ABSTRACT
The assembly of the ß-amyloid peptide (Aß) to form oligomers and fibrils is closely associated with the pathogenesis and progression of Alzheimer's disease. Aß is a shape-shifting peptide capable of adopting many conformations and folds within the multitude of oligomers and fibrils the peptide forms. These properties have precluded detailed structural elucidation and biological characterization of homogeneous, well-defined Aß oligomers. In this paper, we compare the structural, biophysical, and biological characteristics of two different covalently stabilized isomorphic trimers derived from the central and C-terminal regions Aß. X-ray crystallography reveals the structures of the trimers and shows that each trimer forms a ball-shaped dodecamer. Solution-phase and cell-based studies demonstrate that the two trimers exhibit markedly different assembly and biological properties. One trimer forms small soluble oligomers that enter cells through endocytosis and activate capase-3/7-mediated apoptosis, while the other trimer forms large insoluble aggregates that accumulate on the outer plasma membrane and elicit cellular toxicity through an apoptosis-independent mechanism. The two trimers also exhibit different effects on the aggregation, toxicity, and cellular interaction of full-length Aß, with one trimer showing a greater propensity to interact with Aß than the other. The studies described in this paper indicate that the two trimers share structural, biophysical, and biological characteristics with oligomers of full-length Aß. The varying structural, assembly, and biological characteristics of the two trimers provide a working model for how different Aß trimers can assemble and lead to different biological effects, which may help shed light on the differences among Aß oligomers.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/metabolism , Protein Conformation , Crystallography, X-Ray , Cell Membrane/metabolism , Peptide Fragments/chemistryABSTRACT
Specificity of interactions between two DNA strands, or between protein and DNA, is often achieved by varying bases or side chains coming off the DNA or protein backbone-for example, the bases participating in Watson-Crick pairing in the double helix, or the side chains contacting DNA in TALEN-DNA complexes. By contrast, specificity of protein-protein interactions usually involves backbone shape complementarity1, which is less modular and hence harder to generalize. Coiled-coil heterodimers are an exception, but the restricted geometry of interactions across the heterodimer interface (primarily at the heptad a and d positions2) limits the number of orthogonal pairs that can be created simply by varying side-chain interactions3,4. Here we show that protein-protein interaction specificity can be achieved using extensive and modular side-chain hydrogen-bond networks. We used the Crick generating equations5 to produce millions of four-helix backbones with varying degrees of supercoiling around a central axis, identified those accommodating extensive hydrogen-bond networks, and used Rosetta to connect pairs of helices with short loops and to optimize the remainder of the sequence. Of 97 such designs expressed in Escherichia coli, 65 formed constitutive heterodimers, and the crystal structures of four designs were in close agreement with the computational models and confirmed the designed hydrogen-bond networks. In cells, six heterodimers were fully orthogonal, and in vitro-following mixing of 32 chains from 16 heterodimer designs, denaturation in 5 M guanidine hydrochloride and reannealing-almost all of the interactions observed by native mass spectrometry were between the designed cognate pairs. The ability to design orthogonal protein heterodimers should enable sophisticated protein-based control logic for synthetic biology, and illustrates that nature has not fully explored the possibilities for programmable biomolecular interaction modalities.
Subject(s)
Computer Simulation , Protein Engineering , Protein Interaction Domains and Motifs , Protein Multimerization , Proteins/chemistry , Proteins/metabolism , DNA/chemistry , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Guanidine/pharmacology , Hydrogen Bonding , Models, Molecular , Protein Binding , Protein Denaturation/drug effects , Protein Structure, Secondary , Proteins/geneticsABSTRACT
RNA-binding proteins contain intrinsically disordered regions whose functions in RNA recognition are poorly understood. The RNA chaperone Hfq is a homohexamer that contains six flexible C-terminal domains (CTDs). The effect of the CTDs on Hfq's integrity and RNA binding has been challenging to study because of their sequence identity and inherent disorder. We used native mass spectrometry coupled with surface-induced dissociation and molecular dynamics simulations to disentangle the arrangement of the CTDs and their impact on the stability of Escherichia coli Hfq with and without RNA. The results show that the CTDs stabilize the Hfq hexamer through multiple interactions with the core and between CTDs. RNA binding perturbs this network of CTD interactions, destabilizing the Hfq ring. This destabilization is partially compensated by binding of RNAs that contact multiple surfaces of Hfq. By contrast, binding of short RNAs that only contact one or two subunits results in net destabilization of the complex. Together, the results show that a network of intrinsically disordered interactions integrate RNA contacts with the six subunits of Hfq. We propose that this CTD network raises the selectivity of RNA binding.
Subject(s)
Escherichia coli Proteins , Host Factor 1 Protein , Intrinsically Disordered Proteins , RNA, Small Untranslated , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Host Factor 1 Protein/metabolism , Mass Spectrometry , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , RNA-Binding Proteins/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolismABSTRACT
Salmonella infection, also known as Salmonellosis, is one of the most common food-borne illnesses. Salmonella infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut. In addition, Salmonella competes with other gut microorganisms for survival and growth within the host. Compositional and functional alterations in gut bacteria occur because of the host immunological response and competition between Salmonella and the gut microbiome. Host variation and the inherent complexity of the gut microbial community make understanding commensal and pathogen interactions particularly difficult during a Salmonella infection. Here, we present metabolomics and lipidomics analyses along with the 16S rRNA sequence analysis, revealing a comprehensive view of the metabolic interactions between the host and gut microbiota during Salmonella infection in a CBA/J mouse model. We found that different metabolic pathways were altered over the four investigated time points of Salmonella infection (days -2, +2, +6, and +13). Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis facilitated an understanding of the heterogeneous response of mice, depending on the degree of dysbiosis.
Subject(s)
Gastrointestinal Microbiome , Metabolomics , RNA, Ribosomal, 16S , Salmonella Infections , Animals , Gastrointestinal Microbiome/physiology , Mice , RNA, Ribosomal, 16S/genetics , Metabolomics/methods , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Host-Pathogen Interactions , Lipidomics , Mice, Inbred CBA , Dysbiosis/microbiology , Dysbiosis/metabolism , Disease Models, Animal , Host Microbial Interactions/genetics , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/metabolism , MultiomicsABSTRACT
Capillary electrophoresis (CE) interfaced to mass spectrometry (MS) with electrospray ionization typically incorporates acidic additives or organic solvents to assist in ionization. Vibrating sharp-edge spray ionization (VSSI) is a voltage-free method to interface CE and MS that does not require these additives, making it appealing for protein analyses. CE-VSSI nanoflow sheath separations are performed with low ionic strength aqueous solutions in the sheath to reduce suppression. Serine is also included in the sheath to reduce analyte adduction. Proteins are detected in the 2.5-10 µM range, corresponding to an injected mass range of 0.1-1.2 ng. The anionic proteins ß-lactoglobulin and transferrin are resolved using an unmodified fused silica capillary because they do not exhibit nonspecific surface adsorption. Conversely, separations of cationic proteins cytochrome c, ribonuclease A, and α-chymotrypsinogen A in an unmodified capillary require acidic background electrolytes to overcome adsorption. Alternatively, a semipermanent coating comprised self-assembled lipids overcomes surface adsorption at a neutral pH. Separations with zwitterionic and hybrid cationic coatings are complete within 15 or 6 min, respectively. The dimeric form of triosephosphate isomerase was observed at a 60 µM, corresponding to a mass of 19 ng, by dropping the temperature of the MS inlet.
Subject(s)
Electrophoresis, Capillary , Proteins , Spectrometry, Mass, Electrospray Ionization , Electrophoresis, Capillary/methods , Proteins/analysis , Proteins/chemistry , Proteins/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methods , AnimalsABSTRACT
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Subject(s)
Tandem Mass Spectrometry , Humans , Biology , Cryoelectron Microscopy , Proteins/chemistry , Tandem Mass Spectrometry/methodsABSTRACT
Cre recombinase selectively recognizes DNA and prevents non-specific DNA cleavage through an orchestrated series of assembly intermediates. Cre recombines two loxP DNA sequences featuring a pair of palindromic recombinase binding elements and an asymmetric spacer region, by assembly of a tetrameric synaptic complex, cleavage of an opposing pair of strands, and formation of a Holliday junction intermediate. We used Cre and loxP variants to isolate the monomeric Cre-loxP (54 kDa), dimeric Cre2-loxP (110 kDa), and tetrameric Cre4-loxP2 assembly intermediates, and determined their structures using cryo-EM to resolutions of 3.9, 4.5 and 3.2 Å, respectively. Progressive and asymmetric bending of the spacer region along the assembly pathway enables formation of increasingly intimate interfaces between Cre protomers and illuminates the structural bases of biased loxP strand cleavage order and half-the-sites activity. Application of 3D variability analysis to the tetramer data reveals constrained conformational sampling along the pathway between protomer activation and Holliday junction isomerization. These findings underscore the importance of protein and DNA flexibility in Cre-mediated site selection, controlled activation of alternating protomers, the basis for biased strand cleavage order, and recombination efficiency. Such considerations may advance development of site-specific recombinases for use in gene editing applications.
Subject(s)
DNA, Cruciform , Viral Proteins , Binding Sites , Cryoelectron Microscopy , DNA/chemistry , Integrases/metabolism , Models, Molecular , Nucleic Acid Conformation , Protein Conformation , Protein Subunits/genetics , Recombination, Genetic , Viral Proteins/metabolismABSTRACT
RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5' leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae-RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein-protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.
Subject(s)
Archaeal Proteins , Methanocaldococcus , Ribonuclease P , Archaeal Proteins/metabolism , Methanocaldococcus/enzymology , Methanocaldococcus/genetics , Protein Conformation , RNA, Transfer/metabolism , Ribonuclease P/metabolism , Structure-Activity RelationshipABSTRACT
The de novo design of polar protein-protein interactions is challenging because of the thermodynamic cost of stripping water away from the polar groups. Here, we describe a general approach for designing proteins which complement exposed polar backbone groups at the edge of beta sheets with geometrically matched beta strands. We used this approach to computationally design small proteins that bind to an exposed beta sheet on the human transferrin receptor (hTfR), which shuttles interacting proteins across the blood-brain barrier (BBB), opening up avenues for drug delivery into the brain. We describe a design which binds hTfR with a 20 nM Kd, is hyperstable, and crosses an in vitro microfluidic organ-on-a-chip model of the human BBB. Our design approach provides a general strategy for creating binders to protein targets with exposed surface beta edge strands.
Subject(s)
Protein Engineering/methods , Receptors, Transferrin/metabolism , Receptors, Transferrin/physiology , Blood-Brain Barrier/metabolism , Brain/metabolism , Drug Delivery Systems , Humans , Proteins/metabolism , Transferrin/metabolismABSTRACT
Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.
Subject(s)
Nanostructures/chemistry , Protein Engineering , Proteins/chemistry , Ankyrin Repeat , Nanostructures/ultrastructure , Protein Conformation, alpha-Helical , Proteins/genetics , Proteins/ultrastructureABSTRACT
Native proteomics measures endogenous proteoforms and protein complexes under a near physiological condition using native mass spectrometry (nMS) coupled with liquid-phase separations. Native proteomics should provide the most accurate bird's-eye view of proteome dynamics within cells, which is fundamental for understanding almost all biological processes. nMS has been widely employed to characterize well-purified protein complexes. However, there are only very few trials of utilizing nMS to measure proteoforms and protein complexes in a complex sample (i.e., a whole cell lysate). Here, we pioneer the native proteomics measurement of large proteoforms or protein complexes up to 400â kDa from a complex proteome via online coupling of native capillary zone electrophoresis (nCZE) to an ultra-high mass range (UHMR) Orbitrap mass spectrometer. The nCZE-MS technique enabled the measurement of a 115-kDa standard protein complex while consuming only about 0.1â ng of protein material. nCZE-MS analysis of an E.coli cell lysate detected 72â proteoforms or protein complexes in a mass range of 30-400â kDa in a single run while consuming only 50-ng protein material. The mass distribution of detected proteoforms or protein complexes agreed well with that from mass photometry measurement. This work represents a technical breakthrough in native proteomics for measuring complex proteomes.
ABSTRACT
Charge detection mass spectrometry (CDMS) enables the direct mass measurement of heterogeneous samples on the megadalton scale, as the charge state for a single ion is determined simultaneously with the mass-to-charge ratio (m/z). Surface-induced dissociation (SID) is an effective activation method to dissociate non-intertwined, non-covalent protein complexes without extensive gas-phase restructuring, producing various subcomplexes reflective of the native protein topology. Here, we demonstrate that using CDMS after SID on an Orbitrap platform offers subunit connectivity, topology, proteoform information, and relative interfacial strengths of the intact macromolecular assemblies. SID dissects the capsids (â¼3.7 MDa) of adeno-associated viruses (AAVs) into trimer-containing fragments (3mer, 6mer, 9mer, 15mer, etc.) that can be detected by the individual ion mass spectrometry (I2MS) approach on Orbitrap instruments. SID coupled to CDMS provides unique structural insights into heterogeneous assemblies that are not readily obtained by traditional MS measurements.
Subject(s)
Capsid , Dependovirus , Mass Spectrometry , SoftwareABSTRACT
Defensins are short cationic, amphiphilic, cysteine-rich peptides that constitute the front-line immune defense against various pathogens. In addition to exerting direct antibacterial activities, defensins inactivate several classes of unrelated bacterial exotoxins. To date, no coherent mechanism has been proposed to explain defensins' enigmatic efficiency toward various toxins. In this study, we showed that binding of neutrophil ?-defensin HNP1 to affected bacterial toxins caused their local unfolding, potentiated their thermal melting and precipitation, exposed new regions for proteolysis, and increased susceptibility to collisional quenchers without causing similar effects on tested mammalian structural and enzymatic proteins. Enteric ?-defensin HD5 and ?-defensin hBD2 shared similar toxin-unfolding effects with HNP1, albeit to different degrees. We propose that protein susceptibility to inactivation by defensins is contingent to their thermolability and conformational plasticity and that defensin-induced unfolding is a key element in the general mechanism of toxin inactivation by human defensins.
Subject(s)
Bacterial Toxins/metabolism , Exotoxins/metabolism , alpha-Defensins/metabolism , alpha-Defensins/pharmacology , beta-Defensins/metabolism , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Cell Line , Chymotrypsin/metabolism , Enterotoxins/metabolism , Humans , Protein Binding , Protein Conformation , Protein Unfolding , Proteolysis , Repressor Proteins/metabolism , Thermolysin/metabolism , alpha-Defensins/immunologyABSTRACT
The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5' leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While â¼250-500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to â¼10-20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.
Subject(s)
Archaea/enzymology , Magnesium/metabolism , RNA, Archaeal/genetics , Ribonuclease P/genetics , Nucleic Acid Conformation/drug effects , Pyrococcus furiosus/enzymology , Pyrococcus furiosus/genetics , RNA Precursors/genetics , RNA, Archaeal/ultrastructure , RNA, Catalytic , Ribonuclease P/ultrastructureABSTRACT
Redß is a single strand annealing protein from bacteriophage λ that binds loosely to ssDNA, not at all to pre-formed dsDNA, but tightly to a duplex intermediate of annealing. As viewed by electron microscopy, Redß forms oligomeric rings on ssDNA substrate, and helical filaments on the annealed duplex intermediate. However, it is not clear if these are the functional forms of the protein in vivo. We have used size-exclusion chromatography coupled with multi-angle light scattering, analytical ultracentrifugation and native mass spectrometry (nMS) to characterize the size of the oligomers formed by Redß in its different DNA-bound states. The nMS data, which resolve species with the highest resolution, reveal that Redß forms an oligomer of 12 subunits in the absence of DNA, complexes ranging from 4 to 14 subunits on 38-mer ssDNA, and a much more distinct and stable complex of 11 subunits on 38-mer annealed duplex. We also measure the concentration of Redß in cells active for recombination and find it to range from 7 to 27 µM. Collectively, these data provide new insights into the dynamic nature of the complex on ssDNA, and the more stable and defined complex on annealed duplex.
Subject(s)
Bacteriophage lambda , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Viral Proteins/metabolism , Chromatography, Gel , DNA/metabolism , Light , Mass Spectrometry , Protein Binding , Protein Multimerization , Scattering, Radiation , UltracentrifugationABSTRACT
Pathogens are becoming resistant to antimicrobials at an increasing rate, and novel therapeutic strategies are needed. Using Salmonella as a model, we have investigated the induction of sugar-phosphate toxicity as a potential therapeutic modality. The approach entails providing a nutrient while blocking the catabolism of that nutrient, resulting in the accumulation of a toxic intermediate. We hypothesize that this build-up will decrease the fitness of the organism during infection given nutrient availability. We tested this hypothesis using mutants lacking one of seven genes whose mutation is expected to cause the accumulation of a toxic metabolic intermediate. The araD, galE, rhaD, glpD, mtlD, manA, and galT mutants were then provided the appropriate sugars, either in vitro or during gastrointestinal infection of mice. All but the glpD mutant had nutrient-dependent growth defects in vitro, suggestive of sugar-phosphate toxicity. During gastrointestinal infection of mice, five mutants had decreased fitness. Providing the appropriate nutrient in the animal's drinking water was required to cause fitness defects with the rhaD and manA mutants and to enhance the fitness defect of the araD mutant. The galE and mtlD mutants were severely attenuated regardless of the nutrient being provided in the drinking water. Homologs of galE are widespread among bacteria and in humans, rendering the specific targeting of bacterial pathogens difficult. However, the araD, mtlD, and rhaD genes are not present in humans, appear to be rare in most phyla of bacteria, and are common in several genera of Enterobacteriaceae, making the encoded enzymes potential narrow-spectrum therapeutic targets. IMPORTANCE Bacterial pathogens are becoming increasingly resistant to antibiotics. There is an urgent need to identify novel drug targets and therapeutic strategies. In this work we have assembled and characterized a collection of mutations in our model pathogen, Salmonella enterica, that block a variety of sugar utilization pathways in such a way as to cause the accumulation of a toxic sugar-phosphate. Mutations in three genes, rhaD, araD, and mtlD, dramatically decrease the fitness of Salmonella in a mouse model of gastroenteritis, suggesting that RhaD, AraD, and MtlD may be good narrow-spectrum drug targets. The induction of sugar-phosphate toxicities may be a therapeutic strategy that is broadly relevant to other bacterial and fungal pathogens.
Subject(s)
Drinking Water , Salmonella enterica , Humans , Animals , Mice , Drinking Water/metabolism , Salmonella/genetics , Salmonella enterica/genetics , Sugars/metabolism , Phosphates/metabolismABSTRACT
Aß dimers are a basic building block of many larger Aß oligomers and are among the most neurotoxic and pathologically relevant species in Alzheimer's disease. Homogeneous Aß dimers are difficult to prepare, characterize, and study because Aß forms heterogeneous mixtures of oligomers that vary in size and can rapidly aggregate into more stable fibrils. This paper introduces AßC18C33 as a disulfide-stabilized analogue of Aß42 that forms stable homogeneous dimers in lipid environments but does not aggregate to form insoluble fibrils. The AßC18C33 peptide is readily expressed in Escherichia coli and purified by reverse-phase HPLC to give ca. 8 mg of pure peptide per liter of bacterial culture. SDS-PAGE establishes that AßC18C33 forms homogeneous dimers in the membrane-like environment of SDS and that conformational stabilization of the peptide with a disulfide bond prevents the formation of heterogeneous mixtures of oligomers. Mass spectrometric (MS) studies in the presence of dodecyl maltoside (DDM) further confirm the formation of stable noncovalent dimers. Circular dichroism (CD) spectroscopy establishes that AßC18C33 adopts a ß-sheet conformation in detergent solutions and supports a model in which the intramolecular disulfide bond induces ß-hairpin folding and dimer formation in lipid environments. Thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM) studies indicate that AßC18C33 does not undergo fibril formation in aqueous buffer solutions and demonstrate that the intramolecular disulfide bond prevents fibril formation. The recently published NMR structure of an Aß42 tetramer (PDB: 6RHY) provides a working model for the AßC18C33 dimer, in which two ß-hairpins assemble through hydrogen bonding to form a four-stranded antiparallel ß-sheet. It is anticipated that AßC18C33 will serve as a stable, nonfibrilizing, and noncovalent Aß dimer model for amyloid and Alzheimer's disease research.
Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Disulfides/metabolism , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Circular Dichroism/methods , Disulfides/chemistry , Humans , Hydrogen Bonding , Microscopy, Electron, Transmission/methods , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Conformation , Protein Conformation, beta-StrandABSTRACT
Aquaporin-0 (AQP0) is a tetrameric membrane protein and the most abundant membrane protein in the eye lens. Interestingly, there is little to no cellular turnover once mature lens fiber cells are formed, and hence, age-related modifications accumulate with time. While bottom-up mass spectrometry-based approaches can provide identification of post-translational modifications, they cannot provide information on how these modifications coexist in a single chain or complex. Native mass spectrometry, however, enables the transfer of the intact complex into the gas-phase allowing modifications to be identified at the tetramer level. Here, we present the use of native mass spectrometry and surface-induced dissociation to study the post-translational modifications of AQP0 isolated and purified from bovine eye lens, existing as multiple forms due to the different modification states naturally present.
Subject(s)
Aquaporins , Lens, Crystalline , Protein Processing, Post-Translational , Animals , Aquaporins/chemistry , Cattle , Lens, Crystalline/chemistry , Mass SpectrometryABSTRACT
Understanding the relationship between protein structure and experimental data is crucial for utilizing experiments to solve biochemical problems and optimizing the use of sparse experimental data for structural interpretation. Tandem mass spectrometry (MS/MS) can be used with a variety of methods to collect structural data for proteins. One example is surface-induced dissociation (SID), which is used to break apart protein complexes (via a surface collision) into intact subcomplexes and can be performed at multiple laboratory frame SID collision energies. These energy-resolved MS/MS experiments have shown that the profile of the breakages depends on the acceleration energy of the collision. It is possible to extract an appearance energy (AE) from energy-resolved mass spectrometry (ERMS) data, which shows the relative intensity of each type of subcomplex as a function of SID acceleration energy. We previously determined that these AE values for specific interfaces correlated with structural features related to interface strength. In this study, we further examined the structural relationships by developing a method to predict the full ERMS plot from the structure, rather than extracting a single value. First, we noted that for proteins with multiple interface types, we could reproduce the correct shapes of breakdown curves, further confirming previous structural hypotheses. Next, we demonstrated that interface size and energy density (measured using Rosetta) correlated with data derived from the ERMS plot (R2 = 0.71). Furthermore, based on this trend, we used native crystal structures to predict ERMS. The majority of predictions resulted in good agreement, and the average root-mean-square error was 0.20 for the 20 complexes in our data set. We also show that if additional information on cleavage as a function of collision energy could be obtained, the accuracy of predictions improved further. Finally, we demonstrated that ERMS prediction results were better for the native than for inaccurate models in 17/20 cases. An application to run this simulation has been developed in Rosetta, which is freely available for use.
Subject(s)
Tandem Mass Spectrometry , Humans , Computer Simulation , Physical Phenomena , Proteins/chemistry , Tandem Mass Spectrometry/methodsABSTRACT
Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris-HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins.