic gastroenteritis among people of all ages. Outbreaks frequently occur in hospitals and the community, costing the UK an estimated £110 m per annum. An evolutionary explanation for periodic increases in norovirus cases, despite some host-specific post immunity is currently limited to the identification of obvious recombinants. Our understanding could be significantly enhanced by full length genome sequences for large numbers of intensively sampled viruses, which would also assist control and vaccine design. Our objective is to develop rapid, high-throughput, end-to-end methods yielding complete norovirus genome sequences. We apply these methods to recent English outbreaks, placing them in the wider context of the international norovirus epidemic of winter 2012. METHOD: Norovirus sequences were generated from 28 unique clinical samples by Illumina RNA sequencing (RNA-Seq) of total faecal RNA. A range of de novo sequence assemblers were attempted. The best assembler was identified by validation against three replicate samples and two norovirus qPCR negative samples, together with an additional 20 sequences determined by PCR and fractional capillary sequencing. Phylogenetic methods were used to reconstruct evolutionary relationships from the whole genome sequences. RESULTS: Full length norovirus genomes were generated from 23/28 samples. 5/28 partial norovirus genomes were associated with low viral copy numbers. The de novo assembled sequences differed from sequences determined by capillary sequencing by <0.003%. Intra-host nucleotide sequence diversity was rare, but detectable by mapping short sequence reads onto its de novo assembled consensus. Genomes similar to the Sydney 2012 strain caused 78% (18/23) of cases, consistent with its previously documented association with the winter 2012 global outbreak. Interestingly, phylogenetic analysis and recombination detection analysis of the consensus sequences identified two related viruses as recombinants, containing sequences in prior circulation to Sydney 2012 in open reading frame (ORF) 2. CONCLUSION: Our approach facilitates the rapid determination of complete norovirus genomes. This method provides high resolution of full norovirus genomes which, when coupled with detailed epidemiology, may improve the understanding of evolution and control of this important healthcare-associated pathogen.


Subject(s)
Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Disease Outbreaks , Genome, Viral , Norovirus/classification , Norovirus/genetics , Sequence Analysis, DNA , Cluster Analysis , England/epidemiology , Humans , Molecular Sequence Data , Norovirus/isolation & purification , Phylogeny , RNA, Viral/genetics , Sequence Homology
15.
J Immunol ; 187(3): 1347-57, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21715686

ABSTRACT

Identification of correlates of protection for infectious diseases including malaria is a major challenge and has become one of the main obstacles in developing effective vaccines. We investigated protection against liver-stage malaria conferred by vaccination with adenoviral (Ad) and modified vaccinia Ankara (MVA) vectors expressing pre-erythrocytic malaria Ags. By classifying CD8(+) T cells into effector, effector memory (T(EM)), and central memory subsets using CD62L and CD127 markers, we found striking differences in T cell memory generation. Although MVA induced accelerated central memory T cell generation, which could be efficiently boosted by subsequent Ad administration, it failed to protect against malaria. In contrast, Ad vectors, which permit persistent Ag delivery, elicit a prolonged effector T cell and T(EM) response that requires long intervals for an efficient boost. A preferential T(EM) phenotype was maintained in liver, blood, and spleen after Ad/MVA prime-boost regimens, and animals were protected against malaria sporozoite challenge. Blood CD8(+) T(EM) cells correlated with protection against malaria liver-stage infection, assessed by estimation of number of parasites emerging from the liver into the blood. The protective ability of Ag-specific T(EM) cells was confirmed by transfer experiments into naive recipient mice. Thus, we identify persistent CD8 T(EM) populations as essential for vaccine-induced pre-erythrocytic protection against malaria, a finding that has important implications for vaccine design.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Immunologic Memory , Liver Diseases, Parasitic/immunology , Liver Diseases, Parasitic/prevention & control , Malaria/immunology , Malaria/prevention & control , Adenoviridae/genetics , Adenoviridae/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Epitopes, T-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Genetic Vectors/therapeutic use , H-2 Antigens/administration & dosage , H-2 Antigens/genetics , H-2 Antigens/immunology , Humans , Immunologic Memory/genetics , Liver Diseases, Parasitic/pathology , Malaria/pathology , Malaria Vaccines/administration & dosage , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Mice , Mice, Inbred BALB C , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Protozoan Proteins/administration & dosage , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Transgenes/immunology , Vaccinia/genetics , Vaccinia/immunology
16.
Mol Ther ; 20(8): 1633-47, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22354374

ABSTRACT

Substantial protection can be provided against the pre-erythrocytic stages of malaria by vaccination first with an adenoviral and then with an modified vaccinia virus Ankara (MVA) poxviral vector encoding the same ME.TRAP transgene. We investigated whether the two vaccine components adenovirus (Ad) and MVA could be coinjected as a mixture to enhance protection against malaria. A single-shot mixture at specific ratios of Ad and MVA (Ad+MVA) enhanced CD8(+) T cell-dependant protection of mice against challenge with Plasmodium berghei. Moreover, the degree of protection could be enhanced after homologous boosting with the same Ad+MVA mixture to levels comparable with classic heterologous Ad prime-MVA boost regimes. The mixture increased transgene-specific responses while decreasing the CD8(+) T cell antivector immunity compared to each vector used alone, particularly against the MVA backbone. Mixed vector immunization led to increased early circulating interferon-γ (IFN-γ) response levels and altered transcriptional microarray profiles. Furthermore, we found that sequential immunizations with the Ad+MVA mixture led to consistent boosting of the transgene-specific CD8(+) response for up to three mixture immunizations, whereas each vector used alone elicited progressively lower responses. Our findings offer the possibility of simplifying the deployment of viral vectors as a single mixture product rather than in heterologous prime-boost regimens.


Subject(s)
Adenoviridae/immunology , Immunization/methods , Vaccinia virus/immunology , Adenoviridae/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Genetic Vectors/genetics , Malaria/immunology , Malaria/prevention & control , Mice , Mice, Inbred BALB C , Plasmodium berghei/immunology , Vaccinia virus/genetics
17.
Sci Rep ; 13(1): 496, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627297

ABSTRACT

Understanding the genetic and environmental risk factors for serious bacterial infections in ageing populations remains incomplete. Utilising the UK Biobank (UKB), a prospective cohort study of 500,000 adults aged 40-69 years at recruitment (2006-2010), can help address this. Partial implementation of such a system helped groups around the world make rapid progress understanding risk factors for SARS-CoV-2 infection and COVID-19, with insights appearing as early as May 2020. In principle, such approaches could also to be used for bacterial isolations. Here we report feasibility testing of linking an England-wide dataset of microbial reporting to UKB participants, to enable characterisation of microbial infections within the UKB Cohort. These records pertain mainly to bacterial isolations; SARS-CoV-2 isolations were not included. Microbiological infections occurring in patients in England, as recorded in the Public Health England second generation surveillance system (SGSS), were linked to UKB participants using pseudonymised identifiers. By January 2015, ascertainment of laboratory reports from UKB participants by SGSS was estimated at 98%. 4.5% of English UKB participants had a positive microbiological isolate in 2015. Half of UKB isolates came from 12 laboratories, and 70% from 21 laboratories. Incidence rate ratios for microbial isolation, which is indicative of serious infection, from the UKB cohort relative to the comparably aged general population ranged from 0.6 to 1, compatible with the previously described healthy participant bias in UKB. Data on microbial isolations can be linked to UKB participants from January 2015 onwards. This linked data would offer new opportunities for research into the role of bacterial agents on health and disease in middle to-old age.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , SARS-CoV-2 , Laboratories , Biological Specimen Banks , Prospective Studies , England/epidemiology
18.
PLoS Med ; 9(2): e1001172, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22346738

ABSTRACT

BACKGROUND: Clostridium difficile infection (CDI) is a leading cause of antibiotic-associated diarrhoea and is endemic in hospitals, hindering the identification of sources and routes of transmission based on shared time and space alone. This may compromise rational control despite costly prevention strategies. This study aimed to investigate ward-based transmission of C. difficile, by subdividing outbreaks into distinct lineages defined by multi-locus sequence typing (MLST). METHODS AND FINDINGS: All C. difficile toxin enzyme-immunoassay-positive and culture-positive samples over 2.5 y from a geographically defined population of ~600,000 persons underwent MLST. Sequence types (STs) were combined with admission and ward movement data from an integrated comprehensive healthcare system incorporating three hospitals (1,700 beds) providing all acute care for the defined geographical population. Networks of cases and potential transmission events were constructed for each ST. Potential infection sources for each case and transmission timescales were defined by prior ward-based contact with other cases sharing the same ST. From 1 September 2007 to 31 March 2010, there were means of 102 tests and 9.4 CDIs per 10,000 overnight stays in inpatients, and 238 tests and 15.7 CDIs per month in outpatients/primary care. In total, 1,276 C. difficile isolates of 69 STs were studied. From MLST, no more than 25% of cases could be linked to a potential ward-based inpatient source, ranging from 37% in renal/transplant, 29% in haematology/oncology, and 28% in acute/elderly medicine to 6% in specialist surgery. Most of the putative transmissions identified occurred shortly (≤ 1 wk) after the onset of symptoms (141/218, 65%), with few >8 wk (21/218, 10%). Most incubation periods were ≤ 4 wk (132/218, 61%), with few >12 wk (28/218, 13%). Allowing for persistent ward contamination following ward discharge of a CDI case did not increase the proportion of linked cases after allowing for random meeting of matched controls. CONCLUSIONS: In an endemic setting with well-implemented infection control measures, ward-based contact with symptomatic enzyme-immunoassay-positive patients cannot account for most new CDI cases.


Subject(s)
Clostridioides difficile/genetics , Cross Infection/transmission , Diarrhea/etiology , Enterocolitis, Pseudomembranous/transmission , Gastrointestinal Tract/microbiology , Hospital Units , Infection Control , Anti-Bacterial Agents/adverse effects , Base Sequence , Clostridioides difficile/isolation & purification , Cross Infection/epidemiology , Cross Infection/microbiology , Diarrhea/microbiology , Endemic Diseases , Enterocolitis, Pseudomembranous/epidemiology , Enterocolitis, Pseudomembranous/microbiology , Hospitalization , Humans , Multilocus Sequence Typing/methods
19.
PLoS Med ; 9(7): e1001279, 2012.
Article in English | MEDLINE | ID: mdl-22859914

ABSTRACT

BACKGROUND: Changing clinical impact, as virulent clones replace less virulent ones, is a feature of many pathogenic bacterial species and can be difficult to detect. Consequently, innovative techniques monitoring infection severity are of potential clinical value. METHODS AND FINDINGS: We studied 5,551 toxin-positive and 20,098 persistently toxin-negative patients tested for Clostridium difficile infection between February 1998 and July 2009 in a group of hospitals based in Oxford, UK, and investigated 28-day mortality and biomarkers of inflammation (blood neutrophil count, urea, and creatinine concentrations) collected at diagnosis using iterative sequential regression (ISR), a novel joinpoint-based regression technique suitable for serial monitoring of continuous or dichotomous outcomes. Among C. difficile toxin-positive patients in the Oxford hospitals, mean neutrophil counts on diagnosis increased from 2003, peaked in 2006-2007, and then declined; 28-day mortality increased from early 2006, peaked in late 2006-2007, and then declined. Molecular typing confirmed these changes were likely due to the ingress of the globally distributed severe C. difficile strain, ST1. We assessed the generalizability of ISR-based severity monitoring in three ways. First, we assessed and found strong (p<0.0001) associations between isolation of the ST1 severe strain and higher neutrophil counts at diagnosis in two unrelated large multi-centre studies, suggesting the technique described might be useful elsewhere. Second, we assessed and found similar trends in a second group of hospitals in Birmingham, UK, from which 5,399 cases were analysed. Third, we used simulation to assess the performance of this surveillance system given the ingress of future severe strains under a variety of assumptions. ISR-based severity monitoring allowed the detection of the severity change years earlier than mortality monitoring. CONCLUSIONS: Automated electronic systems providing early warning of the changing severity of infectious conditions can be established using routinely collected laboratory hospital data. In the settings studied here these systems have higher performance than those monitoring mortality, at least in C. difficile infection. Such systems could have wider applicability for monitoring infections presenting in hospital.


Subject(s)
Clostridioides difficile/physiology , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Laboratories, Hospital/statistics & numerical data , Population Surveillance , Registries/statistics & numerical data , Severity of Illness Index , Aged , Aged, 80 and over , Clostridioides difficile/pathogenicity , Clostridium Infections/mortality , Computer Simulation , Demography , Female , Humans , Incidence , Male , Models, Biological , Neutrophils/pathology , Regression Analysis , Reproducibility of Results , Retrospective Studies , United Kingdom/epidemiology , Virulence
20.
J Clin Microbiol ; 50(1): 142-4, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22075589

ABSTRACT

Isolates from consecutive Clostridium difficile infection (CDI) fecal samples underwent multilocus sequence typing. Potential reinfections with different genotypes were identified in 88/560 (16%) sample pairs taken 1 to 1,414 days (median, 24; interquartile range [IQR], 1 to 52 days) apart; odds of reinfection increased by 58% for every doubling of time between samples. Of 109 sample pairs taken on the same day, 3 (3%) had different genotypes. Considering samples 0 to 7 days apart as the same CDI, 7% of cases had mixed infections with >1 genotype.


Subject(s)
Clostridioides difficile/isolation & purification , Clostridium Infections/diagnosis , Clostridium Infections/microbiology , Coinfection/diagnosis , Coinfection/microbiology , Cluster Analysis , Feces/microbiology , Genotype , Humans , Molecular Epidemiology , Multilocus Sequence Typing , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL